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ABSTRACT

The amazing locomotion capability of natural snakes is the central essence of this
research. Among the four-basic kind of locomotion, the serpentine locomotion gives the
snake fastest and comfortable journey towards the destination. Snake robots are mainly
designed and developed based on the assumption of frictional anisotropy of the ventral
scales and sequential use of the muscles to move the body in a harmonic sinusoidal
pattern. Very few works have been carried out on the effect of scales on the motion of
the snake robots, specifically the effect of geometry of the scales. Thus this research
tried to explore the effects of artificial snake scales and their geometry on the motion of
snake robots. The research started with the study of the serpentine locomotion of a real
snake. The subject of the investigation was a Python Reticulatus, a young python at an
age of 10 months. A simple setup was designed and fabricated to study different
locomotion parameters from the real snake. The study proved the previous literatures
and thus showed a way to work on a robot. Afterward different types of snake scale
were designed and a mechanism to extract the force data from the scale was developed.
The scales along with the force sensing system were attached at the ventral side of a
nine link snake robot. The motion and force data of the snake robot were then acquired
while running in a test bed. The robot was operated on three different types of surfaces:
floor mat, engine gasket, and artificial leather. Analyses of the data revealed that
uniform friction in all directions gives some insignificant motion of the robot without
any predicted path. Whereas higher frictional anisotropy gives the robot more definite
direction of movement. It is also found that significant anisotropy, especially higher
lateral friction, gives more stability in direction. On the other hand, reduction in forward
friction gives faster forward movement to the robot. This finding conformed to the
results of energy consumption. It was also found that small scales at the lateral edges of
the robot body contribute to the effective forward motion of the robot while such scales
covering small area on the central line do not give any motion along the direction of the
robot except lateral oscillation. Thus, this research leads to further improvement in scale
characteristics of the robot to reach an optimum point of speed, energy consumption
and accuracy.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Allah Subhanahu-wa-Ta‘ala is the maker of the most optimized systems. Among these
systems, He gave the snakes the most versatile characters of locomotion. This especial
criterion attracted the researchers to build snake robots using their ability to move
through difficult terrains and spaces.

Over two decades, scientists have been working on snake robots to incorporate
the abilities of a snake inside the robot and to have a robust machine. Pipes or any other
narrow space is not a problem for a real snake to get into. They can also climb trees,
walls, and cracks and can move over sand, rock, and so forth. Thus, a snake robot, with
the features that a natural snake has, will be able to access through pipes or passages
that are even more critical for inspection or any other purpose. Moving through the
throat of a patient for assisting surgery (Simaan, 2004 and Simaan, 2006), for example,
or working explicitly in search and rescue (Chowdary, 2012, Erkmen, 2002, and
Kamegawa, 2005), fire-fighting missions are some of the attractive applications of
snake robots that are being expected.

Until today, the ability of locomotion and adaptation to the situation of the
biological snakes is far beyond of the robotic ones. These creatures have consecutively
linked segments with multiple degrees of freedom, which make the snake robot more
complicated to design and control. On the other hand, the snake scale gives the snake

like creatures a unique movement, ability to climb up, and aptitude to move through



tricky terrains and the story of the efficiency and compliance, which are probably hidden
in these features.

The curiosity on snake locomotion is not new. Sixty years ago, in 1946 a British
zoologist Gray, J. (Gray, 1946) carried out a pioneering work by analyzing the snake
locomotion while Gray and Lissmann (Gray, 1950) worked on Kinetics of snake
locomotion, long before scientists thought to build snake robots. Gray illustrated the
method of locomotion (serpentine) of the real snakes, where he found that despite of
having no limbs snakes can move as efficiently as the limbed animal by using their body
and belly scales and sequential movement of their muscles. Snakes give the fastest
movement when moving in serpentine mode (Mosauer, 1932; Liljeback et al. 2013). In
this case, they make a sinusoidal wave in their body through contracting their muscles
at the inner side of the curve. This contraction results in two components of forces,
transverse and forward. The reaction force from the belly scales nullifies the transverse
component of the force, as the belly scales have a very high lateral frictional coefficient.
The remaining forward component of the force is used to move the snake forward. Gray
also described three more types of locomotion, as snakes have four basic locomotion
methods; those are Concertina, Crotaline or Side-winding, and Rectilinear. However,
he explained the serpentine method explicitly, which is also the focal point of this
research.

After Gray, several works on real snakes have been carried out that put light
towards the journey of developing the robotic creatures. Hu et al. (Hu 2009) analyzed
the snake motion experimentally and mathematically that confirmed the findings of
Gray. He showed that the snake scale has frictional anisotropy that helps the snake
move. He found that snake scale has minimum friction while moving forward, has a

greater friction in backward slipping, and attains maximum friction in transverse



direction, which also goes with the theory given by Gray. Moreover, his mathematical
simulation shows the force and its direction applied by the snake during lateral
undulation. As the muscles are the actuators for the animals for the movement of the
body, snakes use them together with their scale property.

Jayne (Jayne, 1988a and Jayne, 1988Db) investigated the muscular mechanisms
for serpentine, side winding, and concertina locomotion, among which one full paper
was on the serpentine motion. He experienced the same thing that Gray described.
During lateral undulatory locomotion, “the segments of three muscles (Mm.
semispinalis-spinalis, longissimus dorsi, and iliocostalis) usually show synchronous
activity. Muscle activity propagates posteriorly and generally is unilateral. With each
muscle, large numbers of adjacent segments (30 to 100) show simultaneous activity.
During terrestrial undulation, muscle activity in a particular region begins when that
portion of the body has reached maximal convex flexion and ends when it is maximally
concave; this phase relation is uniform along the entire snake”. This is exactly what
Gray explained in his paper. Miller developed a simulation based on motion dynamics
of snakes and worms (Miller, 1988).

The above were a few stories on real snakes but the robotic chronicle of snakes
started in the year 1993, written by Hirose, S. (Hirose, 1993), giving the initial idea of
locomotion of such robots. After Gray and Hirose, many researchers worked on the
kinematics of snakes and robots. For example, Jayne and Davis (Jayne, 1991) worked
on the kinematics and performance capability of concertina locomotion showing that
the speed and the tunnel width are closely related; Kyriakopoulos, Migadis, and
Sarrigeorgidis (Kyriakopoulos, 1999) also worked on kinematics, design, and motion
planning of snake robots. On the other hand, Prautsch and Mita (Prautsch, 1999)

developed the theoretical base of the dynamical position control of snake robot.



Khan et al. (Khan, 2010) worked on snake scales that helped the snake robots to
move more like real snakes and to the best of the author’s knowledge, it was the first
scale-based work ever. Snakes use serpentine motion when they move fast. However,
in case of narrow spaces to move through, snakes change their strategy. Thus Khan et
al., adopted a novel method of locomotion and a new kinematic analysis with a
minimum number of links, as minimum as with two actuators.

After Khan et al., Marvi et al. (Marvi, 2011) designed and developed a robot
using adjustable snake scale named SCALYBOT. They introduced it as a snake inspired
robot, not as a snake robot, that gives concertina locomotion by joining and controlling
several modules like that can make a complete snake robot with snake scale. Farther,
Marvi, and Hu (Marvi, 2012) analyzed the concertina locomotion through narrow
channels. They measured the frictional properties and found that snakes use transverse
force on channel wall and dig their scales to double the friction. Thus, the work of Khan
et al. and Marvi et al. shows promising prospect in locomotion of snake robots using
snake scale. Moreover, it seems that attaining the highest speed, climbing slopes,
moving through challenging terrains, and combating unexpected situation would be

possible more efficiently by using a scale based snake robot.

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE

The ability of today’s snake robots is still like the infants who are learning how to move
compared to the real ones. Real snakes have versatile locomotion capability of moving
through rough terrains due to the methods of locomotion and the scales underneath their
body. Snake robots using wheels for locomotion may give faster movement but it goes
against the ability to have versatile locomotion to move through obstacles as well as the

climbing ability of the real snakes. At present, no snake robot is using serpentine



locomotion with the aid of ventral scale. Analyses on snake scales is very shallow to
help design snake robots with the capabilities of the real snakes. Lack of proper
knowledge of the snake scales and consequent serpentine locomotion of the snake
requires extensive investigation for designing efficient snake robots with versatile

capabilities of the real snakes.

1.3 RESEARCH PHILOSOPHY

To achieve the serpentine or lateral undulation locomotion capabilities of the real
snakes, snake robots need to mimic the structural and motion characteristics of the real
snakes. Real snakes are able to move faster while executing serpentine gait using snake-
scales underneath the body. Thus, a snake-scale based structure of a snake robot with

serpentine gait is more likely to achieve faster and efficient motion.

1.4 RESEARCH OBJECTIVES
The objectives for acquiring knowledge on snake scale and snake motion have been set
as follows:
1. Todevelop a prototype of a snake robot with different artificial snake-scale.
2. Todevelop atest bed for acquiring motion and force data of the snake robot.
3. To evaluate the performance of the snake robot against the different snake-
scale parameters.
4. To develop correlations among the different parameters of the snake robot

based on serpentine motion.



