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ABSTRACT

Ever since the discovery of graphene with its many unique properties, there has been
demand for a production method that could cheaply produce high-quality and large-area
graphene. So far, high-quality large-area graphene is grown through chemical vapor
deposition either through thermal activation or plasma activation. Presently, there are
many barriers to achieve mass production of such graphene. Current complexities in
production method only allows batch production at extreme condition to achieve
minimal defects in graphene. To achieve an economical method for high-quality large-
area graphene production, simplification to the system is a must. Our group proposes to
produce graphene through the flame deposition technique which unlike the
conventional chemical vapor deposition (CVD) would drastically reduce energy
consumption while still producing graphene of a reasonable quality. Amongst all
deposition methods, CVD is one of the slowest compared to flame combustion which
has the highest deposition rates without involving microwave plasma and direct current
arc. We also aim to study the reaction kinetics involved in the production of graphene
by this method. To achieve this, a normal horizontal CVD reactor was modified to allow
flame deposition of graphene. Graphene deposits grown by flame deposition were
characterized by Raman spectroscopy, sheet resistance and electrochemical impedance
spectroscopy (EIS). Simultaneously, simulations on the chemical reactions were also
performed to obtain information on the equilibrium concentrations of the gas species. It
was shown that deposits obtained from the reactor that we designed were comparable
to graphene grown flame deposition reported in literature. At its best, multilayer
graphene with a monolayer ratio of 1.14 and defect ratio of 0.87 was successfully grown
at 750°C through a 10 min reaction using a gas composition of 0.2 atm Ar, 0.3 atm CHa,
0.5 atm O,. Compared to literature using 0.07 atm Hj, 0.68 atm CHy, 0.25 atm Oo,
monolayer ratio was 600% higher and defect ratio increased slightly by 9%.
Additionally, using equilibrium concentrations of predicted products obtained from
simulations of chemical kinetics provided the initial mechanism pathways and a gas
phase species that have a close correlation to the deposition rates. Both Arrhenius and
van't Hoff analysis shows a single growth mechanism the range of 400°C to 1000°C
which further corroborates this. Our investigations revealed that when compared to
conventional CVD grown graphene, this technique produces few-layer graphene growth
through a different pathway and highlights flame deposition technique as a viable
method for graphene production.
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CHAPTER ONE

INTRODUCTION

This chapter provides a brief background on graphene. While it gained prominence in
2004, it has a long history which is introduced here. Its exceptional properties which
were the reason it underwent such intense scrutiny are also introduced. A brief
discussion of its present situation, challenges and it future could also be found here.

Finally, in light of this, the aim of this research will then be explained.

1.1 RESEARCH BACKGROUND
How was graphene even worthy of a Nobel prize when Geim and Novoselov reported
their study on it back in 2004. The reason for them winning such a prestigious award
lies within the fact that they had proven conventional knowledge to be wrong and
opened a yet undiscovered field in science, 2-D materials. Before its discovery, 2D
materials of a single atomic thickness were deemed to be thermodynamically unstable.
Such standalone 2D structures would have its melting point decreased so much that as
it gets smaller, it would either decompose or segregate into agglomerates in order to
achieve stability (Geim & Novoselov, 2007). Rather than forming free-standing
graphene layers, the formation of soot, nanotubes and fullerenes would take place.
Hence, having a free-standing monolayer graphene was considered an impossibility
despite knowing that it exists within graphite and the very idea of graphene was just
limited to a mere abstract idea. That was the accepted knowledge, at least until 2004.
The scientific world was greatly surprised when Geim and Novoselov reported

on the successful synthesis of “graphitic sheets of thickness down to single-layer



graphene” and its exceptional electrical properties (Novoselov et al., 2004). Soon
people discovered that other 2D structures from other materials such as boron nitride
and molybdenum sulfide could also exist. On top of that, such materials actually display
high crystallinity especially in the case of graphene which has extremely good
electronic properties which goes against the preconceived notion of how 2D materials
are impossible to have these qualities. They have, in essence, discovered a wholly new
dimension in material science.

However, graphene has actually been observed for quite some time. Geim
(2012) himself have noted various authors that have noted the existence of monolayer
graphene without realizing its significance. In 1859, in the process of measuring the
atomic weight of graphite, Brodie (1859) had repeatedly oxidized graphite powders and
he noted that the resulting flakes were so thin that it was impossible to measure. He
termed the product as “graphic acid”. Later, the compound was chemically reduced, and
it was observed that the resulting material was graphitic as well, which he then named
“graphon”. Now with proper hindsight, we know that what he actually did was a
chemical exfoliation of graphite turning it into graphene oxide. In fact, the chemical
exfoliation method he reported in his paper is now known as the Brodie method which
alongside with Hummer, Staudenmeier, and Hofmann methods is one of the few
common chemical exfoliation methods for graphene production. Such methods will be
discussed later in the graphene production segment.

The benefit of modern analytical equipment in later years finally yielded an
image of the material Brodie produced. Using TEM shown in Figure 1.1, Ruess and
Vogt (1948) noted that dried “graphic acid” has a nano-order thickness flake-like
structure. Boehm, Clauss, Fischer, & Hofmann, (1962) later observed the reduced flakes

also have very thin flake structures with the possibility of it being a monolayer. At the



