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ABSTRACT 

The demand for energy sources of the world is exponentially increasing, which is in 

turn giving rise to a threatening insufficiency of fossil fuels and gases to be used as 

energy sources. Beyond this traditional and momentary solution to the energy crisis, the 

renewable energy-driven electrostatic generators provide the scope of a long-term 

solution. However, the electrostatic generator (ESG) with renewable energy should 

convert to supply AC for microgrid, but an inversion of the high voltage static DC has 

suffered many problems, such as inferior quality of waveform, stabilization of the input 

voltage, high switching loss due to phase synchronize and power quality as well as high 

unexpected voltage. Furthermore, an electrostatic generator produces high voltage DC 

and low current which is milliamperes (mA). Therefore, to overcome those issues, a 

new zero-crossing based voltage source phase synchronous inverter (PSI) circuit has 

been proposed in the microgrid system, which especially makes the AC waveform, free 

from higher harmonic distortion, low switching loss, and increased efficiency. A zero-

crossing pulse width signal is generated to precisely synchronize with a microgrid line 

frequency that is done by switching and logic networks. A zero-crossing circuit is 

utilized to detect the phase with frequency, to make a zero-crossing signal and 

synchronize the phase angle between inverter and microgrid system. In this study, the 

unique inverter switching parameters are optimized, such as input source voltage of 

10k𝑉𝐷𝐶, the duty cycle of 95%, switching frequency 2kHz and a microgrid load of 

1000Ω, whereas the other parameters are considered. In addition, an LCL lowpass filter 

is used to couple between inverter and microgrid system, to convert square wave to pure 

sinusoidal wave and to reduce the higher harmonic distortion. Both the new proposed 

design and existing design are simulated by MatLab16.a/Simulink, Or CAD Capture 

16.6, Proteus 8 professional and Keysight BenchVue. From this analysis, without the 

filtering condition and with the filtering condition of total harmonic distortion (THD) is 

47.9% to 2.1%, which is approximately a 45% reduction in the higher harmonic 

distortion. The phase analysis showed that the error of an inverter side phase angle and 

microgrid side phase angle are 26.34° and 2.54°, respectively. The theoretical, 

simulated and experimental results have shown that the newly designed inverter has 

performed better in terms of the overall system conversion efficiency of 96.6%, the 

phase angle of 2.54, and THD of about 2.1%. The proposed PSI is appropriate for 

microgrid applications that could contribute to the economic improvement of the 

country and globally as a whole.     
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 خلاصة البحث
ABSTRACT IN ARABIC 

يزداد الطلب على مصادر الطاقة في العالم بشكل كبير ، وهذا بدوره يؤدّي إلى التهديد بعدم كفاية الوقود الأحفوري  
الطبيعي لاستخدامهما كمصادر للطاقة. وبالإضافة إلى الحلول التقليدية والسريعة لأزمة الطاقة، توفر المولدات  والغاز

الكهروستاتيكية التي تعتمد على الطاقة المتجددة حلًا طويل الأجل. ومع ذلك، يجب أن يتم تحويل مولد الطاقة 
ر المتردد من أجل الشبكة الكهربائية الدقيقة، ولكن انعكاس ( مع الطاقة المتجددة لتوفير التياESGالكهروستاتيكية )

عانى الكثير من المشاكل، منها الجودة المتدنية للشكل الموجي ، استقرار الجهد المدخل، ارتفاع فقدان  DCالتيار الثابت 
نتج المولد الإلكتروستاتي التحويل بسبب تزامن المرحلة ونوعية الطاقة وكذلك الجهد العال غير المتوقع. علاوة على ذلك، ي

لذلك، وللتغلب على هذه العقبات ، تم  .(mA) وتياراً منخفضاً بقمية الميللي أمبير DCجهداً عالياً للتيار الثابت 
رة عبور صفرية متزامنة مع مرحلة الجهد الكهربائي لمصدر الجهد في النظام الشبكي الدقيق ، والتي تجعل الشكل ئاقتراح دا

بشكل خاص ، خاليًا من التشوه التوافقي المرتفع، تقلل فقدان التحويل وتزيد الكفاءة. يتم إنشاء إشارة  ACالموجي لـ 
عرض نبضة العبور الصفرية لمزامنتها بدقة مع تردد الخط الشبكي الدقيق الذي ينتج من شبكات التبديل والمنطق. يتم 

، لإنشاء إشارة عبور الصفر ومزامنة زاوية المرحلة بين العاكس استخدام دائرة العبور الصفرية للكشف عن الطور مع التردد
في هذه الدراسة، تم تحسين معلمات التحويل العكسي المثلى، بما فيها جهد مصدر الدخل  والنظام الشبكي الدقيق.

10k𝑉𝐷𝐶 1000كيلو هرتز وحمولة الشبكة الدقيقة   2% ، وتردد التحويل 95، ودورة التشغيلΩالعوامل  ، مع اعتبار
للتزاوج بين العاكس والنظام الشبكي، لتحويل   LCLالأخرى. بالإضافة إلى ذلك ، تمّ استخدام مرشح العبور المنخفض 

تّمت محاكاة كلٍّّ من التصميم المقترح الجديد والتصميم  الموجة المرافقة إلى موجة جيبية خالصة وتقليل التشوه التوافقي المرتفع.
 Proteus 8، و CAD Capture 16.6 ، أو MatLab16.a/Simulinkالحالي باستخدام 

Professional و Keysight BenchVue من هذا التحليل ، ومن دون شرط الترشيح ومع ظروف التصفية .
%  للتشويه 45%، وهي ما يقارب انخفاضاً بمعدل 2.1% و 47.9كانت النتيجة   التشوه التوافقي الكلي (THD)من 

التوافقي المرتفع. أظهر تحليل الطور أن مقدار الخطأ في زاوية الطور الجانبي العكسي و زاوية الطور الجانبي للنظام الشبكي 
لمحاكاة والتجربة أن العاكس المصمم درجة على التوالي. أظهرت النتائج النظرية ونتائج ا 2.54و  26.34الدقيق هما 

درجة  2.54% وزاوية طور بمقدار 96.6حديثاً قد حقق أداءً أفضل من حيث الكفاءة الكلية لتحويل النظام بكفاءة 
المقترح مناسبًا لتطبيقات الشبكة الدقيقة التي يمكن أن تسهم في التحسن  PSI%. يعدّ 2.1من حوالي  THDو 

  ككل.الاقتصادي للبلد والعالم
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1 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Since the global demand for energy is increasing at an exponential rate, the search for 

alternative energy sources other than fossil fuels and gases is the biggest interrogation. 

Currently, the demand for power electricity is met by coal, petroleum, hydroelectric and 

nuclear (Jones, 2017). In a couple of years of 2016-2017, the total energy of the world 

is obtained by 5% from renewable energy such as solar, wind, geothermal and 

hydroelectric, 80% from fossil fuels, 5% from nuclear energy and 10% from biofuels 

(Canada, 2017). Most of the world’s energy is utilized for transportation and machinery 

purposes which cover about 82% of the total energy (Canada, 2017). While only 18% 

of the total energy is used in the form of electricity (Blanton, 2016). Despite the fact 

that fossil fuels and gases offer a short-term solution for this energy crisis, they 

discharge CO2 and other greenhouse gases, which are not environmentally friendly 

(Banks, 2005 and Sakai, 2015). Therefore, the power microgrid system based on the 

renewable energy-driven electrostatic generator can be a long-term solution. It is free, 

available, low cost, high static DC output, easy to handle and environmentally friendly 

(Rahman, 2016). However, a conversion loss is involved with such a system to deliver 

electric energy at the load terminal where the source is an electrostatic generator 

(Rahman et al., 2017a). 

The microgrid power system is highly demandable in the new energy 

management technology. Therefore, the microgrid system is designed for the power 

supply in a small area which alternates the consumption of fossil fuel and reduces the 

environmental pollution (Zakariazadeh et al., 2014). The power supply system is an 



 

2 

important concern due to the high-level of energy transmission ability of the power 

microgrid system. Recently, different inverters based on sophisticated switching 

technique and control topology are studied to ensure the efficient microgrid system 

(Rahman et al., 2018). In the mentioned literature, the author has described various 

optimized power inverter topologies as well as switching control techniques to improve 

the system efficiency by considering the issues of imbalance in the 3φ voltage and 

current. However, this design is based on unbalanced grid-connected AC to DC inverter 

(Luo et al., 2017; Blaabjerg et al., 2006). 

Phase synchronous inverter (PSI) is an electronic power switching circuit that 

can convert input DC to an output AC voltage with the same phase and frequency 

(Gurpinar, 2016). Generally, the inverter can deliver a limited quantity of output power. 

Being the unconventional concern, several losses are found in the inverters while 

delivering power to the load circuit. Apart from power losses in the inverter circuit due 

to the high switching frequency, switching controller also adds some loss in the inverter 

(Gohi et al., 2016; Cao et al., 2017; Yue et al., 2017; Amin, 2017). In fact, an inverter 

is an electronic device that transforms the input DC voltage into AC output voltage. 

Due to this purpose, an electrical inverter mostly draws the DC input power by using a 

renewable energy source like solar panel which runs the electrostatic generator (Xiong 

et al., 2016). Since an electrical power inverter gets DC input voltage (standard solar 

panels which are around 12V to 500V) from renewable energy sources like solar panels 

or battery, then an electrical inverter transforms the DC voltage to AC voltage of 220V, 

240V or 440V with a required frequency of 60Hz or 50Hz. On the other hand, the 

electrostatic generator (ESG) generates high voltage DC from 4kV to 100kV DC but it 

generates less current which is in mA range. However, high voltage DC to AC power 

inverters are widely used for microgrid applications like distribution system. Therefore, 
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ESG-based inverters have applications in microgrid connection of sustainable energy 

systems (Dasgupta et al., 2013; Yoldaş et al., 2017). In the design of these inverters, the 

control methods employed are similar to the methods of conventional inverters. The 

control methods of voltage imbalance and current imbalance are used in practical 

applications.  

To operate DC to AC power inverter, control methods of voltage or current are 

based on pulse width modulation (PWM) technique. The PWM is a widely used 

technique where the size of the gate pulses are controlled through different devices 

(Rahman et al., 2016d). However, the PWM-based inverter is utilized to control the 

inverter output AC voltage of the inverter regardless of the connected load. Whereas, in 

a conventional inverter, the output voltage can be modified by allowing the 

modifications within each load. To this impact of the altering load, the PWM-based 

inverter specifies the output power by modifying the size of the pulses. Hence, the 

output power depends on the switching logic and gate pulses that which are regardless 

of the load coupled to the output terminal. As a result, such a PWM-based inverter 

provides a well-determined and rated output power (Ramasubramanian, 2017). In 

general, inverters are designed based on sinusoidal pulse width modulation (SPWM) 

technique where the control device is utilized as the switch between various circuit 

topologies. This implies that whether the inverter is a linear or nonlinear operation. The 

inverter switching circuit is operated by both the voltage and current control mode. 

Since the control modes are cumbersome, they add further difficulties to operate the 

switches for the desired applications. In the conversion system, linear and nonlinear 

methods are found such as synchronized attractors, collision, confusion limit, and 

branching. However, these conventional techniques have been targeted for systems 
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combined with DC to AC bridge type inverter and DC to AC power factor correction 

inverters (Rahman et al, 2017). 

An extensive number of research works have been studied to outline the 

development of zero-crossing based voltage source pulse width synchronous inverters 

circuit. It has been found that the output power range of microgrid-connected 

conventional inverters is remarkably limited. Therefore, to overcome the challenge of 

building up an interface circuit which can improve the output voltage and current. it 

needs further enhancing the efficiency of the conversion system other than the total 

system. 

 

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE 

Microgrid connected inverter circuit includes the design of the power conversion stages 

as well as the control algorithms. Power conversion stage consists of all the 

semiconductor switches, transformers and filters (Yang et al., 2010). Control algorithms 

involve with a microgrid reference voltage and injected currents, DC link regulated 

voltage and current, and reference microgrid phase angle and frequency (Chen et al., 

2017). In fact, the inverter controller contains multiple stages of inner and outer control 

loops with the commonly used control bandwidth. Controllers with a high bandwidth 

limit the timestep for solving the differential equation of inverter design (Bal et al., 

2016). A main part of the computation in microgrid-connected inverter simulations is 

included in the mathematical model leading the operation of a representative switch. 

In the case of microgrid applications, an electrostatic generator (ESG) driven by 

the renewable energy source requires a high voltage gain through the analysis of steady-

state, transient and dynamic model based on zero-crossing synchronous method. The 

energy to be converted to supply AC power for microgrid but such an inversion of the 
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high voltage static DC suffers many problems such as low power quality of waveform, 

instability between input and output voltage, poor power quality, low power density, 

low life-cycle of equipment, less-conductivities, high switching loss, higher frequency 

harmonic distortion and poor phase angle. Therefore, to overcome those issues, a new 

phase synchronous inverter circuit needs to be proposed for the microgrid system which 

especially generates the output AC power by reducing the harmonic distortion and 

switching loss (Bal et al., 2016; Jang et al., 2016; Chen et al., 2017; Agarwal et al., 

2017). 

Based on the earlier works, it is commonly accepted that the uses and demands 

of electricity would be exponentially growing. Thus, alternative sources of electricity 

are important to fulfilling the demand for future electrical power. To answer the growing 

need for electricity, this research proposes a new work in the field of generating 

electricity from sustainable energy sources by using electrostatic generators. This 

challenging task to generate AC power by using the electrostatic generator driven by a 

renewable energy source mainly focuses on the issues discussed here. It is important to 

note that an ESG can generate high voltage DC whereby most of the electrical 

appliances are run by low voltage DC. Subsequently, inverters cannot be avoided in 

case of using renewable energy source-driven ESG. Again, there are relatively high 

discharge losses in the ESG when it is associated with other components used in the 

inverter. Typically, the output voltage and power generation efficiencies depend on the 

environmental condition. It has high voltage losses in the conversion circuit and 

consequently, it shortens the circuit lifetime. On the other hand, losses can be reduced 

by phase synchronization technique which in turn limits the output power of the 

inverter. Furthermore, it is also necessary to eliminate the influence of the input sources 

of the inverter and improve the system parameters for the synchronization between the 
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inverter and grid through zero-crossing. Therefore, the inverter needs to be designed in 

terms of the method that incorporates the stability of the microgrid system. 

Based on the literature review, the following issues have been focused as the 

major challenges of designing the phase synchronous inverter for microgrid systems: 

1. High switching loss in the existing inverter switching techniques applied for 

microgrid systems. 

2. The power quality efficiency of an inverter becomes poor due to higher 

harmonic frequency distortions presence in both sides of the inverter.  

3. To make perfect phase synchronization between the inverter and microgrid 

system is complex. 

4. Large and bulky size of the filter in the inverter. 

5. Incompatible and high voltage DC output of the electrostatic generator for 

typical devices and appliances. 

6. Due to residual static charge in the electrostatic generator at off condition, 

high DC voltage exists which damages the electronic circuit. 

 

1.3 RESEARCH OBJECTIVES 

This research aims to develop a novel microgrid inverter model for electrostatic 

generator source based on zero crossing phase synchronization technique. A rigorous 

switching logic for the phase synchronous inverter has been intended to be developed. 

The specific objectives of the research are as follows: 

1. To design and development of an electrostatic generator as an energy source for 

the microgrid inverter and optimize the switching circuit parameters of a three-

phase microgrid inverter for attaining higher conversion efficiency. 


