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ABSTRACT 

Flow control for drag reduction results in substantial fuel savings, thus contributing to 

low-cost greener industrial processes. A major problem at transonic Mach numbers is 

the base drag. This study focuses on the control of base drag by controlling the base 

pressure. Till date, there are either passive or active control methods for all flow regimes 

resulting in ineffective control. The present work is an attempt to control the base 

pressure by passive as well as active means. The Mach numbers considered are for the 

subsonic, sonic, transonic, and supersonic regimes. Experiments were conducted for the 

nozzle pressure ratio (NPR) in the range from 2 to 10. The geometric parameters 

considered were the L/W ratio and area ratios. The base pressure (Pb) and the flow 

development along the duct wall was measured. Flow visualization was performed for 

all the cases of the present study. To assess the influence of the control mechanism on 

base pressure as well as the flow development in the enlarged duct a stationary or 

rotating cylinder of 2 mm diameter located at various positions from separation to the 

reattachment point inside the recirculation zone was employed. The investigation on 

base flows indicates that the base pressure is dependent on the length-to-width ratio, the 

level of expansion, Mach number, and the location as well as the orientation of the static 

and rotating cylinder as the control mechanism in the recirculation zone. For subsonic, 

sonic, transonic and low supersonic Mach numbers,  the active, as well as the passive 

controls, increase the base pressure, thus decreasing the base drag but at higher 

supersonic flow say Mach 2, the control results in a decrease of base pressure for most 

of the cases of the present study. L/W = 4 seems to be the minimum length needed for 

the flow to remain attached with the enlarged duct. The results of different Mach 

number regimes have been validated with the published data from the National 

Aeronautics and Space Administration (NASA) and Sandia National Laboratories wind 

tunnels. While working in sudden expansion, it is mandatory to ensure that the control 

mechanism does not disturb the main flow field in the duct and it did remain same for 

with and without control cases. The results reported in this thesis are in an uncertainty 

band of ± 2.3%.  
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 خلاصة البحث

ABSTRACT IN ARABIC 

ملخص البحث يؤدي التحكم في التدفق لتقليل السحب إلى وفورات كبيرة في الوقود ، وبالتالي 

المساهمة في عمليات صناعية صديقة للبيئة منخفضة التكلفة. وهناك مشكلة رئيسية في أرقام ماخ 

فوق الصوتية هي السحب الأساسي. تركز هذه الدراسة على التحكم في السحب الأساسي بالتحكم 

في ضغط القاعدة. حتى الان ، هناك إما أساليب تحكم سلبي أو نشط لجميع أنظمة التدفق مما يؤدي 

إلى عدم فعالية التحكم. العمل الحالي هو محاولة للسيطرة على ضغط القاعدة عن طريق وسائل 

في الاعتبار هي للأنظمة دون سرعة  (MACH NUMBERS)سلبية وكذلك نشطة. أرقام الماخ

الصوت ، الصوتية ، الصوتية ، والأسرع من الصوت. الأنظمة. أجريت تجارب على نسبة ضغط 

ونسبة  (L / W) في النطاق من 2 إلى 10. وكانت المعلمات الهندسية تعتبر نسبة (NPR) الفوهة

وتطور التدفق على طول جدار القناة.تم إجراء تصوير التدفق  (Pb) المنطقة.تم قياس ضغط القاعدة

لجميع حالات الدراسة الحالية. لتقييم تأثير آلية التحكم على ضغط القاعدة بالإضافة إلى تطور التدفق 

في القناة المتضخمة ، تم استخدام أسطوانة ثابتة أو دوارة قطرها 2 مم تقع في مواقع مختلفة من 

الفصل إلى نقطة إعادة التعيين داخل منطقة إعادة التدوير. يشير التحقيق في التدفقات الأساسية إلى 

، ومستوى التوسيع ، ورقم المات ، والموقع بالإضافة  (L / W) أن ضغط القاعدة يتأثر بشدة بن

إلى اتجاه الأسطوانة الثابتة والدوارة كآلية التحكم في منطقة إعادة التدوير. لأرقام ماخ دون سرعة 

الصوت ، الصوتية والمترونية والأصغر من الصوت ، فإن الضوابط النشطة ، وكذلك الضوابط 

 ، يؤدي التحكم MACH 2) السلبية ، تؤدي إلى زيادة كبيرة في ضغط القاعدة ، ومع ذلك ، في

هو الحد  (L / W = 4) إلى انخفاض ضغط ) الأساس لمعظم حالات الدراسة الحالية. يبدو أن

الأدنى للطول اللازم للتدفق ليظل مرتبطًا بالقناة المتضخمة. وقد تم التحقق من صحة نتائج أنظمة 

 (NASA) عدد ماخ مختلفة مع البيانات المنشورة من الإدارة الوطنية للملاحة الجوية والفضاء

ناسا وأنفاق الرياح في مختبرات سانديا الوطنية. أثناء العمل في مجال التوسع المفاجئ ، يلزم التأكد 

من أن آلية التحكم لا تزعج مجال التدفق في المجرى.النتائج الواردة في هذه الرسالة هي في نطاق 

 عدم اليقين من %)2.3 ±(.                                                                                                     
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CHAPTER ONE 

INTRODUCTION 

1.1 CONTROL OF FLOWS  

The major augmentation to the drag created by the bluff body, a sudden expansion or 

an abrupt change in cross-section is due to depression on its base, inside the 

recirculation zone. Reducing base drag holds great importance in many engineering 

applications but as of now, the knowledge of physics behind the base drag mechanism 

is still far from satisfactory (Mariotti, Buresti, & Salvetti, 2015). They also concluded 

that redevelopment after reattachment creates more complication and short recirculation 

length leads to high base drag. Flow field after a sudden enlargement is a phenomenon 

marked by complexities such as separation of flow, recirculation vortex, reattachment, 

boundary layer type as well as the mutual dependency between inviscid and viscous 

forces (Chang, 2014). Chandrsuda and Bradshaw (1981) related boundary-layer 

thickness after separation to the step height which characterized the downstream flow. 

But according to a review of  Eaton and Johnston (1981), the use of hot-wire turbulence 

data and measurement for reattaching flows lacked reliability.  So the complexity due 

to the boundary layer type, recirculation, separation, reattachment, redevelopment after 

reattachment and interaction between viscous - inviscid flow, at different Reynold 

numbers, (Ghoniem & Sethian, 1987) and Mach number (Briley, Taylor, & Whitfield, 

2003) has been somewhat studied but the control of such flows is not easy. Thus, we 

can categorise base flow study into two groups, one on basic anatomy of the flow field 

and the other on control of base flows using various techniques (Viswanath, 1996);(Van 

Leeuwen, 2009);(Martín-Alcántara, Sanmiguel-Rojas, Gutiérrez-Montes, & Martínez-

Bazán, 2014);(Evrard et al., 2016);(Jackson, Wang, & Gursul, 2017). Figure 1(a) shows 
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the mixing flow and recirculation region of the flow past a backward facing step and 

Figure 1(b) shows the mixed flow in the region of sudden enlargement under the 

influence of Prandtl-Meyer expansion fans and shock waves. 

 

(a) Incompressible Flow (Ma & Schröder, 2017) 

 

(b) Compressible Flow (Martin & Baker, 1963) 

Figure 1.1 Mixing Flow and Recirculation Region 

The control of base pressure on a blunt base is a very important field of study in subsonic 

to transonic (Vikramaditya & Viji, 2019) and supersonic regimes (Forsythe, Hoffmann, 

Cummings, & Squires, 2002) and finds application in many areas. One of the 
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application is high-altitude rocket nozzles testing at low cost (Rose, Jinu, & Brindha, 

2015) but the problem of separation and its prediction is found not to be accurate 

although is well reviewed by Stark (2013) and numerically  investigated by (Nasuti, 

Onofri, & Martelli, 2007);(Allamaprabhu, Raghunandan, & Morinigo, 2011). The use 

of a supersonic parallel diffuser by aerospike nozzles is another application of base flow 

problem (Takahashi, Tomioka, Tomita, & Sakuranaka, 2014). Nozzle exhaust diffusers 

in rocket test cells used to simulate high altitude conditions is an interesting application. 

This condition also exists in the exhaust port where hot exhaust gases pass out of valve 

in an internal combustion engine (Anderson & Williams, 1968). Another example is the 

flow around the bluff base of a projectile in flight where the flow expansion is inward 

rather than outward (Wong, 2006). Also, the sudden expansion dump combustor 

configuration for integral rocket-ramjet is an excellent example (Yang & Yu, 1983). 

Continued interest in this area is provided by the problem of spacecraft re-entry into the 

atmosphere with adaptive control to improve performance (Dydek, Annaswamy, & 

Lavretsky, 2010). Yet another example is the reduction of base drag in launch vehicles 

investigated under NASA (Naughton, 2002). A detailed analysis of flow through sudden 

enlargement in the pipe was studied by Teyssandiert and Wilson (1974). For a airfoil 

with a blunt trailing edge that would have a structural and aerodynamic merits at 

transonic and supersonic Mach numbers as compared with a sharp trailing edge of 

conventional airfoil was reviewed in detail by Tanner (1975). So, we can see that the 

flow separation and recirculation after an abrupt change in cross-section is not only 

from very low Reynolds number to very high Reynolds number but happens from 

subsonic to hypersonic flow regimes too. There are many applications but the focus of 

this work will be mainly on subsonic, transonic and supersonic flows. In missiles, the 

drag is as high as 50 % of the total drag in no jet condition (Viswanath, 1996).  
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Out of the few applications stated above, let us take the example of a rocket 

nozzle base pressure field. The base pressure for a rocket nozzle is reduced due to 

expansion fans sitting at the edge of the base due to the sudden increase in the area. At 

the lip of the nozzle, the flow will separate. Thus, the hot gases coming out of the nozzle 

tend to fill this area. This is undesirable since the high temperature of the gases is 

continuously felt at the base area. During the jet-on conditions, the base drag will be 

zero and will be very high for jet-off conditions for rockets and missiles. It is proposed 

to utilize the use of static and dynamic cylinders to control the base drag. This cylinder 

when stationary acts in a passive mode and when rotating it acts in an active mode. 

Depending on different arrangements of location and orientation of cylinder, we intend 

to control the flow pattern inside the recirculation zone at the base.  

1.2 PROBLEM STATEMENT AND SIGNIFICANCE  

The sudden expansion is unavoidable. It is a very natural phenomenon but may lead to 

disastrous consequences. It is observed in a volcanic eruption (Ishihara, 1985), cloud 

bursting (Baker, Pierorazio, Woodward, & Tang, 2011), flood mitigation dams 

(Shahmirzadi & Sumi, 2013), atmospheric storms such as hurricanes (Elsner & Kara, 

1999), separation in blood flow (Hammad, 2015)and so on and so forth. We cannot 

avoid it because it happens in most of the engineering application such as pipes, 

channels, automobiles, aircraft, ballistic missiles, rockets, and spacecraft reentry 

vehicles & that too in different flow regimes and flow conditions. The existing system 

can be made more effective and efficient by reducing the drag and hence reduce the 

energy requirements.  
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Figure 1.2 Transonic Pressure Drag Coefficient (Priyono, 1994) 

As seen from the literature review that in high-speed aerodynamics like in rocket nozzle, 

the base pressure for rocket nozzle is reduced due to sudden expansion. Thus, resulting 

separation of flow at the lip of the nozzle and creating a depression behind the vehicle 

and increasing overall aerodynamic drag. While the motor is firing, the base drag is 

minimal but at burn out there is a sharp jump in base drag and amounts to 2/3 of the 

total aerodynamic drag as shown in Figure 1.2.  

1.3 RESEARCH OBJECTIVES 

The main objective of this work is to manipulate base pressure in order to reduce base 

drag by using a control cylinder. The specific objectives are: 

1. To develop a new and comprehensive technique to control the base flow field in 

subsonic, transonic, and supersonic regime. 

2. To study the physics of the flow when a control cylinder manipulates pressure 

inside the base region behind abrupt expansion as a result of variation in 

location, orientation, nozzle pressure ratio, length-to-width ratio, and area ratio 

for the subsonic, transonic, and supersonic regime. 

3. To determine the effect of the cylinder as a passive control device on the flow 

pattern and the base flow field in subsonic, transonic and supersonic regime. 
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4. To ascertain the effect of the cylinder as an active control device on the flow 

pattern and the base flow field in subsonic, transonic and supersonic regime. 

1.4 RESEARCH PHILOSOPHY  

Designing a simple but effective mechanism to reduce base drag inside a recirculation 

turbulent zone, knowing the fact that by manipulating flow pattern around the body the 

drag and lift are being affected (Kumar, Cantu, & Gonzalez, 2011), as the flow separates 

at the base of high-speed vehicles such as rockets, missiles, and projectiles, it forms a 

low-pressure recirculation zone lower than the free stream atmospheric pressure. 

Aerodynamic vehicles fly in different flow regimes such as subsonic, transonic, 

supersonic (Nagata, Nonomura, Takahashi, Mizuno, & Fukuda, 2016) and hypersonic 

(Sziroczak & Smith, 2016). To enhance the flow pattern inside the recirculation zone 

we introduced the cylinder in such a way that its stagnation point can be controlled. The 

cylinder can act as either a passive control or active control (rotating) depending on the 

regime and condition the vehicle is experiencing. The results encourage researchers on 

how to control the base pressure based on demand and supply i.e. when to implement 

energy-saving passive control or effective dynamic control. We utilized a simple but 

effective technique which is a combination of passive and active methods to control the 

base drag.  

1.5 RESEARCH SCOPE AND LIMITATIONS  

Presently active or passive technique is used to control the base flows behind high-speed 

vehicles. These high-speed vehicles such as rocket travel at different levels of expansion 

from highly over-expanded flow at the sea level to a highly under-expanded flow in the 

outer space. Thus, by using either active or passive control for all the level of expansion, 

efficiency and effectiveness is not only reduced but leads to a lot of waste of energy. 

Thus, in line with the problems outlined previously, the new controller based on the 


