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ABSTRACT 

Ever since the discovery of graphene with its many unique properties, there has been 

demand for a production method that could cheaply produce high-quality and large-area 

graphene. So far, high-quality large-area graphene is grown through chemical vapor 

deposition either through thermal activation or plasma activation. Presently, there are 

many barriers to achieve mass production of such graphene. Current complexities in 

production method only allows batch production at extreme condition to achieve 

minimal defects in graphene. To achieve an economical method for high-quality large-

area graphene production, simplification to the system is a must. Our group proposes to 

produce graphene through the flame deposition technique which unlike the 

conventional chemical vapor deposition (CVD) would drastically reduce energy 

consumption while still producing graphene of a reasonable quality. Amongst all 

deposition methods, CVD is one of the slowest compared to flame combustion which 

has the highest deposition rates without involving microwave plasma and direct current 

arc. We also aim to study the reaction kinetics involved in the production of graphene 

by this method. To achieve this, a normal horizontal CVD reactor was modified to allow 

flame deposition of graphene. Graphene deposits grown by flame deposition were 

characterized by Raman spectroscopy, sheet resistance and electrochemical impedance 

spectroscopy (EIS). Simultaneously, simulations on the chemical reactions were also 

performed to obtain information on the equilibrium concentrations of the gas species. It 

was shown that deposits obtained from the reactor that we designed were comparable 

to graphene grown flame deposition reported in literature. At its best, multilayer 

graphene with a monolayer ratio of 1.14 and defect ratio of 0.87 was successfully grown 

at 750°C through a 10 min reaction using a gas composition of 0.2 atm Ar, 0.3 atm CH4, 

0.5 atm O2. Compared to literature using 0.07 atm H2, 0.68 atm CH4, 0.25 atm O2, 

monolayer ratio was 600% higher and defect ratio increased slightly by 9%. 

Additionally, using equilibrium concentrations of predicted products obtained from 

simulations of chemical kinetics provided the initial mechanism pathways and a gas 

phase species that have a close correlation to the deposition rates. Both Arrhenius and 

van't Hoff analysis shows a single growth mechanism the range of 400°C to 1000°C 

which further corroborates this. Our investigations revealed that when compared to 

conventional CVD grown graphene, this technique produces few-layer graphene growth 

through a different pathway and highlights flame deposition technique as a viable 

method for graphene production.  
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 خلاصة البحث
ABSTRACT IN ARABIC 

عالية جودة ذو جرافين انتاج بمقدوره انتاج نظام على الطلب دازدا الفريدة، وخصائصه الجرافين اكتشاف تم منذ  

الترسيب خلال من الجودة عالي الجرافين من كبيرة كمية اس تخراج يتم ، الآن حتى .رخيص وبسعر كبيرة وكمية  

للبخار الكيميائي   (Chemical Vapor Deposition) ما البلازما تنش يط أ و الحراري التنش يط خلال من ا  . 

الانتاج نظام في الحالية التعقيدات تسمح و الجرافين، لهذا ضخم انتاج تمنع التي الحواجز من العديد هناك حاليًا،  

نتاج لتحقيق النظام تبس يط يجب .الجرافين في العيوب من نس بة أ قل على للحصول الظروف أ قسى في كمية ب   

نتاج اقتصادية طريقة أ فضل نتاج تقترح مجموعتنا .الكبيرة والكمية العالية الجودة ذو الجرافين ل  بس تخدام الجرافين ا   

للبخار الكيميائي للترسيب التقليدية التقنية بخلاف والذي الشعلة، ترسيب تقنية  (CVD) ، نها من تقلل فا   

أ بطأ   من واحدًا للبخار الكيميائي الترسيب يعُد .معقولة جودة ذو جرافين تنتج بينما جذري بشكل الطاقة اس تهلاك  

ببلازما ال س تعانة دون ترسيب معدلت أ على على يحتوي التي النار احتراق بتقنية مقارنة سيب،التر  طرق  

لى أ يضًا نهدف نحن .المباشر التيار وقوس الميكروويف نتاج في المش تملة التفاعل حركية دراسة ا  هذه في الجرافين ا   

الرواسب تمييز تم .الجرافين شعلة ترسيبب ليسمح للبخار أ فقي كيميائي لترسيب عادي مفاعل تعديل تم .الطريقة  

رامان مطيافية بس تخدام الشعلة ترسيب عن الناتجة  (Raman spectroscopy)، المقاومة ورقة و  (sheet 

resistance) الكهروميكانيكية المعاوقة ومطيافية  (electrochemical impedance spectroscopy).  في 

جراء تم ، الوقت نفس أ نواع تركيزات توازن حول معلومات على للحصول الكيميائية للتفاعلات محأكاة عمليات ا   

الشعلة ترسيب من النابع الجرافين يش به صممناه، الذي المفاعل عن الناتجة الرواسب أ ن النتائج أ ظهرت .الغاز  

1.14 طبقةال  أ حادي بمعدل بنجاح حالته أ فضل في الطبقات متعدد الجرافين تطوير تم .المؤلفات في ذُكر الذي  

لى مدته طالت تفاعل خلال من 750 مئوية درجة  في 0.87 الخلل ونس بة غاز تركيبة بس تخدام دقائق 10 ا   

ذرة 0.07 اس تخدمت التي بلمؤلفات مقارنة أ كس يجن، ذرة  0.5 ، ميثان ذرة  0.3 ، أ رغون ذرة 0.2 تبلغ  

العيوب ونس بة ٪600 أ على بنس بة الطبقة أ حادي و أ كس يجن، ذرة  0.25 ميثان، ذرة  0.68 هيدروجين،  

لى بل ضافة .٪9 بنس بة طفيف بشكل زادت تم التي المتوقعة المنتجات من التركيزات توازن بس تخدام ذلك، ا   

لى التوصل تم الكيميائية، الحركية محأكاة من عليها الحصول لها التي الغاز مراحل وأ نواع ال ولية الآلية المسارات ا   

ليلح  من كًُُ  يظهر .الترسب بمعدلت وثيقة علاقة تَح  Arrhenius و van't Hoff آلية تتراوح أ حادية نمو أ  

لى 400 من مقارنة يتم عندما أ نه أ جريناها التي التحقيقات كشفت .أ كثر هذا من يعزز مما مئوية درجة 1000 ا   

ن ، للبخار الكيميائي الترسيب بس تخدام تقليديً  المنتج الجرافين مع التقنية هذه من قليلًا  نموًا تنتج التقنية هذه فا   

الجرافين ل نتاج النيران ترسب تقنية تطبيق قابلية على تؤكد وكذلك مختلف مسار خلال من الجرافين طبقات  
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CHAPTER ONE 

INTRODUCTION 

This chapter provides a brief background on graphene. While it gained prominence in 

2004, it has a long history which is introduced here. Its exceptional properties which 

were the reason it underwent such intense scrutiny are also introduced. A brief 

discussion of its present situation, challenges and it future could also be found here. 

Finally, in light of this, the aim of this research will then be explained. 

 

1.1 RESEARCH BACKGROUND 

How was graphene even worthy of a Nobel prize when Geim and Novoselov reported 

their study on it back in 2004. The reason for them winning such a prestigious award 

lies within the fact that they had proven conventional knowledge to be wrong and 

opened a yet undiscovered field in science, 2-D materials. Before its discovery, 2D 

materials of a single atomic thickness were deemed to be thermodynamically unstable. 

Such standalone 2D structures would have its melting point decreased so much that as 

it gets smaller, it would either decompose or segregate into agglomerates in order to 

achieve stability (Geim & Novoselov, 2007). Rather than forming free-standing 

graphene layers, the formation of soot, nanotubes and fullerenes would take place. 

Hence, having a free-standing monolayer graphene was considered an impossibility 

despite knowing that it exists within graphite and the very idea of graphene was just 

limited to a mere abstract idea. That was the accepted knowledge, at least until 2004. 

The scientific world was greatly surprised when Geim and Novoselov reported 

on the successful synthesis of “graphitic sheets of thickness down to single-layer 
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graphene” and its exceptional electrical properties (Novoselov et al., 2004). Soon 

people discovered that other 2D structures from other materials such as boron nitride 

and molybdenum sulfide could also exist. On top of that, such materials actually display 

high crystallinity especially in the case of graphene which has extremely good 

electronic properties which goes against the preconceived notion of how 2D materials 

are impossible to have these qualities. They have, in essence, discovered a wholly new 

dimension in material science. 

However, graphene has actually been observed for quite some time. Geim 

(2012) himself have noted various authors that have noted the existence of monolayer 

graphene without realizing its significance. In 1859, in the process of measuring the 

atomic weight of graphite, Brodie (1859) had repeatedly oxidized graphite powders and 

he noted that the resulting flakes were so thin that it was impossible to measure. He 

termed the product as “graphic acid”. Later, the compound was chemically reduced, and 

it was observed that the resulting material was graphitic as well, which he then named 

“graphon”. Now with proper hindsight, we know that what he actually did was a 

chemical exfoliation of graphite turning it into graphene oxide. In fact, the chemical 

exfoliation method he reported in his paper is now known as the Brodie method which 

alongside with Hummer, Staudenmeier, and Hofmann methods is one of the few 

common chemical exfoliation methods for graphene production. Such methods will be 

discussed later in the graphene production segment. 

The benefit of modern analytical equipment in later years finally yielded an 

image of the material Brodie produced. Using TEM shown in Figure 1.1, Ruess and 

Vogt (1948) noted that dried “graphic acid” has a nano-order thickness flake-like 

structure. Boehm, Clauss, Fischer, & Hofmann, (1962) later observed the reduced flakes 

also have very thin flake structures with the possibility of it being a monolayer. At the 


