COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

TOTAL PRODUCTIVE MAINTENANCE (TPM) IMPLEMENTATION BASED ON LEAN MANUFACTURING TOOLS

BY

HERRY AGUNG PRABOWO

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

NOVEMBER 2019

ABSTRACT

This research was aimed to explore the implementation of Total Productive Maintenance (TPM) pillars and Lean Manufacturing (LM) tools as well as to investigate barriers and enablers in their implementations in Indonesian manufacturing industries. Another primary focus of this research was to develop reference models for both measurement and structural TPM pillars, LM tools and Manufacturing Performance (MP). A total of 132 questionnaires were sent to 132 manufacturing companies from 5 different industrial estates in Jakarta, Tangerang, Bekasi, Cilegon and Batam. A total of 108 questionnaires returned and only 91 were found suitable to be analysed. The findings indicate a reasonably good implementation of TPM and LM in Indonesian manufacturing industries. However, TPM performance in terms of Overall Equipment Effectiveness (OEE) value seems to be unsatisfactory, with the average value of 52.5 compared to the world class OEE with a value of 85%. There were 5 enablers and 7 barriers significantly influencing the success of TPM implementation, while 4 enablers and 5 barriers were found in the LM tools implementation. Six pillars of TPM were considered to be valid, reliable, and significant to represent the TPM implementation in Indonesia, while the other two were found to be nullified. All of the eight LM tools were also considered to be valid, reliable and significant. TPM was found to have a strong correlation with LM but has a weak correlation with MP. On the other hand, TPM has an indirect and moderate influence on MP through OEE and also LM tools. There was also evidence indicating that OEE has a strong direct influence towards MP. Lean manufacturing also has a moderate correlation with MP. The TPM pillars and LM tools have a significant and positive impact to MP simultanously. The influence of both on MP is 60.9% ($R^2 = 0.609$) in proposed model but increased to 74.8% in the revised (final) model ($R^2 = 0.748$). It also means that 74.8% variability of MP can be explained by TPM and LM, while 25.2% can be explained by the others. This model can be considered as a reference on the impact of TPM pillars and LM tools implementation over manufacturing performance in Indonesian manufacturing industries.

خلاصة البحث

لقد تم بالفعل تأسيس أبحاث حول TPM و LM ولكنها لا تزال نادرة للغاية في الدول النامية، وخاصة إندونيسيا. على الرغم من أن التطوير الحالي لتطبيق أدوات LM و TPM أصبح واسع الانتشار على نحو متزايد في إندونيسيا، ولكن لا يزال مستوى نجاح تطبيق أدوات LM و TPM وتأثيرها على أداء التصنيع غير معروف وبحاجةٍ إلى إجراء أبحاث شاملة. سعى هذا البحث إلى استكشاف تتفيذ ركائز TPM وأدوات LM والتحقيق في الحواجز وعوامل التمكين لتطبيقها في الصناعات التحويلية الإندونيسية. كان التركيز الأساسي الآخر لهذا البحث هو تطوير نماذج مرجعية لكل من القياس والهيكلية لركائز TPM ، وأدوات LM و MP (أداء التصنيع). حيث تم إرسال 132 استبياناً إلى 132 شركة صناعية من خمسة مناطق صناعية مختلفة في جاكرتا وتانجيرانج وبيكاسى وسيليجون وباتام. حيث تم إعادة 108 ، بينما كان 91 استبياناً فقط مناسبةً للخطوة اللاحقة. تشير النتائج إلى وجود ممارسات TPM و LM جيدة في الصناعات التحويلية الإندونيسية. هناك خمسة عوامل تمكينية و سبعة حواجز يمكن اعتبارها مؤثرة في نجاح تطبيق TPM. أما بالنسبة لتنفيذ أدوات LM ، هناك ستة عوامل تمكينية وخمسة ركائز تم اعتبارها بالغة التأثير . تقريباً تُعَدّ جميع ركائز TPM الثمانية صحيحة وموثوقة وذات أهمية لتمثيل تطبيق TPM في إندونيسيا. بينما كان اثنان فقط من الركائز غير صالحَين. تم اعتبار جميع أدوات LM الثمانية موثوقة، مهمة ومؤثرة. كانت علاقة TPM قوية مع LM ولكن لديها علاقة ضعيفة مع MP. ولكن من جهة أخرى، TPM له تأثير غير مباشر على MP عبر OEE. ووجد أيضاً أدّلة على أن OEE له تأثير قوي ومباشر على MP. أظهر LM علاقة معتدلة مع MP. وبالتالي فإنّ ركائز TPM وأدوات LM لها تأثير كبير وإيجابي على MP بشكل تزامنيّ. يبلغ تأثير كلاهما على MP بقيمة 60.09% (R²= 0.609) في النموذج المقترح لكنه ارتفع إلى 74.8% في النموذج المعدّل (النهائي) (R² = 0.748). وهذا يعنى أيضًا أنه يمكن تفسير تغير MP من خلال TPM و OEE و LM بينما يمكن تفسير 25.2% من قِبَل الآخرين. يمكن أن يكون هذا النموذج نموذجاً للتنبؤ بأثر ركائز TPM وأدوات LM على أداء التصنيع في الصناعات التحويلية الإندونيسية.

APPROVAL PAGE

The thesis of Herry Agung Prabowo has been approved by the following:

Erry Yulian T. Adesta Supervisor

Mohamed Bin Abd. Rahman Co-Supervisor

> Ahsan Ali Khan Internal Examiner

Hairul Abral External Examiner

Faizal Mustapha External Examiner

Radwan Jamal Y. Elatrash Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Herry Agung Prabowo

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

TOTAL PRODUCTIVE MAINTENANCE IMPLEMENTATION BASED ON LEAN MANUFACTURING TOOLS

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2019 Herry Agung Prabowo and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Herry Agung Prabowo

Signature

Date

ACKNOWLEDGEMENTS

Firstly, let me say: *Alhamdulillah* praise be to Allah who has given pleasure and strength so that finally I can complete this thesis. Secondly, it is my utmost pleasure to dedicate this work to my dear parents Ibu Hajah Kusyatni and Almarhum Bapak Haji Djoemingan Kusumo Prayitno, my family, my beloved Sons and Daughters: Muhammad Azzam, Hasna Mardhiah, Fatimah AzZahra, Hamzah Abdurrahman and Ibrahim Ibadurrahman Fitranto and especially to my wife Farida, who granted me the gift of their unwavering belief in my ability to accomplish this goal: thank you for your support and patience.

I wish to express my appreciation and thanks to those who provided their time, effort and support for this project, especially to my best friend Avicenna. To my cosupervisor, Assoc. Prof. Dr. Mohamed Bin Abd. Rahman, thank you for sticking with me. Also to Board of Directors of Mercu Buana University and Menara Bhakti Foundation for their support in providing full Scholarship in this PhD program.

Finally, a special thank to Professor Erry Yulian T. Adesta for his continuous support, encouragement and leadership, and for that, I will be forever grateful... *Jazakallahu khoiron katsiron* Prof...

TABLE OF CONTENTS

Abstract
Abstract in Arabic
Approval Page
Declaration
Copyright
Acknowledgements
Table of Contents
List of Figures
List of Tables
List of Abbreviations
CHAPTER ONE: INTRODUCTION
1.1 Background of The Study
1.2 Research Gap
1.3 Problem Statement
1 4 Research Philosophy
1.5 Research Objectives
1.6 Research Scope
1.7 Research Hypotheses and Proposed Model
1.8 Significance of The Study
1.9 Definitions of Terms
1.9 1 Manufacturing
1.9.2 Manufacturing Industries
1.9.2 Manufacturing industries
1.9.5 Maintenance
1.9.5 Loop Monufacturing
1.9.5 Leali Manufacturing Derformance
1.10 Organization of Thesis
1.10 Organisation of Thesis
CHADTED TWO. I ITED ATUDE DEVIEW
2.1 Introduction
2.1 Introduction
2.2 Ivianulacturing industry
2.2.1 Introduction
2.2.2 Manufacturing Definition in the Modern Context
2.2.2.1 In Terms of Technology
2.2.2.2 In Terms of Economics
2.2.3 Manufacturing Industries
2.2.4 Indonesian Manufacturing Industry and Its Importances
2.2.5 The Distribution of Industrial Groups
2.2.6 Production Efficiency Level
2.2.7 The Role of the Indonesian Manufacturing Industries in
Providing Employment
2.2.8 Medium and Large Companies in Indonesia
2.3 Maintenance and Total Productive Maintenance
2.3.1 Introduction

2.3.2 Maintenance Definition and Evolution	35
2.3.3 Total Productive Maintenance	39
2.3.4 Total Productive Maintenance Barriers and	Enablers 42
2.4 Lean Manufacturing	
2.4.1 Lean Manufacturing Barriers and Enablers.	43
2.5 The Role of Total Productive Maintenance and Lea	an
Manufacturing in Manufacturing Industries	44
2.6 Implementation of TPM and Its Impact on Manufa	cturing
Performance	46
2.7 The Role of TPM in Lean Manufacturing	48
2.8 Lean Manufacturing and Its Impact on Manufactur	ing
Performance	50 S
2 9 Chapter Summary	50
2.9 Chapter Summary	
CHAPTER THREE: RESEARCH METHODOLOGY	51
3.1 Introduction	51
3.2 Research Design	52
3.3 Research Population	54
3.4 Respondent of the Study and the Sample Size	
3.4 1 Respondent	
3.4.2 Sample Size for DLS SEM Method	
2.5 Instrumentation	
2.5.1 English and Parrier Easters in TPM Implem	ontation in
Indenseis	50
2.5.2 Englar and Damian Easters in LM implana	ntation in
5.5.2 Enabler and Darner Factors in Livi impleme	
Indonesia	
2.5.4 The Colorism of LM Tests	
3.5.4 The Selection of LM Tools	
3.5.5 Manufacturing Performance	
3.5.6 Content Detail and Validation	
3.5.6.1 Questions Detail for Total Productive	Maintenance
Pillars (X_1)	
3.5.6.2 Questions Detail for Lean Manufactur	ring Tools
(X_2)	
3.5.6.3 Questions Detail for Manufacturing P	erformance
(\mathbf{Y}_1)	
3.6 Pilot Study	
3.7 Analysis of Pilot Data	
3.8 Data Collection Procedures	66
3.9 Data Analysis Procedures	68
3.10 Cochran Test	
3.11 The Structural Equation Modelling	
3.11.1 Measurement Model (Outer Model) Evalua	ation 72
3.11.2 Structural Model (Inner Model) Evaluation	ı 73
3.11.3 Goodness of Fit (Model Fit)	
3.12 Chapter Summary	

SENTATIO	UN, DATA ANALISIS AND RESULIS)N
Part One	Demographic Information of Respondent
4.1 Part O	Introduction
4.2 Respo	ndent Description
Part Two	: TPM and LM Implementation in Indonesian
Manufact	turing Industries
4.3 Part T	wo: Introduction
4.4 Varial	ples Description and Current Condition
4.5 Enable	ers and Barriers in TPM Implementation
4.5.1	The Enablers of TPM Implementation
4.5.2	The Barriers of TPM Implementation
4.6 Enable	ers and Barriers in LM Implementation
4.6.1	The Enablers of LM Implementation
4.6.2	The Barriers of LM Implementation
4.7 Data S	Screening
4.7.1	Data Screening: Pilot Study
4.7.2	Data screening: Main Data
4.8 Data C	Collection
4.8.1	Pilot Study
2	4.8.1.1 Mean value determination for indicators construct
2	4.8.1.2 Validity and Reliability Tests for TPM Pillars
(Questionnaire
	4.8.1.2.1 Validity Test of TPM Pillars Questionnaire
	4.8.1.2.2 Reliability Test for TPM Pillars
	Questionnaires
2	4.8.1.3 Validity and Reliability Tests for LM Tools
(Questionnaires
	4.8.1.3.1 Validity test for LM tools questionnaire
	4.8.1.3.2 Reliability test for LM tools questionnaire
2	4.8.1.4 Validity and Reliability Tests of MP Questionnaires
4	4.8.1.5 Outer and Inner Models Analysis
4.8.2	Main Data Results
4.8.3	Main Data Analysis
2	4.8.3.1 The Distribution of OEE Values
2	4.8.3.2 The Validity and Reliability Tests of Constructs
2	4.8.3.3 The Validity and Reliability Test of TPM Construct
2	4.8.3.4 The Validity and Reliability Test of LM Construct
4	4.8.3.5 The Validity and Reliability Test of MP Construct
4.9 Model	Analysis
4.9.1	Proposed Model Analysis
2	4.9.1.1 Measurement Model Evaluation (Outer Model)
4.0.0	4.9.1.2 Structural Model Evaluation (Inner Model)
4.9.2	Kevised Model Analysis
4.9.3	Model Fit Evaluation
4.10 Hypo	Dineses 1 esting
4.11 Unar	

х

APTER FIVE: DISCUSSION AND NOVELTY	128
5.1 Introduction	128
5.2 The Profile of Respondent	128
5.3 The Description of Research Variables	129
5.4 TPM Enablers and Barriers	133
5.4.1 TPM Enablers	133
5.4.1.1 Top Management Support and Involvement	134
5.4.1.2 Clear Steps (Gradual) of Implementation Process	135
5.4.1.3 Clear Understanding of TPM's Benefits and the	
Targets	135
5.4.1.4 Managing Synergic Cooperation of Production and	
Maintenance	135
5.4.1.5 Integrating TPM with other programs (LM, TQM,	
Six Sigma, etc)	136
5.4.2 TPM Barriers	136
5.4.2.1 Lack of Top Management Commitment and	
Support	137
5.4.2.2 Lack of Employee Involvement	137
5.4.2.3 Lack of Training and Education	137
5.4.2.4 Lack of Clear Understanding of TPM	138
5.4.2.5 Resistance to Change	138
5.4.2.6 Lack of Organizational Communication	139
5.4.2.7 Lack of supports system (IT, Learning center, etc.)	139
5.5 LM Enablers and Barriers	139
5.5.1 LM Enablers	139
5.5.1.1 Top Management Support and Involvement	140
5.5.1.2 High Employee Involvement	141
5.5.1.3 Managing Synergic Cooperation of Production and	1 4 1
Maintenance	141
5.5.1.4 Integrating with other programs (IPM, IQM, JII)	142
5.5.2 LM Barriers	142
5.5.2.1 Lack of Top Management Commitment and	140
Support	142
5.5.2.2 Lack of Employee Involvement	143
5.5.2.4 Look of Organizational Communication	145
5.5.2.5 Lack of Supports System (IT Learning facility etc)	144
5.6 The Influence of TDM Billers Implementation to Manufacturing	143
Derformance	145
5.7 The Influence of TPM Pillars Implementation on I M Tools	143
5.8 The Influence of I M Tools Implementation to Manufacturing	14/
Derformance	1/8
5 0 The Influence of TPM Pillers OFF and I M Tools	140
Implementation to Manufacturing Performance	150
5 10 Novelty	152
5.10 1.0, olly	104

CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS	154
6.1 Conclusions	154
6.2 Recommendations	156
REFERENCES	158
APPENDICES	168
APPENDIX 1. Research Questionnaire	169
APPENDIX 2. Data on Pilot Study	180
APPENDIX 3. Raw Data on TPM Pillars	181
APPENDIX 4. Raw Data on LM Tools	186
APPENDIX 5. Raw Data on Manufacturing Performance	191
APPENDIX 6. Data on TPM Pillars (For processing)	194
APPENDIX 7. Data on LM Tools (For processing)	197
APPENDIX 8. Data on Manufacturing Performance	
(For processing)	200

LIST OF FIGURES

Figure 1.1	TPM and Lean Manufacturing tools (Ahuja, 2008)		
Figure 1.2	The Hypothesized Model Proposed for TPM Pillars and LM Tools Implementation and Their Impact on MP in Indonesia	11	
Figure 2.1	Manufacturing Process in Terms of Technology (Groover, 2010)	18	
Figure 2.2	Manufacturing Process in Terms of Economics (Groover, 2010)	19	
Figure 3.1	Research Flow Chart	53	
Figure 4.1	Industrial Classification of the Respondents	79	
Figure 4.2	Percentage of Respondent's Staff Number	79	
Figure 4.3	Companies Operating Age and Lifespan	80	
Figure 4.4	Company's TPM Implementation Span	81	
Figure 4.5	Company's LM Implementation Span	81	
Figure 4.6	TPM Enablers (sorted)	86	
Figure 4.7	TPM Barriers (sorted)	89	
Figure 4.8	LM Enablers (sorted)	92	
Figure 4.9	LM Barriers (sorted)	96	
Figure 4.10	CFA and SEM Model for Pilot Study	105	
Figure 4.11	OEE Distribution	107	
Figure 4.12	CFA of TPM indicators	108	
Figure 4.13	The PLS Algorithm for the Modified 7 Pillars of TPM	110	
Figure 4.14	PLS Algorithm for the Six Pillars of TPM	111	
Figure 4.15	CFA for LM Construct	112	
Figure 4.16	CFA for MP Construct	114	
Figure 4.17	The Influence of TPM and LM to MP (Model #1)	117	

Figure 4.18	The Influence of TPM and LM to MP (Final Model)	120
Figure 5.1	Lean Manufacturing Tools Relationship Model	148

LIST OF TABLES

Table 1.1	Sectorial Contribution in the Indonesia Economics year 1990- 2017 (in percentage) (Statistical Center, 2018)	1
Table 1.2	Previous Research on TPM, LM, and Manufacturing Performance	3
Table 2.1	Specific industries in the primary, secondary, and tertiary categories by ISIC (Groove, 2010)	21
Table 2.2	The Contributions of Each Industrial Group to GDP (Per cent) (Lakip, 2016)	26
Table 2.3	The Efficiency (output/input) of Large and Medium Manufacturing Companies (2010-2014)	27
Table 2.4	The Classification of Company Category Based on the Size of the Staff Headcount According to DTI, UK (Source: https://www.gov.uk/government/organisations/dti)	30
Table 2.5	The Classification of Company Category Based on the Size of the Staff Headcount According to European Commission, EU (Source: http://ec.europa.eu/growth/smes/sme-definition)	31
Table 2.6	The Classification of Company Category Based on the Size of the Staff Headcount According to Small Business Act (SBA) 1953, USA (Source: https://www.sba.gov/about-sba)	31
Table 2.7	Illustration of Maintenance vs. Repair/Replace	35
Table 2.8	Maintenance Strategies, Technique Needed and Cost per Horse Power/year (Fitch, 1992)	39
Table 2.9	Brief Summary of Eight Pillars (Ahuja, 2008; Pandey, 2016)	41
Table 3.1	Critical Limit/Border Value for Measurement Model Evaluation	74
Table 3.2	Critical Limit/Border value for Structural Model Evaluation (Chin, 1998; Chin, 2010; Hair, 2011; Hair, 2012; Cohen 1988; Ghozali, 2015).	74
Table 3.3	Goodness of Fit Criteria (Model Fit) (Henseler (2016; 2017); Djikstra (2015); Ghozali (2015) and Byrne (2008)	75

Table 4.1	The TPM Pillars Mean, Standard Deviation, and Mode Values	84
Table 4.2	The LM Tools Mean, Standard Deviation, and Mode Values	84
Table 4.3	The Manufacturing Performance Mean, Standard Deviation, and Mode Values of the Research	85
Table 4.4	The Cochran Test Result for Five Enablers of TPM	88
Table 4.5	The Cochran Test Result for The Eight Barriers of TPM	90
Table 4.6	The Cochran Test Result for Seven Barriers of TPM	91
Table 4.7	The Cochran Test Result for Six Enablers of LM	94
Table 4.8	The Cochran Test Result for Five Enablers of LM	94
Table 4.9	The Cochran Test Result for Four Enablers of LM	95
Table 4.10	The Cochran Test Result for Eight Barriers of LM	97
Table 4.11	The Cochran Test Result for Seven Barriers of LM	98
Table 4.12	The Cochran Test Result for Five Barriers of LM	98
Table 4.13	Pilot Study Data Collection Result (n = 30)	101
Table 4.14	The List of Less Valid Questions According to their Cut-Off Values	102
Table 4.15	The Reliability Test for TPM Pillars	102
Table 4.16	The Reliability Test for LM tools	103
Table 4.17	The Reliability Test for MP Indicators	104
Table 4.18	Model Reliability and Validity	105
Table 4.19	Construct Reliability and Validity for TPM Pillars	112
Table 4.20	Construct Reliability and validity for LM tools	114
Table 4.21	Construct Reliability and Validity for MP	115
Table 4.22	Outer Loadings #1 (Bootstrapping Analysis)	115
Table 4.23	Outer Loadings #2 (Bootstrapping Analysis)	116
Table 4.24	Construct Reliability and Validity Values	118

Table 4.25	R ² Values for the Inner Model	119
Table 4.26	R ² Calculation Results	121
Table 4.27	The f ² Calculation Results	121
Table 4.28	The Test of Model Fit Results	122
Table 4.29	Signifancy Test for TPM, LM and MP	123
Table 4.30	Indirect Effect of TPM to MP through LM	124
Table 5.1	The Percentage of Industrial Companies with Proper TPM Pillars Implementation	129
Table 5.2	The Percentage of Industrial Companies with Proper LM Tools Implementation	131
Table 5.3	The Effect of TPM Pillars and LM Tools Implementation on Manufacturing Performance of Indonesia Manufacturing Industry	133

LIST OF ABBREVIATIONS

CBM	Condition-Based Maintenance		
CI	Continuous Improvement		
СМ	Corrective Maintenance		
CFA	Confirmatory Factors Analysis		
EPS	Eight Pillars Strategy		
FMEA	Failure Mode and Effect Analysis		
FMECA	Failure Mode Effect and Criticality Analysis		
FTA	Fault Tree Analysis		
HAZOP	Hazard and Operability		
LM	Lean Manufacturing		
MP	Maintenance Prevention		
MP	Manufacturing Performance		
OEE	Overall Equipment Effectiveness		
OEM	Original Equipment Manufacturer		
OMF	Optimising Maintenance Function		
PdM	Predictive Maintenance		
РНА	Physical Hazard Analysis		
PM	Preventive Maintenance		
Pro-M	Proactive Maintenance		
RCM	Reliability Centred Maintenance		
SEM	Structural Equation Modelling		
TBM	Time-Based Maintenance		
TPM	Total Productive Maintenance		
TQM	Total Quality Management		
VSM	Value Stream Mapping		

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The sector of manufacturing industry was known to be very influential in the structural transformation process of Indonesian economics. Since 1990, the influence has surpassed the agricultural sector in forming the national Gross Domestic Product (GDP), despite of the decreasing contribution of the agricultural sector each year. On the other hand, the manufacturing sector has been consistently becoming more influential. In 2001, the sector contributed to approximately 30.1% of Indonesia's GDP. In the following years, its contribution went down several times, with the lowest in 2013 at only 20.1% of the total GDP. The details on the development of the sectorial contribution are presented in Table 1.1.

Year	Agricultural	Manufacturing (include oil and gas)	Others
1990	19.4	20.7	59.9
1995	17.1	24.1	58.8
2001	15.6	30.1	54.3
2009	14.1	27.2	61.5
2010	14.4	23.2	62.4
2011	13.9	21.8	64.3
2012	14.1	21.5	64.4
2013	13.8	21.0	65.2
2014	13.7	21.0	65.3
2015	13.7	22.0	64.3
2016	13.3	21.1	65.6
2017	13.1	21.2	65.7

Table 1.1: Sectorial Contribution in the Indonesia Economics year 1990-2017 (in percentage) (Ayu, 2010; Bappenas, 2010; Perindustrian, 2015, 2018; Statistical Center, 2018)

From 2011-2017, the performance of process industry (manufacturing) appeared to be stagnant at 21-22% of the GDP with a total value of IDR 2,418.89 trillion in the year 2015, IDR 2,545.20 in the year 2016 and IDR 2,739.42 trillion in the year 2017. Although it may have seemed to be stagnant, nominally it went up about IDR 534.89 trillion (28.39%), IDR 661.20 trillion (35.09%) and IDR 855.4 trillion (45.40%) compare to 2014's GDP with the total GDP was IDR 1,884 trillion (Kementerian Perindustrian Republik Indonesia, 2017). In the future, the Indonesian government through UU No.17 2007 concerning the National Long-Term Development Plans (RPJPN) is planning to make Indonesia a new industrial country where its industrial sector become the main source of income with a yearly growth of 8.6% and 40% GDP contribution in 2025 (Kementerian Perindustrian Republik Indonesia, 2017).

It is thus obvious that Indonesia's manufacturing sector play an important role in Indonesian economics. But unfortunately, the Indonesia's manufacturing performance was not good enough. They were observed to still having low Overall Equipment Effectiveness (OEE), low reliability, and high breakdown (Asgara & Hartono, 2014; Puspitasari & Bagas, 2015; Triwardani et al., 2012). Very limited companies have been implementing Lean Manufacturing (LM) strategies such as Justin-Time (JIT), Total Quality Management (TQM), and Total Productive Maintenance (TPM). There is a need to implement these strategies in the Indonesian manufacturing industries to improve the performance of the companies on quote.

1.2 RESEARCH GAP

Several researchers like (Ahuja & Khamba, 2008a; Belekoukias et al, 2014; Pham et al., 2008) have found that many companies pursued either TPM or LM to improve their business strategy. However, it was observed that most of the implementation of these

initiatives was done separately. The integration of TPM with LM should form a comprehensive and consistent set of manufacturing practices directed towards performance improvement. Without having a TPM as complementary, an LM initiative would be strenuous and gruelling (Ahuja & Khamba, 2008; Bakri et al., 2012). In other words, without a well-run TPM programme, a non-lean company would have difficulties converting itself into lean companies. Managing the plant will be also more effective if those initiatives are integrated as a single set of manufacturing practice. Both TPM and LM initiatives have their own strength and have a significant impact in supporting the others (Pham et al., 2008)

So far, the extensive research focusing on this topic are very limited, if any. There is a need for further research to comprehensively integrate these two initiatives and to evaluate their impact towards manufacturing performance (MP). To provide a solid foundation for this research, a literature-study on 21 major recent journals with the subject of TPM, LM and manufacturing/organization performance has been carried out. Table 1.2 provides the details of the study.

	Result/Conclusion							
Authors	TPM Deep Inves- tigation	LM Deep Inves- tigation	OEE Calcul ation	Manu- factu- ring Perform ance	TPM Effect to LM	TPM Effect to Manufac turing Perfor- mance	LM Effect on Manufac turing Perfor- mance	SEM for TPM. LM and Manufac turing Perfor- mance
1. (Nawanir et al, 2016)	NO	YES	NO	YES	NO	NO	YES	YES
2. (Wickramasingh e & Perera, 2016)	YES	NO	NO	YES	NO	YES	NO	NO
3. (Filho et al., 2016)	NO	YES	NO	YES	NO	NO	YES	YES

Table 1.2: Previous Researches on TPM, LM, and Manufacturing Performance

	Result/Conclusion							
Authors	TPM Deep Inves- tigation	LM Deep Inves- tigation	OEE Calcul ation	Manu- factu- ring Perform ance	TPM Effect to LM	TPM Effect to Manufac turing Perfor- mance	LM Effect on Manufac turing Perfor- mance	SEM for TPM. LM and Manufac turing Perfor- mance
4. (Upadhye et								
al., 2016)	NO	YES	NO	NO	NO	NO	NO	NO
5. (Srinivasa & Niraj, 2016)	NO	YES	NO	YES	NO	NO	YES	NO
6. (Tang et al., 2016)	NO	YES	NO	YES	NO	YES	NO	NO
7. Thanki et al. (2016)	YES	YES	NO	NO	NO	NO	NO	NO
8. Tomar & Bhuneriya (2016)	NO	NO	YES	NO	NO	NO	NO	NO
9. Mishra & Aarif (2016)	NO	YES	NO	NO	NO	NO	YES	NO
10. (Zahraee, 2016)	NO	YES	NO	NO	NO	NO	YES	NO
11. Belekoukias et al. (2014)	NO	YES	NO	YES	NO	YES	YES	YES
12. Rahman et al. (2013)	NO	YES	NO	NO	NO	NO	YES	NO
13. Bakri et al. (2012)	YES	YES	NO	NO	YES	YES	YES	NO
14. Ahmad et al. (2012)	NO	NO	NO	YES	NO	YES	NO	NO
15. Hashim et al. (2012)	YES	NO	NO	YES	NO	YES	NO	YES
16. Anvari et al. (2011)	NO	YES	NO	NO	NO	NO	NO	NO
17. Teeravaraprug et al. (2011)	YES	YES	NO	NO	YES	NO	NO	NO
18.Dang Minh (2011)	YES	NO	NO	NO	YES	YES	NO	NO
19. Stamm et al. (2009)	YES	YES	NO	NO	NO	NO	NO	NO

	Result/Conclusion							
Authors	TPM Deep Inves- tigation	LM Deep Inves- tigation	OEE Calcul ation	Manu- factu- ring Perform ance	TPM Effect to LM	TPM Effect to Manufac turing Perfor- mance	LM Effect on Manufac turing Perfor- mance	SEM for TPM. LM and Manufac turing Perfor- mance
20. Ahuja & Khamba (2008)	YES	NO	YES	YES	NO	YES	NO	NO
21. Shah & Ward (2007)	NO	YES	NO	YES	NO	NO	YES	NO
This research	YES	YES	YES	YES	YES	YES	YES	YES

In performing the analysis of correlation between TPM and LM, many researchers treated TPM and LM as an observed instead of unobserved (latent) variable. Only limited researchers treated TPM, LM and MP as unobserved variables, such as Belekoukias et al. (2014), Hashim et al. (2012), and Shah & Ward (2007). In this research, the TPM and LM variables were treated as unobserved (latent) variables and were measured through their indicators. Structural Equation Modeling (SEM) was considered to be the appropriate method to perform the analyses (confirmatory, measurement and model fit). It can be inferred from this chapter that though there is a vast amount of literature on TPM, LM and their concepts, what is available on the aspects affecting the implementation of TPM and LM in industries is limited. There is big scope for carrying out additional research on this issue using SEM. It is also seen that statistical validation of the model developed in SEM regarding TPM and LM implementation and their impact on MP is yet to be carried out by those researchers, and hence there is an ample opportunity for further research.

1.3 PROBLEM STATEMENT

Only a very limited number of companies in Indonesia have been implementing TPM and LM properly. Many managers still consider TPM implementation as an additional costs or expenditures. So, in most cases, maintenance is still reactive in nature. Results from previous research show that many companies within the manufacturing industries in Indonesia have a machine/tool performance score below the Japan Institute of Plant Maintenance (JIPM) world class standard with minimum OEE at 85%. A study from Asgara & Hartono (2014) found that the OEE value of an overhead crane 003/0HC/BRB machine was still below the expected standard which is set at 71.63%. Another study from Triwardani et al. (2012) also found that the average effectiveness level of Dual Filters DD07 machine during their research was 26.22% with an average availability value of 69.88%, performance 45.37%, and quality 89.06%. Puspitasari & Bagas (2015) found the OEE value of Banbury Mixer 270 L machine to be 71.07%.

Similar to TPM, LM practices for manufacturing companies in most developing countries, especially Indonesia, are still lagging behind and below those of world-class performance. They are still struggling to overcome the implementation's barriers, and they also have been implementing LM separately from TPM. This separation resulted in a requirement of a large-scale resources, not to mention the associated problems of running contending project in the company.

Achieving the operational excellence, generating the models of LM and TPM implementation, and resulting the effect of both on MP, are of great importance to be created. By providing the current condition of TPM and LM practices, combined with the reference model of a relationship between TPM, LM, and MP, an important archive for academic and practitioners (industries) can be possibly provided.

6