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ABSTRACT

Metal dusting corrosion is high-temperature degradation of metals and alloys into dust-
like fine particles. It is often encountered in petrochemical industry, where metals and
alloys extensively exposed to carbon-containing gases at high temperature. It is a costly
issue in the industry; millions of dollars have been invested annually in the fields of
monitoring, controlling and prevention of metal dusting corrosion to avoid potential
dangers in the environments. Metal dusting initiates as a result of unwanted carbon
formation on the surface of metallic engineering installations. At high temperature, solid
carbon diffuses into the metal/alloy matrix to form a carburised layer on the surface.
Under certain conditions, this carburised region may become unstable and decompose
into carbon and metal/alloy particles, as well as other corrosion products. Such as metal
particles may further catalyse the carbon deposition and the process are hence
accelerated. Thus, the primary aim of this study is to prevent carbon diffusion into metal
in order to mitigate the metal dusting corrosion by using an electroplating copper
coating on 304L and 316L stainless steels. Therefore, coated and uncoated 304L and
316L samples were exposed to metal dusting environment in a 10% to 50 % CHa/H>
gas mixture, at temperature range of 600 °C to 800 °C, and a pressure of 1 atm, leading
to carbon activities from 0.203 to 3.289 for 100 hours. Optical microscopy (OM) results
revealed that the electroplating copper coating mitigates carbon from diffuse into metal,
so no carburization zone was formed, compared with non-coated samples which
displayed clear carburization were formed for both 304L and 316L stainless steel at
temperatures more than 600 °C and gas mixture 20 % CHa/H and above where carbon
activity approach to 1. Weight gain test showed non-significant weight gain on coated
samples compared to uncoated samples. These values of weight gain increase with
increase the temperature or/and CH4/H, gas mixture. These results were also confirmed
by X-Ray Diffraction (XRD) and scanning electron microscope (SEM) coupled with
energy dispersive x-ray (EDX) which showed no carbides formed on the surfaces of
coated samples. M+C3 carbides were formed on the surface of uncoated samples as a
result of carbon diffusion in the metal and react with elements. In these experiments,
electroplated copper samples showed negligible carbon deposition on the surface and
no carbon diffusion into the metal. Thus, copper electroplating coating is solution to
mitigate metal dusting corrosion
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Metal dusting (MD) can be defined as a high temperature phenomenon leading to the
disintegration of materials, such as iron, nickel, and cobalt-based alloys, into powder
(or dust) as shown in Figure 1.1. The powder is generally composed of metal, metal
carbide, carbon and oxide particles. MD can alternatively be described as a catastrophic
carburisation that occurs in environments with high carbon activities (i.e. more than
unity) and low oxygen partial pressures (Gunawardana et al. (2013); Put et al., 2015;
Slabbert, 2013). Carburisation plays a key role in the metal dusting process and unstable

carbides are apparently a major factor in the reaction (Slabbert, 2012).

Metal Dust

Figure 1.1: Metal dusting corrosion (Chun et al., 2002)

Metal dusting usually occurs at elevated temperatures within the range of 400-

800 °C (Grabke (2003); Young et al., 2011). However, the temperature range has not



been well identified as it has also been reported to be 450-800 °C (Grabke, 1995;
Voisey et al., 2006a) or 450-900 °C (Agarwal et al., 2001). On the contrary, in heat-
treating industry, metal dusting has been reported to have at times occurred in the
temperature range of 900-930 °C (Al-Meshari & Little, 2009). In addition, it is
documented that metal dusting has happened at temperature as high as 1100 °C in
strongly reducing environments (Hrivnak et al., 2005). Theoretically, metal dusting is
possible at any temperature if the carbon activity is greater than one (Grabke, 1998).
Metal dusting is an old problem that is responsible for many early failures in a
wide variety of industrial sectors. It has been encountered in carbon monoxide (CO)
(Mishakov et al., 2013), methane (CH4) and mixture of methane and hydrogen (CHa4/Hz2)
(Grabke et al., 2002; Liu et al., 2016a), ethane (C2Hg) (Grabke, 1999), propane (CsHs)
(Ackermann et al., 2005), and butane (CsHi10) (Mishakov et al., 2013), and other
mixtures of similar gases. Therefore, MD is most commonly encountered in steam
reforming processes such as the production of hydrogen or syngas for ammonia and
methanol applications. At elevated temperatures, CO and hydrocarbons tend to
dissociate on metal surfaces and form carbon. The carbon is then transferred to the solid
phase, draws the susceptible metals out of their homogeneous solid matrix, which leads
to pitting, general attack, and finally to the breakdown of the materials (Grabke &

Schitze, 2014b).

Controlling and mitigate MD corrosion needs to be taken into consideration
since it poses issues to production units. The main method to eliminate the influence of
MD on petrochemical industrial equipment currently is replacing the corroded section,
and detailed monitoring and periodic inspection are required as well. While, these add

large extra costs. For example, the US Department of Energy has reported that annually



220-290 million dollars is spent to replace unit due to metal dusting corrosion in

hydrogen production industry (Ma, 2017)

1.2 PROBLEM STATEMENT

Metal dusting poses a great threat to the petrochemical industries such as steam
reforming processes, production of hydrogen or syngas of ammonia. Metal dusting
causes not only failures or degradation of components but also heavy economic loss.
Extensive research efforts have been devoted to the mitigation of failures. Despite the
efforts, these problems still remain troublesome and likely to continue to pose threat to
the concerned industries. Therefore, there is a strong drive to operate deeper into the
metal dusting region in order to create more energy efficient processes. So, there is a
significant interest in protecting metal parts from metal dusting. The key to suppressing
metal dusting is to stop the dissociation of the carbon source or subsequent carbon
diffusion into the susceptible materials.

There are several methods to protect metal from MD, which have been discussed
in the literature review including modifying the process conditions, surface poisoning,
alloying, chemical, mechanical and laser treatments as well as coatings. Each method
has advantages and disadvantages. Changes of process conditions are not an option due
to the process requirements in most cases and the use of poisonous chemicals is still
limited due to its interference with downstream processes. Newly developed alloys are
sometimes not sufficiently resistant and expensive due to the large quantities involved.
Mechanical and chemical surface treatments are not always applicable, and the lifetime

of coatings is often limited by adhesion problems.



To tackle these challenges, surface coating of the austenitic stainless steel has
been attempted by several researchers using the physical vapour deposition (PVD) and
chemical vapour deposition (CVD) techniques. Despite these efforts, these techniques
are expensive, complicated and difficult to recoating at the site because they operate at
very high temperatures and vacuums also it requires a cooling water system to dissipate
large heat loads. To overcome these previous issues, this research will be investigated
how to use a copper coating on 314L, 316L by Electrodeposition technique against MD

corrosion.

1.3 RESEARCH PHILOSOPHY

Significant efforts have been made on coating of austenitic stainless steel against MD
corrosion. However, coating lifetime still the major problem of coating application.
Moreover, repair/reapply coating on site is difficult and its cost is very expensive. Since
Cu is non catalytic to carbon reaction with a metallic surface (Alstrup et al., 1998;
Bernardo et al., 1985; Zhang et al., 2007), therefore, using copper coating by
electroplating might improve the lifetime of the coating by repair/reapply coating on
the site. Also, this technique is inexpensive and simple to use which may attract the
chemical and petrochemical industries to use this technique to protect the stainless-steel

structures and save them without catastrophic failure.

1.4 OBJECTIVES OF THE RESEARCH

The primary aim of this work is to study the electroplated copper coatings on 304L and
316L stainless steels for mitigation of metal dusting corrosion in CH4/H2 environment.

The objectives are:



