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ABSTRACT 

 
This thesis is devoted to the study of the 𝑞-state Potts model over ℚ𝑝 on Cayley trees. 

Specifically, we investigate the 𝑝-adic Gibbs measures of the Potts model on the 

Cayley trees of orders 3 and 4 and their related 𝑝-adic dynamical systems. In the first 

part, we describe the existence of the translation-invariant 𝑝-adic Gibbs measures of 

the Potts model on the Cayley tree of order 4. The existence of translation-invariant 𝑝-

adic Gibbs measures is equivalent to the existence of fixed points of a rational map 

called Potts–Bethe mapping. The Potts–Bethe mapping is derived from the recurrent 

equation of a ℚ𝑝
𝑞
-valued function in the construction of the 𝑝-adic Gibbs measures of 

the Potts model on Cayley trees. In order to describe the existence of these translation-

invariant 𝑝-adic Gibbs measures, we find the solutions of some quartic equation in 

some domains ℇ𝑝 ⊂ ℚ𝑝. In general, we also provide some solvability conditions for 

the depressed quartic equation over ℚ𝑝. In the second part, we study the dynamics of 

the Potts–Bethe mapping of degrees 3 and 4. First, we describe the Potts–Bethe 

mapping having good reduction. For a Potts–Bethe mapping with good reduction, the 

projective line 𝑃1(ℚ𝑝) can be decomposed into minimal components and their 

attracting basins. However, the Potts–Bethe mapping associated to the Potts model on 

the Cayley trees of orders 3 and 4 have bad reduction. For many prime numbers 𝑝, 

such Potts–Bethe mappings are chaotic. In fact, for these primes 𝑝, we prove that 

restricted to their Julia sets, the Potts–Bethe mappings are topologically conjugate to 

the full shift dynamics. For other primes 𝑝, restricted to their Julia sets, the Potts–

Bethe mappings are not topologically conjugate to the full shift dynamics. The chaotic 

property of the Potts-Bethe mapping implies the vastness of the set of the 𝑝-adic 

Gibbs measures, and hence implies the phase transition. As application, for many 

prime numbers 𝑝, the Potts models over ℚ𝑝 on the Cayley trees of orders 3 and 4 have 

phase transition. We also remark the statement that phase transition implies chaos is 

not true.   
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 خلاصة البحث
 

ABSTRACT IN ARABIC 

على أشجار كايلي. قمنا تحديدا  ℚ𝑝لنموذج بوتس على  𝑞-stateتم تكريس هذا البحث لدراسة 
والأنظمة  4و  3لحسابات جيبس لنموذج بوتس على أشجار كايلي من الرتبة  𝑝-adicبالتحقيق في 

-𝑝الثابتة لــ -قمنا في الجزء الأول بوصف وجود الترجمةالمتعلقة.  𝑝-adicالديناميكية لــ 

adic الثابتة لــ -. وجود الترجمة4تس على أشجار كايلي من الرتبة لحسابات جيبس لنموذج بو
𝑝-adic  لحسابات جيبس يعادل وجود نقاط محددة على الخريطة المنطقية المسماة بتخطيط بوتس

ℚ𝑝و بيث. تم اشتقاق تخطيط بوتس و بيث من المعادلة التكرارية للدالة المقدرة بــ 
𝑞  في بناء𝑝-

adic الثابتة -ج بوتس على أشجار كايلي. من أجل توصيف وجود الترجمةلحسابات جيبس لنموذ
لحسابات جيبس قمنا بالبحث عن حلول بعض المعادلات من الدرجة الرابعة في  𝑝-adicلــ 

ℇ𝑝بعض مجالات  ⊂ ℚ𝑝 أعطينا بشكل عام بعض شروط قابلية الحل لمعادلات الدرجة الرابعة على .
ℚ𝑝.  تم 4و  3قمنا في الجزء الثاني من البحث بدراسة ديناميكيات تخطيط بوتس و بيث للدرجة .

حتى يكون لتخطيط بوتس و بيث بيث على احتوائها على تخفيض جيد .توصيف تخطيط بوتس و 
أن يحلل إلى أجزاء صغيرة وأحواضها الجاذبة.  𝑷1(ℚ𝑝)تخفيض جيد، بإمكان الخط الإسقاطي 

ذلك فقد كان لدى تخطيط بوتس و بيث لنموذج بوتس على أشجار كايلي من على الرغم من 
، كان تخطيط تخطيط بوتس و بيث سيئا، وفي الواقع  𝑝تخفيضا سيئا. لكل رقم أولي  4و  3الرتبة 

، محدودة لجموعات جوليا الخاصة بها، كانت تخطيطات بوتس و بيث 𝑝هذه الأرقام الأولية 
فقد تكون مجموعات  𝑝ميكيات التحول الكامل. أما بالنسبة للأرقام الأولية مترافقة طبوغرافيا لدينا

-𝑝جوليا الخاصة بها خالية. تدل الخاصية الفوضوية لتخطيطات بوتس و بيث على وسع مجموعات 

adic  لحسابات جيبس، وبالتالي تدل على الانتقالية الطورية. أما بالنسبة للتطبيقات، فكان للعديد من
انتقالا طوريا، ونلاحظ  4و  3على أشجار كايلي من الرتبة  ℚ𝑝لنماذج بوتس على  𝑝الأولية الأرقام 

 أيضًا أن التعبير بأن الانتقال الطوري يدل على الفوضوية ليس صحيحا.
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CHAPTER ONE 

INTRODUCTION 

1.1 RESEARCH BACKGROUND 

A 𝑝-adic-valued theory of probability – a non-Kolmogorov model in which 

probabilities take values in the field of 𝑝-adic numbers – was proposed in a series of 

papers by Khrennikov (1990a,b, 1991, 1992a,b, 1993, 1996a,b) and Khrennikov et al. 

(1999) in order to resolve the problem of the statistical interpretation of 𝑝-adic-valued 

wave functions in non-Archimedean quantum physics (Beltrametti & Cassinelli, 1972, 

Vladimirov et al., 1994, Volovich, 1987, Albeverio et al., 2010, Khrennikov, 1994, 

2009). Moreover, in order to formalize the measure-theoretic approach for 𝑝-adic 

probability theory, Ilic-Stepic et al. (2016) developed several 𝑝-adic probability logics 

which are sound, complete and decidable extensions of the classical propositional 

logic. 

In fact, a 𝑝-adic probability is defined as the limit of relative frequencies in the 

𝑝-adic topology. Then the measure-theoretical aspects of the 𝑝-adic probability theory 

can be established. After that, the theory of stochastic processes with values in 𝑝-adic 

and more general non-Archimedean fields having (non-Kolmogorov) probability 

distributions with non-Archimedean values has been extensively developed and 

various kinds of limits theorems for 𝑝-adic-valued processes have been obtained. On 

the other hand, applications of 𝑝-adic functional and harmonic analysis have also 

shown up in theoretical physics and quantum mechanics (Albeverio et al., 1997a,b,c 

2009, 2010, Dragovich et al., 2009). For summary, all recent developments on 𝑝-adic 

mathematical physics can be found in an article by Dragovich et al. (2017). 
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Gibbs measures which play a central role in statistical mechanics take its origin 

from Boltzmann and Gibbs who introduced a statistical approach to thermodynamics 

to deduce collective macroscopic behaviors from individual microscopic information. 

Gibbs measures associated to the Hamiltonian of a physical system generalize the 

notion of a canonical ensemble. In the classical case of the statistical mechanics where 

the mathematical model was prescribed over the field of real numbers, the physical 

phenomenon of phase transition is reflected by the non-uniqueness of the Gibbs 

measures. Thus one central problem in the study of Gibbs measures is to determine 

the size of the set of Gibbs measures. 

Due to the convex structure of the set of Gibbs measures over the field of real 

numbers, in order to determine the size of the set of Gibbs measures, it suffices to 

study the number of its extremal elements. Hence, in the classical case, to predict a 

phase transition, the main attention was paid to finding all possible extremal Gibbs 

measures (Georgii, 2011). However, it turns out that finding all extremal Gibbs 

measures for spin models, even for the Ising spin model on trees is a hard and not 

fully solved problem (Gandolfo et al., 2012, Gandolfo et al, 2017). 

The study of Gibbs measures for the Potts models on Cayley trees attracts 

much attention (Kulske et al., 2013, Rozikov & Khakimov, 2013, Gandalfo et al., 

2017). The classical method to characterize Gibbs measures on Cayley trees, founded 

by Preston (1974) and Spitzer (1975), is the Markov random field theory and its 

recurrence equations. However, the modern theory of Gibbs measures on Cayley trees 

also uses group theory, information flows, node-weighted random walks, contour 

methods and nonlinear analysis. The recent development of the theory of Gibbs 

measures on Cayley trees can be found in the book by Rozikov (2013). 
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Mezard et al. (1987) found that the structure of correlation functions for spin 

glasses model are related to ultrametricity. This result thus leads us to study the 

statistical mechanics by using 𝑝-adic numbers. In these past decades, the 𝑝-adic 

counterpart of the theory of Gibbs measures on Cayley trees is actively studied. The 

𝑝-adic Gibbs measures which are important subjects in the 𝑝-adic probability theory, 

present natural concrete examples of 𝑝-adic-valued processes (Mukhamedov, 2013, 

Ludkovsky & Khrennikov, 2003). The study of 𝑝-adic Gibbs measures on Cayley 

trees has been initiated by Ganikhodjaev et al. (1998) and Mukhamedov & Rozikov 

(2004, 2005). Mukhamedov (2013), Mukhamedov & Akin (2013), Mukhamedov et al. 

(2015) and Rozikov & Khakimov (2013) have established the existence of 𝑝-adic 

Gibbs measures as well as the phase transition for some lattice models. We stress that 

in the 𝑝-adic case, due to the lack of a convex structure of the set of 𝑝-adic Gibbs 

measures, it is quite difficult to predict a phase transition with some features of the set 

of 𝑝-adic Gibbs measures. 

The set of 𝑝-adic Gibbs measures of the Potts models on Cayley trees is 

strongly tied up with a Diophantine problem, i.e. to find all solutions of a system of 

polynomial equations or to give a bound for the number of solutions over the field ℚ𝑝 

of 𝑝-adic numbers. Rozikov & Khakimov (2015) and Saburov & Ahmad (2015b) 

describe the existence of all translation-invariant 𝑝-adic Gibbs measures of the 𝑞-state 

Potts model on the Cayley trees of order two and three by studying the quadratic and 

cubic equation over the field of 𝑝-adic numbers respectively. In general, the same 

Diophantine problem may have different solutions from the field of 𝑝-adic numbers to 

the field of real numbers because of the different topological structures. The rise of the 

order of the Cayley tree makes it difficult to study the corresponding Diophantine 

problem over the field of 𝑝-adic numbers. Recently, this problem was answered for 
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monomial equations (Mukhamedov & Saburov, 2013), quadratic equations (Saburov 

& Ahmad, 2015c), and depressed cubic equations for primes 𝑝 > 3 (Mukhamedov et 

al., 2013, 2014). 

 

1.2 RESEARCH OBJECTIVES 

The objectives of this research are 

i. to describe the existence of the translation-invariant 𝑝-adic Gibbs 

measures of the Potts model on the Cayley tree of order 3 and order 4. 

ii. to study the dynamics of the Potts–Bethe mapping of degree 3 and degree 

4 over ℚ𝑝. 

iii. to show the relation between the chaotic property of the Potts–Bethe 

mapping over ℚ𝑝 and the phase transition of the Potts model over ℚ𝑝 on 

the Cayley trees. 

 

1.3 OVERVIEW OF THE THESIS 

This thesis contains five chapters. In Chapter One, we give the research background 

and the overview of the thesis. In Chapter Two, we provide the preliminaries on 𝑝-

adic numbers, polynomials, Cayley trees, 𝑝-adic probability measures (Potts model 

over the field ℚ𝑝 of 𝑝-adic numbers) and the related dynamical systems.  

In Chapter Three, we study the existence translation-invariant 𝑝-adic Gibbs 

measures of the 𝑞-state Potts model on the Cayley tree of order 4. To show the 

existence of translation-invariant 𝑝-adic Gibbs measures, we solve the following 

system of equations  

𝑧𝑖 = (
(𝜃 − 1)𝑧𝑖 + ∑

𝑞−1
ℓ=1 𝑧ℓ + 1

𝜃 + ∑
𝑞−1
ℓ=1 𝑧ℓ

)

4

    for    1 ≤ 𝑖 ≤ 𝑞 − 1 
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where 𝜃 = exp𝑝(𝐽) and 𝐽 is a coupling constant. We find the solution of this system of 

equations of the form 𝐳 = (𝑧1,⋯ , 𝑧𝑞−1) such that 𝑧𝑖 = 1 or 𝑧𝑖 = 𝑧
∗ ∈ ℰ𝑝 ⊂ ℚ𝑝 for 

𝑖 = 1, 𝑞 − 1 with 𝑧∗ being the fixed points, i.e. 𝑧∗ = 𝑓(𝑧∗) of the following map 𝑓 

𝑓(𝑧) = (
(𝜃 − 1 +𝑚)𝑧 + 𝑞 −𝑚

𝑚𝑧 + 𝜃 − 1 + 𝑞 −𝑚
)
4

 

called “Potts–Bethe mapping”. We note that 𝑓 satisfies 𝑓(1) = 1 and has the form 

(
𝑎𝑥+𝑏

𝑐𝑥+𝑑
)
𝑘

. To find the fixed points of 𝑓 other than 1, we desribe some quartic equation 

having a solution 𝑧 ∈ ℰ𝑝 (Propositions 3.2.1 and 3.2.2). This descriptions allows us to 

prove the non-uniqueness of the translation-invariant 𝑝-adic Gibbs measures 

(Theorem 3.2.3). In general, we also provide some conditions for the depressed 

quartic equation 

𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

where 𝑎, 𝑏, 𝑐 ∈ ℚ𝑝 to have a solution in ℚ𝑝 in terms of its coefficients (Theorem 

3.3.8). 

In Chapter Four, we study the dynamics of the Potts–Bethe mapping on ℚ𝑝. 

First, we describe the Potts–Bethe mapping having good reduction (Proposition 4.2.1) 

and show that its dynamics is decomposed into minimal subsystems and their 

attracting basins (Theorem 4.2.2). Then we study separately the dynamics of the 

Potts–Bethe mapping of degree 3 and of degree 4 which has bad reduction. We 

consider the following Potts–Bethe mapping of degree 3 

𝑓𝜃,𝑞,3(𝑥) = (
𝜃𝑥 + 𝑞 − 1

𝑥 + 𝜃 + 𝑞 − 2
)
3

. 

We distinguish two cases: 0 < |𝜃 − 1|𝑝 < |𝑞|𝑝 < 1 and 0 < |𝑞|𝑝 < |𝜃 − 1|𝑝 < 1. 
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  Case 0 < |𝜃 − 1|𝑝 < |𝑞|𝑝 < 1: When 𝑝 ≡ 5 (mod 6), we find the attracting 

basin 𝔅(𝐱(0)) of the fixed point 𝐱(0) = 1 (Theorem 4.3.8) as follows 

𝔅(𝐱(0)) = ℚ𝑝\ ({𝐱
(1)} ∪⋃

∞

𝑛=0

𝑓𝜃,𝑞,3
−𝑛 {𝐱(∞)}) 

where 𝐱(∞) = 2 − 𝜃 − 𝑞 and 𝐱(1) is the repelling fixed point. When 𝑝 ≡ 1 (mod 6), 

the Julia set 𝒥 of the Potts–Bethe mapping is non-empty. We divide into two subcases: 

0 < |𝜃 − 1|𝑝 < |𝑞|𝑝
2 < 1 and 0 < |𝑞|𝑝

2 ≤ |𝜃 − 1|𝑝 < |𝑞|𝑝 < 1. For 0 < |𝜃 − 1|𝑝 <

|𝑞|𝑝
2 < 1, there exists a subsystem (𝒥, 𝑓𝜃,𝑞,3) that is isometrically conjugate to the full 

shift dynamics on 3 symbols (Theorem 4.3.13). For 0 < |𝑞|𝑝
2 ≤ |𝜃 − 1|𝑝 < |𝑞|𝑝 < 1, 

there exists a subsystem (𝒥, 𝑓𝜃,𝑞,3) that is isometrically conjugate to a subshift of finite 

type on 𝑟 symbols where 𝑟 ≥ 4. However, these subshifts on 𝑟 symbols are all 

topologically conjugate to the full shift on 3 symbols (Theorem 4.3.19). In both case, 

we have the following decomposition 

ℚ𝑝 = 𝔅(𝐱
(0)) ∪ 𝒥 ∪⋃

+∞

𝑛=0

𝑓𝜃,𝑞,3
−𝑛 {𝐱(∞)} 

where 𝐱(∞) = 2 − 𝜃 − 𝑞 and 𝔅(𝐱(0)) is the attracting basin of the attracting fixed 

point 𝐱(0). 

  Case 0 < |𝑞|𝑝 < |𝜃 − 1|𝑝 < 1: In this case we find the Siegel disks of the 

neutral fixed points 𝐱(0) and 𝐱(1) (Theorem 4.3.27). When 𝑝 ≡ 5 (mod 6), in certain 

case, we calculate the attracting periodic orbits or Siegel disk of periodic orbits and 

their basins. When 𝑝 ≡ 1 (mod 6), the Julia set 𝒥 of the Potts–Bethe mapping is non-

empty. There exists a subsystem (𝒥, 𝑓𝜃,𝑞,3) that is isometrically conjugate to the full 

shift dynamics on 2 symbols (Theorem 4.3.29). 

Next we consider the following the Potts–Bethe mapping of degree 4 
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𝑓𝜃,𝑞,4(𝑥) = (
𝜃𝑥 + 𝑞 − 1

𝑥 + 𝜃 + 𝑞 − 2
)
4

. 

Similar to the Potts–Bethe mapping of degree 3, we consider two case: 0 < |𝜃 −

1|𝑝 < |𝑞|𝑝 < 1 and 0 < |𝑞|𝑝 < |𝜃 − 1|𝑝 < 1. 

  Case 0 < |𝜃 − 1|𝑝 < |𝑞|𝑝 < 1: In this case the Julia set 𝒥 is non-empty. When 

𝑝 ≡ 3 (mod 4), there exists a subsystem (𝒥, 𝑓𝜃,𝑞,4) that is topologically conjugate to 

the full shift dynamics on 2 symbols (Theorem 4.4.9). Whereas when 𝑝 ≡ 1 (mod 4), 

there exists a subsystem (𝒥, 𝑓𝜃,𝑞,4) that is topologically conjugate to the full shift 

dynamics on 4 symbols (Theorem 4.4.9). In both case, we have the following 

decomposition 

ℚ𝑝 = 𝔅(𝐱
(0)) ∪ 𝒥 ∪⋃

+∞

𝑛=0

𝑓𝜃,𝑞,3
−𝑛 {𝐱(∞)} 

where 𝐱(∞) = 2 − 𝜃 − 𝑞 and 𝔅(𝐱(0)) is the attracting basin of the attracting fixed 

point 𝐱(0). 

  Case 0 < |𝑞|𝑝 < |𝜃 − 1|𝑝 < 1: We calculate the Siegel disks of neutral fixed 

points 𝐱(0) and 𝐱(1) (Theorem 4.4.17). When 𝑝 ≡ 3 (mod 4), in certain case, we find 

the attracting periodic orbits and/ or Siegel disk of periodic orbits and their basins. 

When 𝑝 ≡ 1 (mod 4), the corresponding Julia set 𝒥 is non-empty. We obtain a 

subsystem (𝒥, 𝑓𝜃,𝑞,4) that is isometrically conjugate to the full shift dynamics on 3 

symbols (Theorem 4.4.17). 

Then we show for many prime numbers 𝑝, the Potts–Bethe mapping has 

chaotic properties. These chaotic properties of the Potts-Bethe mapping implies the 

vastness of the set of the 𝑝-adic Gibbs measures (Theorems 4.5.1 and 4.5.2). As 

application, for many prime numbers 𝑝, the phase transition occurs for the Potts 
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models over ℚ𝑝 on the Cayley trees of orders 3 and 4. We also remark that the 

statement phase transition implies chaos is not true, in the last part of Section 4.5. 

In Chapter Five, we give the summarry of this thesis and suggestion for the 

future research.  
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CHAPTER TWO 

PRELIMINARIES 

2.1 𝑷-ADIC NUMBERS 

For an introduction to 𝑝-adic numbers and 𝑝-adic analysis, we recommend the books 

of Schikhof (1984), Koblitz (1984) and Katok (2007). 

 

2.1.1 𝒑-adic Numbers and 𝒑-adic Integers 

Most of the materials here are taken from Caruso (2017). Recall that each positive 

integer 𝑛 can be written in base 𝑝 

𝑛 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯+ 𝑎ℓ𝑝

ℓ. 

Definition 2.1.1. A 𝑝-adic integer 𝑎 is a formal series 

𝑎 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯ 

where 0 ≤ 𝑎𝑖 ≤ 𝑝 − 1. The set of all 𝑝-adic integers is denoted by ℤ𝑝. 

For any 𝑎 ∈ ℤ𝑝, we define 

𝛼𝑛 = 𝑎0 + 𝑎1𝑝 + 𝑎2𝑝
2 +⋯+ 𝑎𝑛−1𝑝

𝑛−1 ∈ ℤ/𝑝𝑛ℤ. 

Then we set the following functions 

𝜋𝑛: ℤ𝑝 → ℤ/𝑝
𝑛ℤ,    𝜋𝑛(𝑎) = 𝛼𝑛. 

We have for any 𝑎 ∈ ℤ𝑝, 𝜋𝑛+1(𝑎) ≡ 𝜋𝑛(𝑎)  (mod  𝑝
𝑛). More generally, 𝜋𝑚(𝑎) ≡

𝜋𝑛(𝑎)  (mod  𝑝
𝑛) for 𝑚 ≥ 𝑛. Then putting 𝜋𝑛’s together we get 

𝜋: ℤ𝑝 → lim 
𝑛

ℤ/𝑝𝑛ℤ,    𝑎 ↦ (𝜋1(𝑎), 𝜋2(𝑎),⋯ ) 

where 
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lim
𝑛

 ℤ/𝑝𝑛ℤ:= {𝑎 = (𝑎𝑛) ∈∏

∞

𝑛=1

ℤ/𝑝𝑛ℤ: 𝜋𝑛+1(𝑎) ≡ 𝜋𝑛(𝑎)  (mod  𝑝
𝑛)  ∀𝑛} 

is the projective limit of ℤ/𝑝𝑛ℤ. 

Consider a sequence 𝛼 = (𝛼1, 𝛼2, ⋯ ) ∈ lim𝑛 ℤ/𝑝
𝑛ℤ. Write 

𝛼𝑛 = 𝑎𝑛,0 + 𝑎𝑛,1𝑝 +⋯𝑎𝑛,𝑛−1𝑝
𝑛−1. 

The condition 𝛼𝑛+1 ≡ 𝛼𝑛  (mod  𝑝
𝑛) implies 𝑎𝑛+1,𝑖 = 𝑎𝑛,𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1. This 

means (𝑎𝑛,𝑖)𝑛>𝑖 is constant and converges to some 𝑎𝑖. Set 

𝜓(𝛼) = 𝑎 = (𝑎0, 𝑎1, ⋯ ) ∈ ℤ𝑝. 

We can check that 𝜓 is the inverse function of 𝜋. Thus we have the following 

ℤ𝑝 = lim 
𝑛

ℤ/𝑝𝑛ℤ. 

The descriptions of ℤ𝑝 as a limit of ℤ/𝑝𝑛ℤ allows us to endow ℤ𝑝 with a commutative 

ring structure, that is for 𝑎, 𝑏 ∈ ℤ𝑝 we look at their sequences 𝛼𝑛, 𝛽𝑛 ∈ ℤ/𝑝
𝑛ℤ. Then 

𝛼𝑛 + 𝛽𝑛 ∈ ℤ/𝑝
𝑛ℤ yields a well defined element 𝑎 + 𝑏 ∈ ℤ𝑝. Note that ℤ ⊂ ℤ𝑝. One 

can see 
1

𝑝
∉ ℤ𝑝. We have ℚ𝑝 a fraction field of ℤ𝑝. 

Definition 2.1.2. A 𝑝-adic number 𝑎 is a series 

𝑎 = ∑

𝑖≥𝑚

𝑎𝑖𝑝
𝑖 

where 𝑚 ∈ ℤ and 0 ≤ 𝑎𝑖 ≤ 𝑝 − 1. The set of all 𝑝-adic numbers is denoted by ℚ𝑝. 

 

2.1.2 𝒑-adic Norm and Completeness 

According to Ostrowski’s theorem, see Koblitz (1984), there are only two kinds of 

completions of the field ℚ of rational numbers. These two kinds of completions give 

the field ℝ of real numbers or the field ℚ𝑝 of 𝑝-adic numbers. For a fixed prime 𝑝, we 

introduce the notion of 𝑝-adic valuation and 𝑝-adic norm (absolute value). Let 𝑥 =
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𝑝𝑘
𝑚

𝑛
∈ ℚ with 𝑘,𝑚 ∈ ℤ, 𝑛 ∈ ℕ, 𝑝|𝑚 and 𝑝|𝑛. The number 𝑘 is called the 𝑝-adic 

valuation of 𝑥 and is denoted by 𝑜𝑟𝑑𝑝(𝑥). By convention, we define 𝑜𝑟𝑑𝑝(0) = ∞. 

Thus 

𝑜𝑟𝑑𝑝(𝑥) = {
𝑘 𝑖𝑓  𝑥 ≠ 0,
∞ 𝑖𝑓  𝑥 = 0.

 

Then we can define the 𝑝-adic norm (absolute value) as follows 

|𝑥|𝑝 = {
𝑝−𝑘 𝑖𝑓  𝑥 ≠ 0,
0 𝑖𝑓  𝑥 = 0.

 

This norm is non-Archimedean because it satisfies the strong triangle inequality: |𝑥 +

𝑦|𝑝 ≤ max(|𝑥|𝑝, |𝑦|𝑝). The metric induced by this norm, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝, satisfies 

the ultrametric property: for all 𝑥, 𝑦, 𝑧 ∈ ℚ, 𝑑(𝑥, 𝑦) ≤ max(𝑑(𝑥, 𝑧), 𝑑(𝑧, 𝑦)). We 

notice that 𝑑 is taken values from the proper subset {0} ∪ {𝑝𝑛: 𝑛 ∈ ℤ} of ℝ. Recall the 

following definitions. 

Definition 2.1.3. A sequence (𝑥𝑛) in a field 𝐾 is called Cauchy if for every 𝜖 > 0 

there exists 𝑁 such that |𝑥𝑛 − 𝑥𝑚| < 𝜖 whenever 𝑛,𝑚 > 𝑁. 

Definition 2.1.4. A field 𝐾 is complete with respect to the norm (absolute value) | ⋅ | if 

every Cauchy sequence of 𝐾 converges in 𝐾. 

By these definitions, we have the following proposition. 

Proposition 2.1.5 (see Katok (2007)). The field ℚ𝑝 of 𝑝-adic numbers is the 

completion of the field ℚ of rational numbers with respect to the 𝑝-adic norm 

(absolute value) | ⋅ |𝑝. 

Denote 𝔹𝑟(𝑎):= {𝑥 ∈ ℚ𝑝: |𝑥 − 𝑎|𝑝 < 𝑟} and 𝕊𝑟(𝑎): = {𝑥 ∈ ℚ𝑝: |𝑥 − 𝑎|𝑝 =

𝑟} the open ball and the sphere in ℚ𝑝 with center 𝑎 and radius 𝑟. Remark that the open 

ball is also closed. Then the set of all 𝑝-adic integers and 𝑝-adic units of ℚ𝑝 are 
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denoted by ℤ𝑝 = {𝑥 ∈ ℚ𝑝: |𝑥|𝑝 ≤ 1} and ℤ𝑝
∗ = {𝑥 ∈ ℚ𝑝: |𝑥|𝑝 = 1} respectively. Any 

𝑝-adic unit 𝑥 ∈ ℤ𝑝
∗  has the unique canonical form 

𝑥 = 𝑥0 + 𝑥1 ⋅ 𝑝 + 𝑥2 ⋅ 𝑝
2 +⋯ 

where 𝑥0 ∈ {1,2,⋯𝑝 − 1} and 𝑥𝑖 ∈ {0,1,2,⋯𝑝 − 1} for 𝑖 ∈ ℕ. Furthermore, any 𝑝-

adic number 𝑥 ∈ ℚ𝑝 has the following unique canonical form 

𝑥 = 𝑝𝑜𝑟𝑑𝑝(𝑥)(𝑥0 + 𝑥1 ⋅ 𝑝 + 𝑥2 ⋅ 𝑝
2 +⋯) 

where 𝑥0 ∈ {1,2, … , 𝑝 − 1} and 𝑥𝑖 ∈ {0,1,2, … , 𝑝 − 1} for 𝑖 ∈ ℕ. Therefore, 

𝑥 =
𝑥∗

|𝑥|𝑝
 

such that 𝑥∗ ∈ ℤ𝑝
∗ . 

As parallel to the construction of the field ℂ of complex numbers, we can also 

construct an analogue for 𝑝-adic numbers, see for example Koblitz (1984) and 

Schikhof (1984). We consider the algebraic extension of ℚ𝑝. It will extend the 𝑝-adic 

absolute value uniquely. However, any extension of finite order of ℚ𝑝 is not 

algebraically closed. Hence, the algebraic closure ℚ𝑝
𝑎 of ℚ𝑝 is an infinite extension. 

This algebraic closure is not complete. Fortunately, the topological completion of ℚ𝑝
𝑎 

is algebraically closed. Thus this field denoted by ℂ𝑝 is called the field of complex 𝑝-

adic numbers. 

 

2.2 POLYNOMIAL 

 

2.2.1 Resultant and Discriminant 

We refer the book of Gelfand et al. (1994) and the article of Dilcher & Stolarsky 

(2005) for the resultant and dicriminant of the polynomials. 
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We write a polynomial over a field 𝐾 as 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 where 

𝑎𝑛 ≠ 0 and 𝑎𝑖 ∈ 𝐾 for 𝑖 = 0,… , 𝑛. We denote 𝑛 = deg(𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0) 

the degree of the polynomial 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0. The examples of the field 

𝐾 that can be considered are 𝔽𝑝, ℚ, ℝ, ℂ and etc. Later, we will concentrate on the 

polynomial equations over ℚ𝑝. Let 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 and 𝑔(𝑥) =

𝑏𝑚𝑥
𝑚 + 𝑏𝑚−1𝑥

𝑚−1 +⋯+ 𝑏0 be polynomials of degrees 𝑛 ≥ 1 and 𝑚 ≥ 1 (𝑎𝑛 and 

𝑎𝑚 do not vanish) with coefficient in an arbitrary field 𝐾 respectively. Denote by 

𝑅𝑚,𝑛(𝑓, 𝑔) of their resultant. Sometimes we denote it as 𝑅(𝑓, 𝑔). 

Definition 2.2.1. Let 𝑎𝑛 ≠ 0 and 𝑏𝑚 ≠ 0. Then 

1) 𝑅(𝑓, 𝑔) = 𝑎𝑛
𝑚𝑏𝑚

𝑛 ∏𝑖,𝑗 (𝑥𝑖 − 𝑦𝑗) 

where 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑚 are roots of 𝑓 and 𝑔 respectively. 

2) 𝑅(𝑓, 𝑔) is equal to the determinant of the following (𝑛 +𝑚) by (𝑛 + 𝑚) 

Sylvester matrix, i.e. 

𝑅(𝑓, 𝑔) =

|

|

|

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛−1 𝑎𝑛 0 0 ⋯ 0
0 𝑎0 𝑎1 ⋯ 𝑎𝑛−2 𝑎𝑛−1 𝑎𝑛 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 𝑎0 𝑎1 𝑎2 𝑎3 ⋯ 𝑎𝑛
𝑏0 𝑏1 𝑏2 ⋯ 𝑏𝑚 0 0 0 ⋯ 0
0 𝑏0 𝑏1 ⋯ 𝑏𝑚−1 𝑏𝑚 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 𝑏0 𝑏1 𝑏2 ⋯ 𝑏𝑚

|

|

|

. 

The following is one of the result on resultant of two polynomials 𝑓 and 𝑔. 

Theorem 2.2.2 (see Gelfand et al. (1994)). For two concrete polynomials 𝑓 and 𝑔, 

𝑅(𝑓, 𝑔) = 0 is equivalent to the fact that 𝑓 and 𝑔 have a common root. This also 

means that 𝑅(𝑓, 𝑔) ≠ 0 is equivalent to the fact that 𝑓 and 𝑔 have no common root. 

We denote by Δ𝑛(𝑓) the discriminant of polynomial 𝑓. Frequently, we write it 

as Δ(𝑓). 

Definition 2.2.3.  Let 𝑎𝑛 ≠ 0. Then 
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Δ(𝑓) = (−1)
𝑛(𝑛−1)
2 𝑎𝑛

2𝑛−2∏

𝑖<𝑗

(𝑥𝑖 − 𝑥𝑗)
2 

where 𝑥1, … , 𝑥𝑛 are roots of 𝑓. 

There is a relation between resultant and discriminant of polynomial as stated in the 

following theorem. 

Theorem 2.2.4 (Dilcher & Stolarsky, 2005). Let 𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 

be a polynomial of degrees 𝑛 ≥ 1 with coefficient in an arbitrary field 𝐾. Then the 

discriminant of 𝑓 is given by 

Δ(𝑓) = (−1)
𝑛(𝑛−1)
2 𝑎𝑛

−1𝑅(𝑓, 𝑓′). 

This relation allows us to find the discriminant of a polynomial. For example, the 

quadratic polynomial has 

Δ(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = 𝑏2 − 4𝑎𝑐, 

the cubic polynomial has 

Δ(𝑎𝑥3 + 𝑏𝑥2 + 𝑐 + 𝑑) = 𝑏2𝑐2 − 4𝑎𝑐3 − 4𝑏3𝑑 − 27𝑎2𝑑2 + 18𝑎𝑏𝑐𝑑 

and the quartic polynomial has 

Δ(𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒)

= 256𝑎3𝑒3 − 192𝑎2𝑏𝑑𝑒2 − 128𝑎2𝑐2𝑒2 + 144𝑎2𝑐𝑑2𝑒 − 27𝑎2𝑑4

+ 144𝑎𝑏2𝑐𝑒2 − 6𝑎𝑏2𝑑2𝑒 − 80𝑎𝑏𝑐2𝑑𝑒 + 18𝑎𝑏𝑐𝑑3 + 16𝑎𝑐4𝑒

− 4𝑎𝑐3𝑑2 − 27𝑏4𝑒2 + 18𝑏3𝑐𝑑𝑒 − 4𝑏3𝑑3 − 4𝑏2𝑐3𝑒 + 𝑏2𝑐2𝑑2. 

 

2.2.2 Polynomial Congruences 

For linear and quadratic congruences, we refer to the book of Rosen (2011). The 

simplest congruence is linear 

𝑎𝑥 ≡ 𝑏  (mod  𝑚)     (1) 


