THE TOXICITY STUDY OF AQUILARIA MALACCENSIS (AGARWOOD) LEAVES AQUEOUS EXTRACT ON MALE REPRODUCTIVE SYSTEM IN SPRAGUE DAWLEY RATS

BY

REDZUAN NUL HAKIM BIN ABDUL RAZAK

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in Health Sciences

Kulliyyah of Allied Health Sciences International Islamic University Malaysia

DECEMBER 2019

ABSTRACT

Aquilaria malaccensis (AM) or locally known as 'gaharu' (agarwood) is a species of Aquilaria genus and belongs to the Thymelaeaceae family. It is widely distributed in Malaysia, Indonesia, and the Borneo Islands. Traditionally, its leaves were used to relieve bruises and studies have shown that they function as an antioxidant, aphrodisiac, and tranquilizer. Despite its proven beneficial medicinal properties, information regarding its toxicity is limited. Therefore, this study was conducted to investigate the male reproductive toxicity of AM. Prior to the toxicity study, the quality and antioxidant property of standardized A. malaccensis leaves aqueous extract (AMLAE) was determined by a set of phytochemical screening, High-Performance Liquid Chromatography (HPLC) analysis, heavy metal, microbial contamination and in vitro antioxidant tests. The general toxicity of AMLAE was evaluated based on acute and sub-acute oral administration in Sprague Dawley (SD) rats according to the Organization for Economic Cooperation and Development (OECD) Guideline 420 and 407 respectively. The OECD Guideline 421 was selected to evaluate the male reproductive toxicity analysis which comprised of control group and three AMLAE-treated groups (100, 300 and 500mg/kg) respectively. In total of 63 days of oral administration was carried out prior to the one-to-one mating activity with female. Male necropsy was conducted upon sperm-positive vaginal smear to evaluate the male reproductive parameters. Pregnant female rats were necropsied on day 21 to evaluate the reproductive outcomes via caesarean hysterectomy. The extraction protocol successfully yielded 17.64% powder extract. Phytochemical analyses revealed the presence of saponins, phenolics, tannins, flavonoids and aromatic compounds. No microbial and heavy metal contamination was detected. HPLC analysis of the AMLAE revealed that it contained mangiferin (31.08mg/g) as one of its major constituents. AMLAE indicated strong cupric ion reducing power and potent scavenging activity with 740.83 mmol Trolox equivalent/g and $1.24 \pm 0.27 \mu g/ml$ respectively. The assessment of acute toxicity revealed that AMLAE did not influence mortality, clinical behaviours, body weight gain, or necropsy findings at a dose of 2000mg/kg body weight. In the sub-acute toxicity, both male and female rats had shown abnormalities in the liver and kidney histology at the dose of 2000mg/kg. No significant findings were recorded in male reproductive parameters and reproductive outcomes on pregnant rats except significant elevations in the in vivo antioxidant activity, hormonal concentration, testicular histology, protamination level and protamine 1 gene expression. Data from present results revealed that AMLAE did not exhibit toxicity on male reproductive system and the no observed adverse effect level for male reproductive toxicity was >500mg/kg via oral route.

خلاصة البحث

عود (خشب) أو المعروف محليًا باسم agarwood هو نوع من جنس العود Aquilaria وينتمي إلى عائلة ويتم توزيعه على نطاق واسع في ماليزيا وإندونيسيا وجزر بورنيو. وتقليديا، تم استخدام أور إقها لتخفيف الكدمات وأظهرت الدر إسات أنها تعمل كمضاد للأكسدة، كمنشط جنسي، ومهدئ. وعلى الرغم من الخصائص الطبية المفيدة التي أثبتت جدواها، إلا أن المعلومات المتعلقة بسميتها محدودة. لذلك، أجريت هذه الدراسة للتحقيق في سمية الذكور الإنجابية من أقويلاريا ملاسينسيس. قبل دراسة السمية، تم تحديد جودة ومقاومة مضادات الأكسدة الخاصة بمعيار أقويلاريا ملاسينسيس المستخلص المائي من خلال مجموعة من الفحوصات الكيميائية النباتية وتحليل كروماتوجرافيا السائل عالى الأداء والمعادن الثقيلة والتلوث الميكروبي واختبارات مضادات الأكسدة المختبرية. وتم تقييم السمية العامة لهذا التحليل استنادًا إلى الإعطاء الفموي الحاد وشبه الفرعي في فئران سبراغ داولي وفقًا لمبدأ منظمة التعاون الاقتصادي والتنمية التوجيهي على التوالي. تم اختيار المبدأ التوجيهي 421 لمنظمة التعاون الاقتصادي والتنمية لتقييم تحليل السمية التناسلية للذكور والذي يتكون من مجموعة المراقبة وثلاث مجموعات المعالجة (100 ، 300 و 500 ملغ / كلغ) على التوالي. وتم تنفيذ ما مجموعه 63 يومًا من تناوله عن طريق الفم قبل نشاط التزاوج الفردي مع الإناث. وأجريت عملية التشريح الذكري عند التشويه المهبلي الإيجابي للحيوانات المنوية لتقييم العوامل التناسلية للذكور. وتم استحضار الفئران الأنثى الحامل في اليوم 21 لتقييم النتائج الإنجابية عن طريق استئصال الرحم القيصري. وحقق بروتوكول بنجاح 17.6% من استخراج المسحوق. وكشفت التحليلات الكيميائية النباتية وجود الصابونين والفينول والعفص والفلافونويد والمركبات العطرية. ولم يتم الكشف عن تلوث المعادن الميكروبية والثقيلة. وكشف تحليل ايج.بي.ايل.سي ل أم.لا.ئي أنه يحتوي على مانجيفيرين (31.08mg/g)كأحد مكوناته الرئيسية. وأشارت أم. لا بئي إلى أن أيونات الكبريت القوية تقلل من القدرة ونشاط التنظيف القوي مع مكافئ 740.83 مكافئ ترولوكس/غرام و 1.24±0.27 ميكروغرام/مل على التوالي. وكشف تقييم السمية الحادة أن أم.لا.ئي لم يؤثر على الوفيات، أو السلوكيات السريرية، أو زيادة وزن الجسم، أو نتائج التشريح بجرعة 2000 مغ/كغ من وزن الجسم. في السمية دون الحادة ، أظهر كل من ذكور وإناث الفئران تشوهات في الأنسجة الكبدية والكلي بجرعة 2000 ملغرام/غرام. ولم تسجل أي نتائج ذات دلالة إحصائية في البارامترات التناسلية للذكور والنتائج الإنجابية على الفئران الحوامل باستثناء ارتفاعات كبيرة في نشاط مضادات الأكسدة في الجسم الحي، والتركيز الهرموني والأنسجة الخصية ومستوى البروتامين والتعبير الجيني. وكشفت المعطيات من النتائج الحالية أن أم لا بئي م تظهر سمية على الجهاز التناسلي الذكري ولم يكن مستوى التأثير السلبي الملحوظ للسمية التناسلية للذكور < غرام/500 ملغرام عن طريق الفم.

APPROVAL PAGE

The thesis of Redzuan Nul Hakim bin Abdul Razak has been approved by the

following:

Assoc. Prof. Dr Muhammad Lokman Md Isa Supervisor

> Assoc. Prof. Dr Roszaman Ramli Co-Supervisor

Assoc. Prof. Dr Solachuddin Jauhari Arief Ichwan Internal Examiner

> Assoc. Prof. Dr Mahanem Mat Nor External Examiner

> Assoc. Prof. Dr Mahanem Mat Nor External Examiner

Prof. Dr Suzanah Abdul Rahman Chairman

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Redzuan Nul Hakim bin Abdul Razak

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

THE TOXICITY STUDY OF *AQUILARIA MALACCENSIS* (AGARWOOD) LEAVES AQUEOUS EXTRACT ON MALE REPRODUCTIVE SYSTEM IN SPRAGUE DAWLEY RATS

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2019 Redzuan Nul Hakim bin Abdul Razak and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Redzuan Nul Hakim bin Abdul Razak

Signature

....

Date

ACKNOWLEDGEMENTS

Praises and thanks to The Al-Mighty Allah S.W.T for blessing me with strength to finish the research for my PhD thesis.

Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible to do without the support and guidance that I received from many people.

My deep and sincere gratitude to my supervisor, Assoc. Prof. Dr Muhammad Lokman Md Isa, for his guidance, support and motivating words while enduring the various stages of my research project. I appreciate all his contributions of time, ideas, and funding to make my Ph.D. experience productive and stimulating, even during tough times in the Ph.D. pursuit. Sincere thanks are also extended to Prof. Dr Suzanah Abdul Rahman, Dr Hussin Muhammad, Assoc. Prof. Dr Roszaman Ramli and Dr Asmah Hanim Hamdan for their constructive comments and beneficial input throughout this research project.

I greatly appreciate the support received through the collaborative work undertaken with the Chiang Mai University, Thailand, particularly Prof. Somdet Srichairatanakool in analysing the mangiferin content of plant extract.

I would also like to specifically thank Br. Rasyid, Br. Afiq and Sis. Faridah for have been there to support me during my animal handling and data collection. All of you have been a great companion throughout this research project.

I also owe my most sincere gratitude to all the laboratory staff of Herbal Medicine Research Centre, Institute for Medical Research; Department of Pathology and Laboratory Medicine, Kulliyyah of Medicine and Central Research and Animal Facility of IIUM for their helpful assistance and guidance in conducting the laboratory works in regard to this project.

Also, sincere thanks to the Ministry of Education (MOE) Malaysia and Kulliyyah of Nursing, International Islamic University Malaysia for their continuous financial support.

I would also like to say a heartfelt thank you to Nor Juhaida who has been by my side throughout this PhD, living every single minute of it. Thanks for being a good mother of our two kids, Nawal Uzma and Raef Arfan. To my late mother, father and my family, who granted me the gift of their unwavering belief in my ability to accomplish this goal. Millions of thank for their untold commitment, continuous support and understanding throughout my PhD journey.

Finally, I would like to thank other individuals who have helped and contributed directly or indirectly in succeeding this research project.

TABLE OF CONTENTS

Abstract	ii
خلاصة البحث	iii
Approval Page	iv
Declaration	V
Acknowledgements	vii
Table of Contents	viii
List of Tables	xiv
List of Figures	xvii
List of Abbreviations	xxvi
List of Symbols	xxix
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	5
1.3 Significance of the Study	8
1.4 General Research Objectives	9
1.5 Research Hypothesis	9
1.6 Scope of the Study	9
CHAPTER TWO: LITERATURE REVIEW	11
2.1 Herbal Medicine	11
2.1.1 The Adverse Effects of Herbal Medicines	20
2.1.2 Status of Herbal Medicinal Practice in Malaysia	27
2.2 Aquilaria malaccensis	33
2.2.1 Botanical Aspects of AM	35
2.2.2 Distribution of AM	38
2.2.3 Local Ethnomedicinal Use of AM	39
2.2.4 Pharmacological Activities of AM	40
2.2.5 Phytochemical Constituents of AM	40
2.2.6 Toxicity Study of Aquilaria Species	41
2.2.7 Religious and Ethnomedicinal Importance of Aquilaria Tree	42
2.3 Extraction of Herbal Plants	44
2.4 Contamination of Herbal Preparation	48
2.4.1 Heavy Metal	50
2.4.2 Microbial	54
2.5 Phytochemical Variations in Natural Product	58
2.5.1 Potential Bioactive Compound of AM: Mangiferin	60
2.6 Concept of Oxidative Stress	63
2.7 General Toxicity Assessment of Natural Product	67
2.7.1 Role of Animal Model in Toxicity Evaluation	68
2.7.2 Acute Toxicity Testing	70
2.7.3 Sub-acute Toxicity Testing	71
2.8 Male Reproductive Toxicity	72
2.8.1 The Guideline of <i>in vivo</i> Male Reproductive Toxicity	, _
Evaluation	75

EXTRACT	130
CHAPTER FOUR: QUALITY AND EFFICACY ANALYSIS OF	<u>?</u>
5.1 + Suustion / murysis	12)
3 14 Statistical Analysis	129
3 13 Sample Size Calculation	120
3.12.2 Homotovulin and Eccin Staining	120
2.12.2 Tissue Processing	124
3.12 Histological Slide Preparation	124
3.11 Urgan Fixation	124
3.10 Absolute and Relative Organ Weight	124
3.9 Organ Harvesting	123
3.8 Animal Necropsy	123
3.7.3 Food Intake and Water Consumption	123
3.7.2 Body Weight and Body Weight Gain	122
3.7.1 Clinical Observations	122
3.7 General Health Status	122
3.6 Animal Husbandry	121
3.5 Preparation of the Extract	121
3.4 Extraction of the Plant	120
3.3 Plant Material	120
3.2 Overview of the Research Design	117
3.1.3 Chemicals and Reagents	116
3.1.2 Instruments and Apparatus	115
3.1.1 Consumable Items	114
3.1 Materials	114
CHAPTER THREE: MATERIALS AND METHODOLOGY	114
$\gamma t \cup \chi j$	112
aPCR)	.1-
2.0.7 Gene Expression During Spermalogenesis in Kai and Human.	110 T_
2.8.0.2 Sperm DINA Integrity 1est	110
2.8.6.1 Protamine	103
2.8.6 Sperm Chromatin	101
2.8.5 Role of Sperm Analysis in Determining Male Fertility	97
2.8.4 The Use of Testicular Histology in Analysing Male Fertility	96
2.8.3.4 Hormonal Regulation in the Spermatogenesis	92
2.8.3.3 General Spermatogenesis Process	87
2.8.3.2 Epididymis of Rat and Human	85
2.8.3.1 Testis of Rat and Human	82
2.8.3 Male Reproductive System in Human	81
2.8.2 Rat as an Animal Model in Reproductive Toxicity Evaluation	79

4.1 Introduction	
4.1.1 Specific Objectives	133
4.1.2 Hypothesis	133
4.2 Methodology	
4.2.1 Phytochemical Screening of Extract	136
4.2.1.1 Frothing Test for Saponins	136
4.2.1.2 Mayer's Test for Alkaloids	136

4.2.1.3 Alkaline Reagent Test for Flavonoids	137
4.2.1.4 Borntrager's Test for Anthraquinone Derivatives	137
4.2.1.5 Borntrager's Test for Anthraquinone Glycosides	137
4.2.1.6 Lead Acetate Test for Phenolics	138
4.2.1.7 Gelatine Test for Phenolics	138
4.2.1.8 Ferric Chloride Test for Tannins	138
4.2.1.9 Salkowski Test for Terpenoids	138
4.2.1.10 Liebermann-Burchard Test for Sterol and/or Triterpend	oids
	139
4.2.1.11 Organoleptic Test for Volatile Oils	139
4.2.2 HPLC Analysis	139
4.2.2.1 Chromatographic Conditions	139
4.2.2.2 Preparation of Standard Solution	140
4.2.2.3 Preparation of Sample Solutions	140
4.2.3 Heavy Metal Test	140
4.2.3.1 Sample Preparation	140
4.2.3.2 Elemental Analysis	140
4.2.4 Microbial and Fungal Limit Test	141
4.2.4.1 Sample Preparation	141
4.2.4.2 Total, Aerobic or Standard Plate Counts of S. aureus and	1 P.
aeruginosa	141
4.2.4.3 E. coli of Coliform	141
4.2.4.4 Yeast and Mould	142
4.2.5 in vitro Antioxidant Test	142
4.2.5.1 Total Phenolic Content (TPC)	142
4.2.5.2 Total Flavonoid Content (TFC)	143
4.2.5.3 Cupric Ion Reducing Antioxidant Capacity (CUPRAC).	143
4.2.5.4 DPPH Radical Scavenging Activity	144
4.3 Result	145
4.3.1 Extraction Yield	145
4.3.2 Phytochemical Screening	146
4.3.3 HPLC Finding	149
4.3.4 Heavy Metal Test	151
4.3.5 Microbial and Fungal Limit Test	151
4.3.6 <i>in vitro</i> Antioxidant Test	153
4.4 Discussion	155
4.5 Conclusion and Recommendation	172
CHADTED FIVE. CENEDAL TOYICITY STUDY OF FYTDACT	172
5.1 Introduction	173
5.1.1 Specific Objectives	175
5.1.1 Specific Objectives	175
5.2 Methodology	176
5.2.1 A cute Toxicity Study	177
5.2.1 A unit allocation	177
5.2.1.1 Annual Anocaton	177
5.2.1.2 Study Design	181
5.2.1.4 Oral Administration of the Extract	181
5.2.1.1 General Health Status	181
5.2.1.5 Seneral Health Status	101

5.2.1.6 Histological Analysis	181
5.2.2 Sub-acute Toxicity Study	182
5.2.2.1 Animal Allocation	182
5.2.2.2 Study Design	182
5.2.2.3 Preparation of the Extract	183
5.2.2.4 Oral Administration of the Extract	183
5.2.2.5 General Health Status	183
5.2.2.6 Biochemical Analysis of Blood	184
5.2.2.7 Histological Analysis	184
5.3 Result	185
5.3.1 Acute Toxicity Study	185
5.3.1.1 Mortality and Clinical Observation	185
5.3.1.2 Body Weight Pattern	185
5.3.1.3 Food and Water Intake	185
5.3.1.4 Organ Weight	185
5.3.1.5 Histological Analysis	186
5.3.2 Sub-acute Toxicity Study	188
5.3.2.1 Mortality and Clinical Observation	188
5.3.2.2 Food and Water Intake	188
5.3.2.3 Body Weight Pattern	190
5.3.2.4 Organ Weight	193
5.3.2.5 Biochemical Analysis of Blood	195
5.3.2.6 Histological Analysis	197
5.4 Discussion	207
5.5 Conclusion and Recommendation	213
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction	214 214 216
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis	214 214 216 216
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 216 217
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 216 217 217
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation	214 214 216 216 217 217 219
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology. 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract.	214 214 216 216 217 217 219 219 219
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 216 217 217 219 219 219
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract	214 214 216 216 217 217 219 219 219 220
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract. 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure	214 214 216 216 217 217 219 219 219 220 220
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 216 217 217 219 219 219 219 220 220 221
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 217 217 219 219 219 219 220 220 221 221
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure 6.2.4.1 Vaginal Smear Technique 6.2.5 Preparation of Epididymal Suspension 6.2.6 Description of Epididymal Suspension	214 214 216 216 217 217 219 219 219 220 220 221 221 222
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure 6.2.4.1 Vaginal Smear Technique 6.2.4.2 Oestrous Cycle Determination 6.2.6 Preparation of Testicular Suspension 6.2.7 Oral Mathematical Suspension 6.2.6 Preparation of Testicular Suspension	214 214 216 216 217 217 219 219 219 219 220 220 221 221 222 222
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure 6.2.4.1 Vaginal Smear Technique 6.2.4.2 Oestrous Cycle Determination 6.2.5 Preparation of Epididymal Suspension 6.2.6 Preparation of Testicular Suspension 6.2.7 General Health Status 6.2.8 Snerr Ouslity Anglusic	214 214 216 217 217 217 219 219 219 220 220 221 221 222 222 222 223
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure 6.2.4.1 Vaginal Smear Technique 6.2.5 Preparation of Epididymal Suspension 6.2.6 Preparation of Testicular Suspension 6.2.7 General Health Status 6.2.8 Sperm Quality Analysis	214 214 216 216 217 217 219 219 219 220 220 220 221 222 222 223 223 223
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 217 217 217 219 219 219 219 220 220 221 222 222 223 223 223 223 223
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 217 217 217 219 219 219 219 220 220 220 221 221 222 223 223 223 225
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 217 217 219 219 219 219 220 220 220 221 222 222 223 223 225 227
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY	214 214 216 217 217 217 219 219 219 219 219 220 220 221 222 222 223 223 223 225 227 228
CHAPTER SIX: MALE REPRODUCTIVE TOXICITY 6.1 Introduction 6.1.1 Specific Objectives 6.1.2 Hypothesis 6.2 Methodology 6.2.1 Study Design 6.2.1 Study Design 6.2.2 Animal Allocation 6.2.3 Preparation of the Extract 6.2.3 Preparation of the Extract 6.2.3.1 Selection of Doses 6.2.3.2 Oral Administration of the Extract 6.2.4 Mating Procedure 6.2.4.1 Vaginal Smear Technique 6.2.4.2 Oestrous Cycle Determination 6.2.5 Preparation of Epididymal Suspension 6.2.6 Preparation of Testicular Suspension 6.2.7 General Health Status 6.2.8 Sperm Quality Analysis 6.2.8.1 Testicular Spermatid Count. 6.2.8.2 Epididymal Sperm Concentration 6.2.8.3 Sperm Motility 6.2.8.4 Sperm Viability 6.2.8.5 Sperm Morphology 6.2.8.5 Sperm Morphology 6.2.8 of myine Antioxident Analysis	214 214 216 217 217 217 219 219 219 219 220 220 220 221 222 222 223 223 223 225 227 228 228 228

6.2.9.1 Ferric Reducing Antioxidant Power (FRAP) Assay	. 229
6.2.9.2 Thiobarbituric Acid Reactive Substances (TBARS)	. 231
6.2.10 Hormonal Assay	. 233
6.2.10.1 Testosterone	. 233
6.2.10.2 Luteinizing Hormone (LH)	. 234
6.2.10.3 Follicular Stimulating Hormone (FSH)	. 236
6.2.11 Testicular Histology	. 238
6.2.11.1 Testicular Histological Examination	. 238
6.2.11.2 Testicular Histomorphometry	. 239
6.2.12 Chromomycin A ₃	. 241
6.2.13 Quantitative Polymerase Chain Reaction (qPCR)	. 242
6.2.13.1 Ribonucleic Acid (RNA) Extraction	. 242
6.2.13.2 First Strand Complementary Deoxyribonucleic Acid	
(cDNA)	. 243
6.2.13.3 Primer Design	. 244
6.2.13.4 Gene Expression Identification Using the Real-Time	
Quantitative Polymerase Chain Reaction (RT-qPCR)	. 247
6.2.14 Male Reproductive Performance	. 249
6.3 Result	. 255
6.3.1 Clinical Observation	. 255
6.3.2 Food and Water Intake	. 255
6.3.3 Body Weight and Body Weight Change	. 257
6.3.4 Reproductive Organs Weight	. 258
6.3.5 Sperm Quality Analysis	. 262
6.3.5.1 Testicular Spermatid Parameters	. 262
6.3.5.2 Epididymal Sperm Concentration	. 264
6.3.5.3 Sperm Motility	. 266
6.3.5.4 Sperm Viability	. 268
6.3.5.5 Sperm Morphology	. 269
6.3.6 in vivo Antioxidant Analysis	. 271
6.3.7 Hormonal Assay	. 273
6.3.8 Testis Histology	. 275
6.3.8.1 Semiquantitative Analysis	. 275
6.3.8.2 Histomorphometric Analysis	. 278
6.3.9 CMA ₃	. 279
6.3.10 Gene Expression	. 281
6.3.10.1 Prm1 Expression	. 281
6.3.11 Male Reproductive Performance	. 282
6.3.11.1 Pregnancy-based Parameters	. 282
6.3.11.2 Foetal-based Reproductive Parameters	. 284
6.4 Discussion	. 286
6.5 Conclusion and Recommendation	. 306
CHAPTER SEVEN: DISCUSSION AND CONCLUSION	. 307
7.1 Discussion	. 307
7.2 Recommendation	. 312
7.3 Conclusion	. 315
REFERENCES	. 316

APPENDIX A: Specimen voucher	372
APPENDIX B: Dose calculation	374
APPENDIX C: Preparation of reagents	375
APPENDIX D: Standard curves of analysis	377
APPENDIX E: Data collection sheet	385
APPENDIX F: List of publications and presentations	392
APPENDIX G: Abstract of publications	393

LIST OF TABLES

<u>Table No.</u>		Page No.
Table 2.1	Traditional use of various plants by the indigenous Malays in Pahang. Adopted from Nordin and Zakaria (2016).	12
Table 2.2	History of herbal medicine including other natural product sources. Adapted from Sarker and Nahar (2012).	15
Table 2.3	Regulation of herbal-based drug in selected countries as reported in Sahoo, Manchikanti and Dey (2010).	22
Table 2.4	Examples of reported herb-drug interactions. Adapted from Izzo, Hoon-Kim, Radhakrishnan and Williamson (2016).	25
Table 2.5	Some of Malaysian medicinal plants which are used as source of clinically useful drugs. Adopted from Jamal (2006), based on the data from Farnsworth and Soejarto (1992) and Burkill (1935).	28
Table 2.6	Scientific classification of AM.	33
Table 2.7	Native distribution of Aquilaria species in South Asia, South East Asian region and China. AM is a highly populated species in this region.	38
Table 2.8	Commonly-used organic solvents listed in the list of hazardous air pollutants by the United States Environmental Protection Agency (US EPA) in 2002. Adapted from Kislik (2012).	45
Table 2.9	Possible toxic contaminants found in herbal products. Adopted from Gil, Hernández and Martín-Domingo (2016).	49
Table 2.10	Several national and regional limits of toxic metals in herbal products. Adapted and modified from WHO (2012) and Tripathy, Basak, Varghese and Saha (2015).	53
Table 2.11	Example of the level of microbial limit for herbal products based on different regulatory bodies. Adapted and modified from Dal et al. (2016) and Liu, Chuang, Lam, Jiang and Cheng (2015).	56
Table 2.12	Advantages and disadvantages of common species used in general toxicology studies. Adapted from Denny and Stewart	69

(2013) and Sipes, Padilla and Knudsen (2011).

Table 2.13	List of potential toxicants that act on specific target sites in male reproductive system. Adapted from Woldemeskel (2017).	73
Table 2.14	List of plants with possible target site of toxic action. Adapted from D'Cruz, Vaithinathan, Jubendradass and Mathur (2010).	74
Table 2.15	Several OECD guidelines on reproductive toxicity study. Adapted from Estevan, Pamies, Vilanova and Sogorb (2017).	77
Table 2.16	The possible effects of testosterone on the Sertoli cells and developing male germ cells (O'Donnell, Meachem, Stanton, & McLachlan, 2006).	95
Table 2.17	The possible effects of FSH on the Sertoli cells and developing male germ cells (O'Donnell et al., 2006).	95
Table 2.18	Reference values for semen analysis of human (World Health Organization, 2010).	97
Table 3.1	List of consumable items.	114
Table 3.2	List of instruments and apparatus.	115
Table 3.3	List of chemicals and reagents.	116
Table 4.1	Detailed phytochemical observations of AMLAE.	146
Table 4.2	Total content of phenolic and flavonoid compounds, copper ions reducing and free radicals scavenging ability of AMLAE.	153
Table 5.1	Animal allocation for the sighting study of acute toxicity study.	177
Table 5.2	Animal allocation for the main study of acute toxicity study.	177
Table 5.3	Animal allocation for sub-acute toxicity study.	182
Table 5.4	The vital general health parameters of rats in control and administered with AMLAE for 28 days.	192
Table 5.5	The relative organ weight of rats in control and administered with AMLAE for 28 days.	194
Table 5.6	The kidney and liver clinical biochemistry of rats in control and administered with AMLAE for 28 days.	196
Table 5.7	The histological parameters of rats in control and administered with AMLAE for 28 days.	206
Table 6.1	Animal allocation for male reproductive organ toxicity of	219

AMLAE.

Table 6.2	The criteria for the evaluation of oestrous cycle stages (Yener, Tunc, Aslan, Aytan, & Caliskan, 2007).	222
Table 6.3	WHO criteria for assessing sperm motility grades.	227
Table 6.4	Preparation of iron (II) standard curve at different concentrations for FRAP analysis.	230
Table 6.5	Preparation of MDA standard curve at different concentrations for TBARS analysis.	232
Table 6.6	Preparation of LH standard curve at different concentrations for LH analysis of samples.	235
Table 6.7	Preparation of FSH standard curve at different concentrations for FSH analysis of samples.	237
Table 6.8	Criteria for scoring of seminiferous tubules based on Johnsen testicular score.	238
Table 6.9	Master mix reaction setup for cDNA synthesis.	244
Table 6.10	Reaction protocol for cDNA synthesis.	244
Table 6.11	Criteria for designing primers.	244
Table 6.12	Sequences of primers used for RT-qPCR amplification.	245
Table 6.13	Mixture setup for 10µl reaction.	247
Table 6.14	2-step PCR thermal cycling protocol.	247
Table 6.15	Parameters for evaluation of male reproductive performance and foetal status.	251
Table 6.16	Pregnancy outcomes of females mated with AMLAE treated groups and other control groups.	283
Table 6.17	Foetal parameters for the reproductive performance of AMLAE treated and control groups' male rats after mating with an untreated female on a one-to-one basis.	285

LIST OF FIGURES

Figure No.		Page No.
Figure 1.1	Problems and issues related to AMLAE.	7
Figure 1.2	Scope of the research activities in male reproductive toxicity study.	10
Figure 2.1	The cumulative percentage of FDA-approved natural product new molecular entities, separated by environmental source (Patridge, Gareiss, Kinch, & Hoyer, 2016).	16
Figure 2.2	AM tree that grows at the Forest Research Institute Malaysia (FRIM) Research Station Maran, Pahang.	36
Figure 2.3	AM leaves.	37
Figure 2.4	Chemical structure of mangiferin.	61
Figure 2.5	Sources of reactive oxygen species and antioxidant that can either be endogenous or exogenous. It is important to have an equilibrium between reactive oxygen species and antioxidant for a proper physiological function of reactive oxygen species.	64
Figure 2.6	Illustration of a cross-section of testis indicating the basement membrane residing between the interstitial layer and seminiferous epithelium. The interstitial layer comprises of blood vessels, Leydig cells and myoid cells, while the seminiferous epithelium is dominated by the Sertoli cells and maturing germ cells. The image was adapted from Mäkelä and Toppari (2017).	83
Figure 2.7	The cross-section of a testis and the epididymis, clearly showing the caput, corpus and cauda as the major regions of the epididymis (Marchiani et al., 2017).	85
Figure 2.8	Schematic diagram showing the overall process of spermatogenesis.	88
Figure 2.9	Schematic diagram showing the specific events that take place from spermatogonial multiplication to spermatocyte formation in the rodent. One A_{single} spermatogonium is able to produce 16 spermatocytes.	90
Figure 2.10	Schematic diagram showing an overview of the endocrine regulation with its negative feedback loop controlling system.	93

Figure 2.11	Variations in the protamine 2 percentage across different mammalian species as documented in Corzett, Mazrimas and Balhorn (2002).	105
Figure 3.1	Overall research activities.	119
Figure 3.2	Steps for tissue processing in an automated tissue processor.	125
Figure 3.3	Hematoxylin and eosin staining protocol.	128
Figure 4.1	The parameters that have been evaluated for quality and efficacy of AMLAE.	135
Figure 4.2	Brown powder of AMLAE after being lyophilized in a freeze dryer.	145
Figure 4.3	HPLC chromatograms of (A) mangiferin standard and (B) AMLAE marker compound, mangiferin. The flow rate was 1ml/min, and injection volume for the sample and standard was 10µl. The peaks were detected at 254nm.	150
Figure 4.4	Total plate count test of AMLAE showing no microbial growth on $3M^{TM}$ Petrifilm TM Aerobic Count plates in all diluted samples after 48 hours of incubation. The results were negative for <i>S. aureus</i> and <i>P. aeruginosa</i> . a: undiluted, b: 10^3 dilution, c: 10^4 dilution, d: 10^5 dilution.	151
Figure 4.5	Coliform test on AMLAE showing no <i>E. coli</i> growth after 48 hours of incubation.	152
Figure 4.6	Yeasts and mould test on AMLAE showing no growth after (a) day 2 and (b) day 5 of incubation.	152
Figure 4.7	DPPH scavenging activity of AMLAE and ascorbic acid.	154
Figure 5.1	The parameters involved in the analysis of general toxicity of AMLAE.	176
Figure 5.2	The design of sighting study to determine the starting dose for the main study.	179
Figure 5.3	The study design for the main study of acute toxicity.	180
Figure 5.4	(A) Photomicrograph of kidney section from an acute dose of AMLAE 2000mg/kg demonstrating normal and intact glomerulus and tubular epithelial cells (H&E stain, \times 40). (B) Photomicrograph of liver sections from an acute dose of AMLAE 2000mg/kg showing portal tract which contains central vein and bile duct (H&E stain, \times 10). B: Bowman's space, BC: Bowman's capsule, EC: Tubular epithelial cell, G:	187

Glomerulus, P: Portal tract, S: Sinusoid, V: Hepatic venule

- Figure 5.5 Line graph showing the effect of AMLAE on the food intake of 188 the female rats. The food consumption was measured weekly for 4 weeks. The graph was plotted based on the mean±SD. n = 6.
- Figure 5.6 Line graph showing the effect of AMLAE on the food intake of 189 the male rats. The food consumption was measured weekly for 4 weeks. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 5.7 Line graph showing the effect of AMLAE on the water intake 189 of the female rats. The water intake was measured weekly for 4 weeks. The graph was plotted based on the mean±SD. n = 6.
- Figure 5.8 Line graph showing the effect of AMLAE on the water intake 190 of the male rats. The water intake was measured weekly for 4 weeks. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 5.9 Line graph showing the effect of AMLAE on the body weight 191 pattern of the female rats during 28-day AMLAE administration. The body weight was measured daily and averaged per week. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 5.10 Line graph showing the effect of AMLAE on the body weight 191 pattern of the male rats during 28-day AMLAE administration. The body weight was measured daily and averaged per week. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 5.11 Photomicrograph of kidney section of a control rat in the 198 subacute toxicity study of AMLAE necropsied at the end of study period showing normal morphology of glomerulus, tubular epithelial cells and Bowman's space (H&E stain, ×20).
 B: Bowman's space, G: Glomerulus, PCT: Proximal convoluted tubule.
- Figure 5.12 Photomicrograph of kidney section of a rat AMLAE20 in the 199 subacute toxicity study of AMLAE necropsied at the end of the study period showing no abnormality (H&E stain, ×40). B: Bowman's space, G: Glomerulus, EC: Tubular epithelial cell.
- Figure 5.13 Photomicrograph of kidney section of a rat AMLAE200 in the subacute toxicity study of AMLAE necropsied at the end of the study period showing intact cellular arrangements and histology (H&E stain, ×40). B: Bowman's space, BC: Bowman's capsule, G: Glomerulus, EC: Tubular epithelial cell.
- Figure 5.14 Photomicrograph of kidney section of a rat AMLAE2000 in the 201 subacute toxicity study of AMLAE necropsied at the end of

study period showing cytoplasmic vacuolation and appearance of pyknotic nuclei (H&E stain, ×40). CV: Cytoplasmic vacuolation, PN: Pyknotic nuclei.

- Figure 5.15 Photomicrograph of a liver section of a control rat in the 202 subacute toxicity study of AMLAE necropsied at the end of the study period exhibiting normal hepatocytes and sinusoids (H&E stain, ×20). H: Hepatocyte, P: Portal tract, S: Sinusoid.
- Figure 5.16 Photomicrograph of a liver section of a rat AMLAE20 in the 203 subacute toxicity of AMLAE necropsied at the end of the study period showing no notable abnormality (H&E stain, ×15). P: Portal tract, V: Hepatic venule.
- Figure 5.17 Photomicrograph of a liver section of a rat AMLAE200 in the subacute toxicity study of AMLAE necropsied at the end of the study period showing intact cellular arrangements and histology (H&E stain, ×10). H: Hepatocyte, P: Portal tract, S: Sinusoid, V: Hepatic venule.
- Figure 5.18 Photomicrograph of a liver section of a rat AMLAE2000 in the 205 subacute toxicity study of AMLAE necropsied at the end of the study period showing lymphocytic infiltration and vascular congestion (H&E stain, ×40). C: Vascular congestion, L: Lymphocytic infiltration.
- Figure 6.1 The design of study for the evaluation of epididymis and testis 218 toxicity of AMLAE.
- Figure 6.2 Schematic diagram of the one to one basis mating procedure for 221 assessing the male reproductive performance and foetal parameters after the administration of AMLAE or distilled water for 63 days in male rats.
- Figure 6.3 a) Schematic diagram of a haemocytometer and its counting 226 area. b) Grid selection for counting of sperm. Only sperm located in the red squares were counted. c) The sperm located on the red borderline were considered as belonging to that particular square.
- Figure 6.4 Photomicrograph of seminiferous tubule indicating the 240 measurement for tubular diameter and germinal epithelium height (H&E stain, ×30). A: Diameter of the tubule, B: Germinal epithelial height.
- Figure 6.5 Photograph of the gravid uterus exposed from the peritoneal 252 cavity of a pregnant female rat.
- Figure 6.6 Photograph of the normal gravid uterus bearing live foetuses. 253 The gravid uterus was removed from the abdominal cavity and

weighed. R: Right uterine horn L: Left uterine horn A: Cervix.

- Figure 6.7 Photograph of rat foetuses and their placentas numbered 254 according to their position in the uterine horn.
- Figure 6.8 Effect of AMLAE on the food intake of rats. The food 256 consumption was measured weekly and recorded in the percentage. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 6.9 Effect of AMLAE on the water intake of rats. The water 256 consumption was measured weekly and recorded in the percentage. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 6.10 Body weight gain of rats administered with different 257 concentrations of AMLAE for 63 days. The body weight gain represents the total weight changes of rats from day one until day 63. Statistical analysis was performed using the One-way ANOVA with the post-hoc LSD test. Data are presented as mean±SD. *p<0.05 in comparison to control.
- Figure 6.11 Effect of AMLAE on the body weight pattern of rats. The body 258 weight was measured daily and averaged per week. The graph was plotted based on the mean \pm SD. n = 6.
- Figure 6.12 Absolute testes weight of rats administered with different 259 concentrations of AMLAE for 63 days. The testes were harvested during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.13 Relative testes weight of rats administered with different 268 concentrations of AMLAE for 63 days. The testes were harvested during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.14 Epididymis absolute weight of rats administered with different 260 concentrations of AMLAE for 63 days. The epididymis was harvested during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.15 Relative epididymal weight of rats administered with different 260 concentrations of AMLAE for 63 days. The epididymis was harvested during necropsy following positive insemination of

female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.

- Figure 6.16 Absolute seminal vesicle weight of rats administered with 261 different concentrations of AMLAE for 63 days. The seminal vesicle was harvested during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.17 Relative seminal vesicle weight of rats administered with 261 different concentrations of AMLAE for 63 days. The seminal vesicle was harvested during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.18 Average spermatid count of rats administered with different 262 concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.19 Average daily spermatid production of rats administered with 263 different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.20 Average efficiency in daily spermatid production of rats 263 administered with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.21 Average epididymal sperm concentration of rats administered 264 with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.22 Average epididymal sperm density of rats administered with 265 different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.23 Average rate of epididymal sperm transit of rats administered 265

with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.

- Figure 6.24 Average percentage of total motility of epididymal sperm in 266 rats administered with varying concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.25 Average percentage of progressively motile sperm in 267 epididymal sperm suspension of rats administered with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.26 Average percentage of viable sperm in epididymal sperm 268 suspension of rats administered with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the Kruskal Wallis test. No significant difference was recorded. Data are presented as median (interquartile range).
- Figure 6.27 Average percentage of abnormal sperms in rats administered 269 with different concentrations of AMLAE for 63 days. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.28 Photomicrograph of normal sperm with intact structures 270 including head, neck and tail (H&E stain, magnification ×40).
- Figure 6.29 Photomicrograph of sperm with morphological abnormalities. 270 (a) sperm with amorphous head, (b) sperm with folded tail, (c) sperm with banana-shaped head, (d) headless sperm (H&E stain, magnification ×40).
- Figure 6.30 Fe²⁺ equivalent antioxidant capacity of blood serum in control 271 and AMLAE-treated groups. The blood serum was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.31 Fe²⁺ equivalent antioxidant capacity of testicular tissue in 272 control and AMLAE-treated groups. The blood serum was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA with the post-hoc

Dunnett's test. Data are presented as mean \pm SD. *p<0.05 in comparison to control.

- Figure 6.32 Level of thiobarbituric acid in the blood serum of control and AMLAE-treated groups. The blood serum was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA with the post-hoc LSD test. Data are presented as mean±SD. *p<0.05 in comparison to control.
- Figure 6.33 Level of thiobarbituric acid in testicular tissue of control and 273 AMLAE-treated groups. The testicular tissue was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.34 Level of testosterone in blood serum of control and AMLAE- 274 treated groups. The blood serum of male rats was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA. No significant difference was recorded. Data are presented as mean±SD.
- Figure 6.35 Level of LH in blood serum of control and AMLAE-treated 274 groups. The blood serum of male rats was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA with the post-hoc LSD test. Data are presented as mean±SD. *p<0.05 in comparison to control.
- Figure 6.36 Level of FSH in blood serum of control and AMLAE-treated 275 groups. The blood serum of male rats was collected during necropsy following positive insemination of female rats or 1-week mating period. Statistical analysis was performed using the One-way ANOVA with the post-hoc Dunnett's test. Data are presented as mean±SD. *p<0.05 in comparison to control.
- Figure 6.37 Semiquantitative analysis of seminiferous tubules of testis 276 using Johnsen's criteria ranging from the poorest (1) to normal (10) condition of control and AMLAE-treated groups. Statistical analysis was performed using the One-way ANOVA with the post-hoc LSD test. Data are presented as mean±SD. *p<0.05 in comparison to control.
- Figure 6.38 Photomicrographs of testicular sections representing (a) control 277 and (b) AMLAE-treated group indicating normal features and morphology of seminiferous tubules with developing germ cells as outlined by the red box (H&E stain, ×10).