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ABSTRACT

Micro dry wire EDM (UDWEDM) is a process where gas is used as the dielectric fluid
instead of a liquid. In this process certain modifications of wire EDM (WEDM) are
needed during the machining operation to achieve stable machining. Smooth and
stable machining operation as well as the kerf variation in uDWEDM process remains
as critical issues. Thus, the objectives of this research are to establish a stable
HDWEDM process and to develop kerf mathematical model. The investigation was
performed on a stainless steel (SS304) with a tungsten wire as the electrode using
integrated multi process machine tool, DT 110 (Mikrotools Inc., Singapore). This
research consists of two main parts which are the process parameters selection and the
mathematical modelling of kerf in uDWEDM. For the process parameters selection,
types of dielectric fluid, dielectric fluid pressure, polarity, threshold voltage, wire
tension, wire feed rate, wire speed, gap voltage, and capacitance were the controlled
parameters. The experimentation method used in this part was a conventional
experimental method, one-factor-at-a-time (OFAT). The machining length of the
microchannels were measured using scanning electron microscope (SEM). Stable and
smooth machining operation of uDWEDM was found to be with compressed air as the
dielectric fluid, workpiece positive polarity, 24% threshold voltage, 0.0809 N wire
tension, 0.2 um/sec wire feed rate, and 0.6 rpm wire speed. The best conditions in this
part were proposed as the fixed parameters while the capacitance and gap voltage as
the controlled parameters for the kerf investigation. For mathematical modelling of
kerf, statistical analysis based on the response surface methodology (RSM) was
employed. RSM employed consists of two main designs which were first-order
design; Plackett-Burman design; and second-order design; central composite design
(CCD). Plackett-Burman design was utilized in order to check the validity of the
process parameter selection results. The validation results showed that the proposed
parameters; capacitance (10.00-0.10 nF) and gap voltage (80-110 V); were the
variables that should be used as the controlled parameters for kerf investigation in
HDWEDM using CCD. The results were obtained by measuring the kerf using SEM.
The first-order design and the second-order design were analysed using ANOVA. The
investigation of kerf was divided into two responses which were upper kerf and
bottom kerf. Empirical models were developed for both of the responses. Both
parameters; capacitance and gap voltage have high influence on both of the responses.
The optimum parameters for both minimum upper and bottom kerf were found to be
0.1 nF capacitance, 91 V gap voltage, compressed air dielectric fluid, 0.0345 MPa
dielectric fluid pressure, workpiece positive polarity, 24% threshold voltage, 0.0809 N
wire tension, 0.2 pum/sec wire feed rate, and 0.6 rpm wire speed. The developed
models are found to be adequate since the percentage error were relatively small (<
3%). The main innovative contribution of this research is the identification of process
parameters together with their level for stable machining and formulation of
mathematical model for optimum Kkerf.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

Electrical discharge machining (EDM) process, a non-contact machining process is
also known for its capability in machining hard and brittle conductive materials
regardless of their hardness (Abbas et al., 2007; Liao et al., 2005; Yoo et al., 2014,
Hoang and Yang, 2013, 2015; Debroy and Chakraborty, 2013; Yan, 2010). EDM is
thermal machining where the material from the workpiece is removed by the thermal
energy created by the electrical spark (Hoang and Yang, 2015; Pour et al., 2014,
2014a). A series of electrical sparks or discharges occur rapidly in a short span of time
within a constant spark gap between the micro sized tool electrode and the workpiece
material. In this process, the tool and the workpiece both are adequately immersed in a
dielectric medium, such as, kerosene, deionised water or any other suitable fluid
(Hoang and Yang, 2015; Chow et al., 2008; Chen et al., 2009).

Some of the variations of EDM process that can be altered for micro
fabrication are micro EDM (LEDM), wire EDM (WEDM), and micro wire EDM
(MWEDM) (Chakraborty et al., 2015; Di et al., 2009; Ali et al., 2010; Hoang and Yang
2013). WEDM and PWEDM operation have very similar material removal
mechanism as the EDM process aside the fact that the former uses winding wire as an
electrode (Hoang and Yang, 2015; Debroy and Chakraborty, 2013; Azhiri et al.,
2014). These processes have the ability to cut intricate shapes and tapered geometries
with high precision, efficiency, and stability (Hoang and Yang, 2015; Chen et al.,

2015; Patil and Waghmare, 2014; Conde et al., 2018). In the following subsections;



dry EDM, kerf, and mathematical modelling which are the main focus of this research

are briefly discussed.

1.1.1 Dry EDM

In EDM process, dielectric fluid plays an important role in order to flush away the
debris from the machining gap. In addition, the dielectric fluid also helps to improve
the efficiency of the machining operation as well as improving the quality of the
machined parts. Commonly used dielectric fluids are mineral oil-based liquid or
hydrocarbon oils which have the tendency to cause fire hazard and environmental
problems such as the production of very toxic and non-recyclable dielectric wastes
and fumes that may cause health hazard to the users (Azhiri et al., 2014; Pandey and
Singh, 2010; Kunieda and Furudate, 2001; Pradeep and Dani, 2015; Dhakar and
Dvivedi, 2016; Zhang et al., 2004; Banu and Ali, 2016).

In order to overcome these problems, researchers have introduced dry EDM
(DEDM) (Hoang and Yang, 2013, 2015; Azhiri et al., 2014; Khatri et al., 2016; Wang
etal., 2012). It is a green machining method where the electrode used is in a pipe form
and gas or air flows through the pipe electrode. The air act as a replacement of liquid
dielectric fluid in which it removes the debris from the gap and cools the machining
surface (Mahendran and Ramasamy, 2010; Fujiki et al., 2011; Besliu et al., 2010; Paul
et al., 2013; Skrabalak and Kozak, 2010). This dry technique can be applied in micro
machining which include dry wire EDM (DWEDM), micro dry EDM (UDEDM), and
micro dry wire EDM (UDWEDM) (Skrabalak and Kozak, 2010; Yu et al., 2005;
Hoang and Yang, 2013, 2015; Azhiri et al., 2014; Wang et al., 2012).

DWEDM is a modified WEDM process where gas dielectric is used instead of

liquid dielectric fluid. The high-pressured flow of gas helps to remove the debris and



