
DESIGN AND ANALYSIS OF SNAKE ROBOT 

LOCOMOTION USING ARTIFICIAL SNAKE SCALE 

BY 

NAYEEM MD. LUTFUL HUQ 

A thesis submitted in fulfilment of the requirement for the 

degree of Doctor of Philosophy in Engineering 

Kulliyyah of Engineering 

International Islamic University Malaysia 

SEPTEMBER 2019 



 

ii 

 

ABSTRACT 
 

 

 

 

The amazing locomotion capability of natural snakes is the central essence of this 

research. Among the four-basic kind of locomotion, the serpentine locomotion gives the 

snake fastest and comfortable journey towards the destination. Snake robots are mainly 

designed and developed based on the assumption of frictional anisotropy of the ventral 

scales and sequential use of the muscles to move the body in a harmonic sinusoidal 

pattern. Very few works have been carried out on the effect of scales on the motion of 

the snake robots, specifically the effect of geometry of the scales. Thus this research 

tried to explore the effects of artificial snake scales and their geometry on the motion of 

snake robots. The research started with the study of the serpentine locomotion of a real 

snake. The subject of the investigation was a Python Reticulatus, a young python at an 

age of 10 months. A simple setup was designed and fabricated to study different 

locomotion parameters from the real snake. The study proved the previous literatures 

and thus showed a way to work on a robot. Afterward different types of snake scale 

were designed and a mechanism to extract the force data from the scale was developed. 

The scales along with the force sensing system were attached at the ventral side of a 

nine link snake robot. The motion and force data of the snake robot were then acquired 

while running in a test bed. The robot was operated on three different types of surfaces: 

floor mat, engine gasket, and artificial leather. Analyses of the data revealed that 

uniform friction in all directions gives some insignificant motion of the robot without 

any predicted path. Whereas higher frictional anisotropy gives the robot more definite 

direction of movement. It is also found that significant anisotropy, especially higher 

lateral friction, gives more stability in direction. On the other hand, reduction in forward 

friction gives faster forward movement to the robot. This finding conformed to the 

results of energy consumption. It was also found that small scales at the lateral edges of 

the robot body contribute to the effective forward motion of the robot while such scales 

covering small area on the central line do not give any motion along the direction of the 

robot except lateral oscillation. Thus, this research leads to further improvement in scale 

characteristics of the robot to reach an optimum point of speed, energy consumption 

and accuracy. 
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 البحث خلاصة

ABSTRACT IN ARABIC 

 
تعدّ القدرة المدهشة لحركة الثعابين الطبيعية الجوهر المركزي لهذا البحث. ومن بين أنواع الحركة الأربعة 

ات الثعبانية عادة . تصمّم الروبوتالأساسية للثعابين تعطي الحركة الموجية رحلة أسرع وأكثر راحة نحو الهدف
وتطوّر بناء على أساس افتراض التباين الاحتكاكي للحراشف البطنية بالإضافة إلى الاستخدام المتسلسل 
للعضلات لتحريك الجسم في نمط جيبي متناسق. هناك عدد قليل جداً من الدراسات التي تناولت تأثير 

ث خصوصاً تأثير هندسة الحراشف. لذلك فقد حاول هذا البحالحراشف على حركة الروبوتات الثعبانية، و 
استكشاف تأثير الحراشف الاصطناعية وهندستها على حركة الروبوتات الثعبانية. بداية، تطرق البحث إلى 
دراسة الحركة الموجية للثعبان الحقيقي. وكان الثعبان موضوع الدراسة هو )بيثون ريتيكولتوس(، وهو ثعبان 

العمر عشرة أشهر. وتم تصميم نموذج بسيط وتصنيعه لدراسة المعاملات المختلفة للحركة  صغير يبلغ من
باستخدام الثعبان الحقيقي. وقد أثبتت الدراسة صحة الدراسات السابقة، وبالتالي أظهرت طريقة للعمل 

ا طوّرت معلى هذا النوع من الروبوتات. بعد ذلك صُمّمت أنواع مختلفة من حراشف الروبوت الثعباني ك
آلية لاستخراج بيانات القوة من خلال هذه الحراشف. حيث أرفقت الحراشف جنباً إلى جنب مع نظام 
استشعار القوة في الجانب البطني من الروبوت الثعباني ذي الوصلات التسع. ثم تلا ذلك الحصول على 

ة تم تسيير الروبوت خلال هذه الدراس بيانات الحركة والقوة للروبوت الثعباني أثناء سيره على أرضية الاختبار.
على ثلاثة أنواع مختلفة من الأسطح: حصيرة أرضية، وسطح كأطواق المحرك، وسطح من الجلد الاصطناعي. 
وقد أظهرت تحليلات البيانات أن الاحتكاك المنتظم في جميع الاتجاهات يؤدي إلى حركة ضئيلة للروبوت 

اه ذا تباين أعلى حسب الاتجاه يعطي للروبوت حركة ذات اتج في مسار غير متوقع، في حين أن احتكاكاً 
أكثر تحديداً. وقد وجد أيضاً أن التباين الاحتكاكي الملحوظ، وبخاصة الاحتكاك الجانبي العالي، يعطي 

اني من ناحية أخرى، فإن تقليل الاحتكاك الأمامي يعطي الروبوت الثعبمن الاستقرار في اتجاه الحركة.  مزيداً 
أمامية أسرع. وتتفق هذه النتيجة مع نتائج قياس استهلاك الطاقة أثناء التجربة. وقد وجد من خلال  حركة

الدراسة أيضاً أن استخدام الحراشف الصغيرة في الحواف الجانبية للروبوت بسهم في حركة أمامية فعالة 
عطي أي روبوت لا يللروبوت، في حين أن استخدام مثل هذه الحراشف على طول الخط الأوسط أسفل ال

حركة في الاتجاه الأمامي للروبوت باستثناء التذبذب الجانبي. وبالتالي فإن هذا البحث يؤدي إلى مزيد من 
التحسين في الخصائص المطلوبة لحراشف الروبوت الثعباني للوصول إلى نقطة التقاء بين كل من سرعة الحركة 

 ودقتها وكمية الطاقة المستهلكة.
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CHAPTER ONE: 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

Allah Subhanahu-wa-Ta‘ala is the maker of the most optimized systems. Among these 

systems, He gave the snakes the most versatile characters of locomotion. This especial 

criterion attracted the researchers to build snake robots using their ability to move 

through difficult terrains and spaces. 

Over two decades, scientists have been working on snake robots to incorporate 

the abilities of a snake inside the robot and to have a robust machine. Pipes or any other 

narrow space is not a problem for a real snake to get into. They can also climb trees, 

walls, and cracks and can move over sand, rock, and so forth. Thus, a snake robot, with 

the features that a natural snake has, will be able to access through pipes or passages 

that are even more critical for inspection or any other purpose. Moving through the 

throat of a patient for assisting surgery (Simaan, 2004 and Simaan, 2006), for example, 

or working explicitly in search and rescue (Chowdary, 2012, Erkmen, 2002, and 

Kamegawa, 2005), fire-fighting missions are some of the attractive applications of 

snake robots that are being expected. 

Until today, the ability of locomotion and adaptation to the situation of the 

biological snakes is far beyond of the robotic ones. These creatures have consecutively 

linked segments with multiple degrees of freedom, which make the snake robot more 

complicated to design and control. On the other hand, the snake scale gives the snake 

like creatures a unique movement, ability to climb up, and aptitude to move through 
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tricky terrains and the story of the efficiency and compliance, which are probably hidden 

in these features. 

The curiosity on snake locomotion is not new. Sixty years ago, in 1946 a British 

zoologist Gray, J. (Gray, 1946) carried out a pioneering work by analyzing the snake 

locomotion while Gray and Lissmann (Gray, 1950) worked on kinetics of snake 

locomotion, long before scientists thought to build snake robots. Gray illustrated the 

method of locomotion (serpentine) of the real snakes, where he found that despite of 

having no limbs snakes can move as efficiently as the limbed animal by using their body 

and belly scales and sequential movement of their muscles. Snakes give the fastest 

movement when moving in serpentine mode (Mosauer, 1932; Liljebäck et al. 2013). In 

this case, they make a sinusoidal wave in their body through contracting their muscles 

at the inner side of the curve. This contraction results in two components of forces, 

transverse and forward. The reaction force from the belly scales nullifies the transverse 

component of the force, as the belly scales have a very high lateral frictional coefficient. 

The remaining forward component of the force is used to move the snake forward. Gray 

also described three more types of locomotion, as snakes have four basic locomotion 

methods; those are Concertina, Crotaline or Side-winding, and Rectilinear. However, 

he explained the serpentine method explicitly, which is also the focal point of this 

research. 

After Gray, several works on real snakes have been carried out that put light 

towards the journey of developing the robotic creatures. Hu et al. (Hu 2009) analyzed 

the snake motion experimentally and mathematically that confirmed the findings of 

Gray. He showed that the snake scale has frictional anisotropy that helps the snake 

move. He found that snake scale has minimum friction while moving forward, has a 

greater friction in backward slipping, and attains maximum friction in transverse 
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direction, which also goes with the theory given by Gray. Moreover, his mathematical 

simulation shows the force and its direction applied by the snake during lateral 

undulation. As the muscles are the actuators for the animals for the movement of the 

body, snakes use them together with their scale property. 

Jayne (Jayne, 1988a and Jayne, 1988b) investigated the muscular mechanisms 

for serpentine, side winding, and concertina locomotion, among which one full paper 

was on the serpentine motion. He experienced the same thing that Gray described. 

During lateral undulatory locomotion, “the segments of three muscles (Mm. 

semispinalis-spinalis, longissimus dorsi, and iliocostalis) usually show synchronous 

activity. Muscle activity propagates posteriorly and generally is unilateral. With each 

muscle, large numbers of adjacent segments (30 to 100) show simultaneous activity. 

During terrestrial undulation, muscle activity in a particular region begins when that 

portion of the body has reached maximal convex flexion and ends when it is maximally 

concave; this phase relation is uniform along the entire snake”. This is exactly what 

Gray explained in his paper. Miller developed a simulation based on motion dynamics 

of snakes and worms (Miller, 1988). 

The above were a few stories on real snakes but the robotic chronicle of snakes 

started in the year 1993, written by Hirose, S. (Hirose, 1993), giving the initial idea of 

locomotion of such robots. After Gray and Hirose, many researchers worked on the 

kinematics of snakes and robots. For example, Jayne and Davis (Jayne, 1991) worked 

on the kinematics and performance capability of concertina locomotion showing that 

the speed and the tunnel width are closely related; Kyriakopoulos, Migadis, and 

Sarrigeorgidis (Kyriakopoulos, 1999) also worked on kinematics, design, and motion 

planning of snake robots. On the other hand, Prautsch and Mita (Prautsch, 1999) 

developed the theoretical base of the dynamical position control of snake robot.  
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Khan et al. (Khan, 2010) worked on snake scales that helped the snake robots to 

move more like real snakes and to the best of the author’s knowledge, it was the first 

scale-based work ever. Snakes use serpentine motion when they move fast. However, 

in case of narrow spaces to move through, snakes change their strategy. Thus Khan et 

al., adopted a novel method of locomotion and a new kinematic analysis with a 

minimum number of links, as minimum as with two actuators.  

After Khan et al., Marvi et al. (Marvi, 2011) designed and developed a robot 

using adjustable snake scale named SCALYBOT. They introduced it as a snake inspired 

robot, not as a snake robot, that gives concertina locomotion by joining and controlling 

several modules like that can make a complete snake robot with snake scale. Farther, 

Marvi, and Hu (Marvi, 2012) analyzed the concertina locomotion through narrow 

channels. They measured the frictional properties and found that snakes use transverse 

force on channel wall and dig their scales to double the friction. Thus, the work of Khan 

et al. and Marvi et al. shows promising prospect in locomotion of snake robots using 

snake scale. Moreover, it seems that attaining the highest speed, climbing slopes, 

moving through challenging terrains, and combating unexpected situation would be 

possible more efficiently by using a scale based snake robot. 

 

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE 

The ability of today’s snake robots is still like the infants who are learning how to move 

compared to the real ones. Real snakes have versatile locomotion capability of moving 

through rough terrains due to the methods of locomotion and the scales underneath their 

body. Snake robots using wheels for locomotion may give faster movement but it goes 

against the ability to have versatile locomotion to move through obstacles as well as the 

climbing ability of the real snakes. At present, no snake robot is using serpentine 
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locomotion with the aid of ventral scale. Analyses on snake scales is very shallow to 

help design snake robots with the capabilities of the real snakes. Lack of proper 

knowledge of the snake scales and consequent serpentine locomotion of the snake 

requires extensive investigation for designing efficient snake robots with versatile 

capabilities of the real snakes. 

 

1.3 RESEARCH PHILOSOPHY 

To achieve the serpentine or lateral undulation locomotion capabilities of the real 

snakes, snake robots need to mimic the structural and motion characteristics of the real 

snakes. Real snakes are able to move faster while executing serpentine gait using snake-

scales underneath the body. Thus, a snake-scale based structure of a snake robot with 

serpentine gait is more likely to achieve faster and efficient motion.  

 

1.4 RESEARCH OBJECTIVES 

The objectives for acquiring knowledge on snake scale and snake motion have been set 

as follows:  

1. To develop a prototype of a snake robot with different artificial snake-scale. 

2. To develop a test bed for acquiring motion and force data of the snake robot. 

3. To evaluate the performance of the snake robot against the different snake- 

scale parameters. 

4. To develop correlations among the different parameters of the snake robot 

based on serpentine motion. 

 

 

 


