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ABSTRACT

Chatter is intensive self-excited vibration of the individual components of a Machine-
Tool-Fixture-Work (MTFW) system which reduces tool life, accuracy, surface finish
quality and productivity. In turning, it manifests itself as bouncing in and out of the
tool shank from the flexible work-piece. However, it is a complex process and so no
comprehensive theory has yet been developed. Thus, research into the root cause of
chatter, its formation mechanism, mathematical modelling and chatter suppression is
very important to industry and academia. The prevalent theories on chatter are
controversial; often contradicted by experimental evidences. The Regeneration Theory
posits that surface waviness left from a previous cut interferes with the next
machining pass and leads to chatter. In contrast, the Resonance Theory states that
chatter occurs due to resonance when the chip serration frequency coincides with the
natural frequencies of the MTFW system. The current research investigated chip
serration frequency, cutting force, mode shapes and natural frequencies of the tool
shank, and vibration amplitudes during turning of AISI 304 stainless steel under
different combinations of primary cutting parameters with the aim to model the
responses and gain understanding of chatter. The work material, AISI 304 stainless
steel, was turned on an engine lathe using TiN-coated cemented carbide inserts. Small
Central Composite Design (CCD) modelling approach in Response Surface
Methodology (RSM) was used for designed experiments and resulted in quadratic
empirical mathematical models of vibration amplitude and chip serration frequency,
and two-factor interaction (2FI) model for cutting force; which were subsequently
analysed by ANOVA. It was found that, cutting speed (V.) and depth of cut (DOC)
had quadratic perturbation effect in determining the responses. Next, the postulates of
the Resonance Theory of Chatter and energy balance method were used to analytically
explain chatter as the consequence of P (vibration energy) at the resonance of tool
shank’s mode shapes. It was found that chatter occurred when chip serrations
approached even integer multiples of the two dominant resonant frequencies
(transverse and torsional) of the tool shank (f. = 10f,;, 20f,;, 30fy; and f. = 2f.s, 4f;s,
6fns) due to mode coupling; resulting in large peak values of cutting force and chatter.
The empirical models were numerically and graphically optimised and showed that
chatter was more prone to occur for combinations of high cutting speed (near 200
m/min) and large depths of cuts (2 mm or more). Concurrently, an electromagnet-
based online chatter control system was developed which was controlled by a closed-
loop feedback proportional and integral (PI) controller developed in LabVIEW. This
controller detected and minimised chatter amplitude by 46% (on average); treating it
as a disturbance in the turning process. The damping was provided by the uniform
magnetic field produced by the electromagnet which resisted any movement of the
ferromagnetic steel tool shank. This active damper is economical and robust; capable
of handling all conditions of cut of the CCD model. Hence, this research developed an
in-depth understanding of chatter, modelled it using empirical, statistical and
analytical methods which were able to predict stable cutting regions. An economical
and effective online chatter control system was successfully developed.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

A major activity in most manufacturing processes is the removal of materials using
tools to produce parts having required shape, dimensions and accuracy. Such
subtractive manufacturing or removal processes are termed as machining and are
essentially ‘chip or swarf removing’ processes. These processes represent the largest
class of manufacturing activities in the industry. As, metals and their alloys represent
the most common materials which are machined, the term ‘metal cutting’ is often used
instead of machining (Trent & Wright, 2000).

Turning is the most common and basic machining process which has remained
virtually unchanged since early 18" century (Trent & Wright, 2000). It is usually
accomplished using machine tools known as lathes. Like most machining operations,
turning is often plagued by chatter which accelerates tool wear, increases surface
roughness, and reduces process predictability and productivity. Therefore, chatter is of
serious concern in both research and industry.

Machine tool chatter is a type of intense self-excited vibration between the
individual parts of a Machine-Tool-Fixture-Work (MTFW) system. The prevalent
practice in chatter avoidance has been to reduce the cutting speed, which
unfortunately lowers material removal rate and productivity.

Although, chatter has been extensively investigated since its first identification
by Taylor (1907) over a 100 years ago, and several hypotheses and theories have been
developed, the root cause of chatter and its mechanism of formation still remain

controversial (Amin, 1982). This is because the phenomenon of chatter is very



complex and there are many sources of vibration in the MTFW system (Amin &
Patwari, 2011).

Most research works have focused on the basic theories and mechanics of
mechanical vibration or the role of structural dynamics of the machine tool to
understand chatter (Amin & Patwari, 2011). Yet others have viewed chatter from an
analytical approach to the mechanics of machining and assessing machinability
(Oxley & Young, 1989). However, on most occasions, chatter has remained elusive,
inexplicable and unpredictable (Tarng, Young & Lee, 1994).

Among the established theories of chatter, the most widely used one is the
Regenerative Chatter theory (Tobias, 1965). The theory posits that vibration marks on
the work-piece, left from previous cuts in the form of surface waviness, are
responsible for generating chatter in the subsequent cuts (Wiercigroch & Budak,
2001). However, the regenerative theory of chatter fails to explain the incidence of
chatter in helical turning of a ground work-piece having no chatter marks from the
previous pass (Amin & Patwari, 2011). Therefore, a more generalized and effective
theory and model for chatter, especially in metal turning operations, is required.

Amin (1982), and Amin and Patwari (2011) have explained chatter as a
resonance phenomenon which arises in the system when the chip serration frequency
coincides with the prominent natural frequencies (or higher harmonics) of the MTFW
system. They investigated in detail the instability of chip formation in machining and
observed the formation of primary and secondary ‘serration or saw teeth’ on the
resultant chips. This led to the insight that the root cause of chatter in end milling was
a resonance phenomenon (Amin, 1982; Patwari, Amin & Faris, 2010). Building on
this conclusion, turning, which is also a basic metal cutting process, is expected to

have a similar formative mechanism of chatter. Nevertheless, the elastic system of



turning is different from that of a vertical milling machine and the components of the
system have different configurations and natural frequencies. For instance, milling is
an interrupted cutting process whereas turning is a continuous process. In addition,
there is as yet no consensus among the different researchers on the main cause of
chatter in turning and how best to model it. Hence, it is essential to study in detail the
system dynamics and the cutting parameters related to chip formation instabilities and
the interaction of the chip serration frequencies with the system’s natural frequencies.
This would lead to a correct understanding of the mechanism of chatter in turning,
which is the main focus of this research.

Chatter control is another important area in manufacturing industry where its
detrimental effects on process economics and its unpredictability have spurred the
development of many chatter control methods. However, most, if not all, of these
existent chatter control methods are expensive or difficult to implement. Thus, this
research also focuses on the development of a simple, yet robust and economical,

online chatter control method.

1.2 PROBLEM STATEMENT

Although many research works have been conducted on chatter and its modelling, an
extensive literature search seems to indicate the absence of a comprehensive chatter
theory for turning with reliable predictions of the onset of chatter under varying
conditions of cut. Existing theories and hypotheses are mostly contradictory in nature
and sometimes do not agree with experimental observations. The prevalent
Regenerative Theory of Chatter by Tobias (1965) fails to explain chatter during
helical thread cutting or turning of highly polished metals. Other works are purely

experimental in nature, trying to understand the phenomenon of chatter from empirical



observations and devising ways to eliminate it (Amin & Patwari, 2011; Amin, 1982).
Yet others, for instance Patwari (2010), addressed the phenomenon of chatter for end
milling operations only. Thus there are few, if any, contemporary research work
effectively explaining and modelling chatter, especially for turning of stainless steel.
Therefore, it is of paramount importance to develop an effective model of chatter and
to validate it using experimental data for different conditions of cut. The proposed
model of chatter in the current research work is intended to be formulated based on
chip serration, dynamic characteristics of the MTFW system, cutting force, primary
cutting parameters and resultant machining vibrations; all of which have not been
taken into consideration, in a comprehensive manner, in previous research works. The
intended model will be developed based on an in-depth understanding of chatter
formation mechanism derived from experimental observations of the chip serration
process during turning of AISI 304 stainless steel and its interaction with system
dynamics via mode coupling as the primary player in the generation of chatter.

In addition, a viable and effective chatter control strategy in turning of
stainless steel is needed. Most existing chatter damping methods are costly,
complicated or difficult to implement. Yet others are based solely on heuristics, such
as variations in spindle speed or trial and error methods. Thus, coincident with model
development, the current research work intends to develop an online chatter control
strategy and test its ability to reduce vibration amplitude during turning of stainless
steel at different conditions of cut. The technique proposed for such chatter control is
the application of magnetic fields from electromagnet controlled via a closed-loop

computerised control system.



1.3 SIGNIFICANCE AND BENEFITS OF THE RESEARCH

The developed mathematical models of chatter and the online damping technique will
be very useful for metal cutting industries, especially the automotive and structural
member fabrication industries which use steel very widely. The theory will also help
researchers gain a clearer understanding of chatter as well as enable them to
standardize and optimise chatter free steel turning operations for industrial
applications. The model and theory will pave the way for newer avenues of research
in this field. Upon completion, the current research will lead to the following specific
benefits:

1. Better in-depth and quantitative understanding of the mechanics of chatter
formation in turning operations involving AlISI 304 stainless steel.

2. Accurate prediction of the incidence of chatter which can be implemented in
research work or industrial processes involving turning of stainless steel, a
very common and important work material in aerospace, automotive, structural
part or component manufacturing and food processing industries.

3. Development of a novel online chatter control system based on
electromagnetic damping technique.

4. The developed models and implementation of the chatter control system in the
manufacturing industry could lead to the following benefits:

a. Higher dimensional accuracy and improved surface finish of
machined parts.

b. Greater material removal rate and production efficiency.

c. Increased process predictability and reliability which could

facilitate automation.



d. Significantly longer tool life and better machine tool performance
which would lead to better process economics.

e. Avoidance of catastrophic tool or machine tool failure, hence
increase in process safety.

f. Reduction of reworks and wastages.

g. Cancelation of loud high pitched noise associated with chatter
during machining operations.

h. Elimination of the need for using cutting fluid making turning of

stainless steel more environmentally friendly.

1.4 RESEARCH PHILOSOPHY

This research study is designed based on the historical roots of the physical
phenomenon of chatter formation in machine tools. Different hypotheses, employing
both theoretical and empirical approaches, were evaluated in depth based on their
merits and limitations. The philosophical assumption of this research is made based on
the experimental findings of previous and current research on: the discreet nature of
chip formation, vibration spectral analysis and cutting force during turning. Past
research works have used quantitative, qualitative and mixed-method approaches to
explain chatter formation (Patwari, 2010).

The current research employed a positivist philosophical approach to address
the research questions. This philosophy dictates that vital and relevant information is
obtained by adopting a precise, programmed approach when gathering data. This
mode of thinking preaches an objective approach to understanding reality where
emphasis is put on quantitative precision and the collection of relevant factual data in

order to build knowledge and obtain a closer estimation of reality without any





