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ABSTRACT 

In this thesis, we start to study a class of quadratic stochastic operators called 
)(s -

QSO. We first classify them into 20 non-conjugate classes. Moreover, we investigate 

the dynamics of four classes of 
)(s -QSO. Furthermore, we study another class of 

quadratic stochastic operator called 
)(a -QSO. We also classify 

)(a -QSO into two 

non-conjugate classes.  Further, we investigate the dynamics of these classes. After 

that, we move to study the existence of associativity and derivations of genetic 

algebras generated by the four classes of
)(s .  Moreover, we figure out the connection 

between genetic and evolution algebras. Thereafter, we reduce the study of arbitrary 

evolution algebra of permutations into two special evolution algebras. Furthermore, 

we establish some properties of three-dimensional evolution algebras whose each 

basis element has infinite period. At end, we classify three dimension nilpotent and 

solvable evolution algebras. 
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CHAPTER ONE 

 INTRODUCTION 

1.1 LITERATURE REVIEW 

The history of quadratic stochastic operators can be traced to Bernstein's work 

(Bernstein, 1924). The quadratic stochastic operators were considered an important 

source of analysis for the study of dynamic properties and models in various fields 

such as biology (Bernstein, 1924; Hofbaueret al., 1987; Hofbauer and Sigmund, 1988; 

LI et al., 2006; Lotka, 1920; Lyubich et al., 1992; Volterra, 1926), physics (Plank and 

Losert, 1995; Udwadia and Raju, 1998), economics and mathematics (Hofbauer and 

Sigmund, 1988; Kesten, 1970; Lyubich et al., 1992; Ulam, 1964). It is known that the 

theory of Markov processes has many applications to various branches of physics and 

mathematics. at the same time, this theory is not applicable to describe many physical 

and biological systems. One of such system is given by quadratic stochastic operators 

(QSO) which are related to population genetics (Bernstein, 1924). The fascinating 

applications of QSO to population genetics were given by Lyubich et al. (1992). As an 

application of a non-Mendlain inheritance, QSO has been constructed to describe 

transmission of ABO and Rh blood group by Ganikhodjaev et al. (2013). In 

Ganikhodjaev et al. (2011), it was given along self-contained exposition of the recent 

achievements and open problems in the theory of the QSO. The dynamics of QSO 

have been mentioned in Ulum (1964). The limit behaviors and argodic properties of 

trajectories of QSO and their application to population genetics have been investigated 

by Kesten (1970), Zakharevich (1978), Ganikhodzhaev (1993) and Lyubich (1971). 

Instead, Lotka-Volterra (LV) systems are usually used to represent the time evolution 

of differing species in biology (Bernstein, 1924; Volterra and Brelot, 1931). LV 
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systems have been deeply studied by Lotka (1920) and Volterra and Brelot (1931). 

Moreover, LV systems have been used to describe numerous natural phenomena 

(Takeuchi, 1996). The most important work for an LV discrete-time system is as a 

recognized subject in applied mathematics (Lyubich et al., 1992). LV system was used 

for the first time in a biomathematical framework in Moran (1950) and improved by 

May and Oster (1976), which was the departure point to investigate dynamic 

properties and models in different areas starting from biology (Bernstein, 1924; 

Hofbauer et al., 1987; Hofbauer and Sigmund, 1988; LI et al., 2006; Lotka, 1920; 

Lyubich et al., 1992; Volterra, 1926), and from physics (Plank and Losert, 1995; 

Udwadia and Raju, 1998), to economics and mathematics (Hofbauer and Sigmund, 

1988; Kesten, 1970; Lyubich et al., 1992; Ulam, 1964) which have been using LV 

systems as a source of analysis.The majority of these applications have taken the 

quadratic form of the LV system, which lead to the discretization of dynamic systems 

in order to study the computational side of such systems. This implies the study of the 

trajectory of discrete time of Voltera operators. In papers by Ganikhodzhaev (1993); 

Ganikhodzaev (1994), Ganikhodzhaev and Abdirakhmanova (2002), Ganikhodzhaev 

and Dzhurabaev (1998),Ganikhodzhaev and Abdirakhmanova (2002); Ganikhodzhaev 

and ` Eshmamatova (2006),Ganikhodzhaev and Saburov (2008), Ganikhodzhaev and 

Zanin (2004),Mukhamedov et al. (2005), Mukhamedov and Saburov (2009) Voltera 

operators and permutated Voltera operators are studied and considered discrete time. 

The difficulty of studying asymptotic behavior even in small dimensions forced the 

researchers to introduce certain classes of QSO and investigate their behavior. 

Namely, Volterra-QSO (Ganikhodzhaev, 1993; Ganikhodzhaev and ` Eshmamatova, 

2006; Jenks, 1969; Ulam, 1964), permutated Volterra-QSO (Ganikhodzhaev and 

Dzhurabaev, 1998; Ganikhodzhaev and Abdirakhmanova, 2002), Quasi-Volterra-QSO 
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(Ganikhodzhaev, 1989), l-Volterra-QSO (Rozikov and Zada, 2009, 2010), non-

Volterra-QSO (Ganikhodzhaev, 1989), strictly non-Volterra-QSO (Zhamilov and 

Rozikov, 2009), F-QSO (Rozikov and Zhamilov, 2008), and non Volterra operators 

generated by product measure (Ganikhodzhaev and Eshmamatova, 2006; 

Ganikhodzhaev, 2000; Rozikov and Shamsiddinov, 2009). However, all these classes 

together would not cover the set of all QSO. Recently, in the papers (Mukhamedov 

and Jamal, 2010; Mukhamedov et al., 2012) a new class of QSO was introduced. This 

class was called a -QSO. In this work we continue the study of -QSO. This 

class of operators depends on a partition of the coupled index set (the coupled trait set) 

. In the case of two dimensional simplex ( ), the 

coupled index set (the coupled trait set)  has five possible partitions. The dynamics 

of -QSO corresponding to the point partition (the maximal partition) of  have 

been investigated in Mukhamedov and Jamal (2010), Mukhamedov et al. (2012). In 

the present work, we describe and classify such operators generated by three other 

partitions. Further, we also investigate the dynamics of four classes of such operators.  

It is known that each QSO generate genetic algebras (Lyubich, 1971), which is 

commutative and non-associative in general. The interpretation of genetic algebras is 

very useful. Therefore, it was necessary to study the properties of such an algebra. 

Some properties were given in Lyubich (1971). The existence of associative algebras 

with genetic realization is proved in Ganikhodjaev (2008). Generally, the associativity 

and derivations of genetic algebra have not been fully studied yet. Note that for any 

algebra 𝐸, the space  of all its derivations is a Lie algebra with respect to  the 

commutator multiplication. In the theory of non-associative algebras, particularly, in 

genetic algebras, the Lie algebra of derivations of a given algebra is one of the 

)(s )(s

IIjijiPm }<:),{(= 3=m

3P

)(s 3P

)(EDer
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important tools for studying its structure. There has been much work on the subject of 

derivations of genetic algebras (Costa (1982),Costa (1983),Gonshor (1988)). For 

evolution algebras the system of equations describing the derivations are given in Tian 

(2008).   

In Micali and Revoy (1986) it was showed that the multiplication is defined in 

terms of derivations, showing the significance of derivations in genetic algebras. 

Several genetic interpretations of derivation of genetic algebra are given in Holgate 

(1987). In this work we study associativity of such an algebra related to -QSO. 

Moreover, we investigate its derivations. In Tian (2008), a new kind of algebra which 

is called evolution algebra has been introduced, and the question was about the related 

between genetic algebra and evolution algebra. In this work we will show the relation 

between genetic and evolution algebras in two dimensions, which leads to apply many 

results of evolution algebras into genetic algebras. Now, let us turn to review some 

work on evolution algebras. The concept of evolution algebra lies between algebras 

and dynamical systems. Algebraically, evolution algebras are non-associative Banach 

algebras; dynamically, they represent discrete dynamical systems. Evolution algebras 

have many connections with other mathematical fields including graph theory, group 

theory, stochastic processes, mathematical physics, etc. In Tian (2008) a foundation of 

the framework of the theory of evolution algebras is established and some applications 

of evolution algebras in the theory of stochastic processes and genetics are discussed. 

Recently, Rozikov and Tian (2011) studied algebraic structures evolution algebras 

associated with Gibbs measures defined on some graphs. In Camacho et al. (2013), 

Casas et al. (2011), Ladra et al. (2011), derivations, some properties of chain of 

evolution algebras and dibaricity of evolution algebras have been studied. In Camacho 

et al. (2010), Casas et al. (2013), certain algebraic properties of evolution algebras 

)(s
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(like right nilpotency, nilpotency and solvability etc.) in terms of structure of matrix 

constants have been investigated. In fact, nilpotency, right nilpotency and solvability 

might be interpreted in a biological way as a various type of vanishing ("deaths") 

populations. In Casas et al. (2010), some properties of -dimensional nilpotent 

evolution algebra have been studied. In Camacho et al. (2010), it was proven that any 

-dimensional right nilpotent evolution algebras is nilpotent. Moreover, evolution 

algebra of dimension  described some possible values for index of nilpotency and 

proved that  is a maximal nilpotency index. In paper Casas et al. (2010) it was 

given the classification of two dimension complex evolution algebras. We should 

stress that classification of three dimensional complex evolution algebra is very huge 

and tricky, because of that we restrict ourself to classify three dimension solvable 

evolution algebras 

 

1.2 OBJECTIVES 

In this thesis, the our main objectives of the study are the following:   

1. Classify -QSO into non-conjugate classes. Moreover, investigate the 

dynamics of some classes of -QSO.  

2. Study the existence of associative genetic algebras generated by some 

class of -QSO.  

3. Describe the derivations of three dimension genetic algebras.  

4. Reduce the study of evolution algebras of permutations into two special 

types of evolution algebras. Neamly,  idempotents and absolute nilpotent 

elements of the algebra.  

n

n

n

121  n

)(as

)(as

)(s
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5. Study three-dimensional evolution algebras whose each element of 

evolution basis has an infinite period. and classify all three dimension 

nilpotent evolution algebras. In addition , classify all three dimension 

nilpotent evolution algebras. 

   

1.3 OVERVIEW 

In this work, we investigate the dynamic of QSO for the class of  and  and we 

also study genetic algebras generated by -QSO. Moreover, we find the connection 

between genetic and evolution algebras in dimension two, which leads us to study 

through this work some properties of evolution algebras. This thesis contains eight 

chapters which are organized as follows: In chapter one, we do the literature review 

on quadratic stochastic operators, genetic algebras, evolution algebras and the outline 

of the objectives of this thesis. 

In chapter two, we recall some notations and basic definitions, which are 

needed throughout this thesis. 

Chapter three contains five sections. In section one, we classify -QSO into 

20 non-conjugate classes. In section two, we study dynamics of -QSO taken from 

the class  In section three, we investigate dynamics of -QSO taken from the 

class  Section four is devoted to investigate the dynamics of -QSO taken from 

the class  In the last section of this chapter, we study dynamics of -QSO taken 

from the class . 

Chapter four consists of four sections. In section one, we describe 36 

operators. In section two, we classify -QSO into two non-conjugate classes. 

)(s )(a

)(s

)(s

)(s

.1K )(s

.4K )(s

.19K )(s

25K

)(a
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Section three investigates the dynamics of class  taken from the class  In the last 

section of this chapter, we study the dynamics of  taken from the class  

Chapter five has seven sections. In sections 1-4, we study the associativity of 

genetic algebras corresponding to the operators taken from the classes  and 

 respectively. In section five, we describe the derivation of three dimension 

genetics algebra. Furthermore, we investigate the derivations of 3-dimensional genetic 

algebras related to classes  and  Section six is devoted to show the 

relation between genetic and evolution algebras. In the last section of this chapter, we 

show the existence of nontrivial derivations of genetic algebras. 

Chapter six is organized as follows: In section one, we reduce the study of 

arbitrary evolution algebra of permutations into two special evolution algebras. 

Section two is devoted to the description of -dimensional associative enveloping 

algebras of -dimensional evolution algebras with some restrictions on  of the 

matrix  of structural constants. Moreover, associative enveloping algebras for -

dimensional evolution algebras are described. In section 3 we establish some 

properties of three-dimensional evolution algebras whose each basis element has an 

infinite period. 

Chapter seven has three sections. Section one describes three dimensional 

nilpotent evolution algebras, three dimensional nilpotent evolution algebras are 

classified into three classes. In section two, we describe one dimensional subalgebra 

of the nilpotent evolution algebras. In section three, we classify the three dimensional 

solvable evolution algebras. In the last chapter we conclude the thesis.  

  

1V .1L

2V .2L

1741 ,, KKK

19K

1741 ,, KKK .19K

n

n rank

A 2
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CHAPTER TWO 

PRELIMINARIES 

2.1 QUADRATIC STOCHASTIC OPERATOR 

In this chapter, we recall all definitions, theorems, lemmas, and corollaries which are 

needed throughout this thesis. A quadratic stochastic operator (QSO) is a mapping of 

the simplex  

1

1

=1

= = ( , , ) : =1, 0, =1,
m

m m

m i i

i

S x x x x x i m  
  

 


               

(2.1.1) 

 into itself, of the form  

 

,1,=,= ,

1=,

mkxxPx jikij

m

ji

k 

                                      

(2.1.2) 

 where ),,(==)( 1 mxxxxV    and }{ ,kijP  are coefficients of heredity, which satisfy 

the following conditions  

1.=,=0, ,

1=

,,, kij

m

k

kjikijkij PPPP 

                               

(2.1.3) 

 Thus, each quadratic stochastic operator 
11:   mm SSV  can be uniquely 

defined by a cubic matrix , , =1= ( )m

ijk i j kPP  with conditions (2.1.3). We denote the sets of 

fixed points and k periodic points of 
11:   mm SSV  by )(VFix  and )(VPerk , 

respectively. Due to Brouwer's fixed point theorem, for any QSO V  one always has 

that .)( VFix  For a given point 
1(0)  mSx , a trajectory 

0=

)( }{ n

nx  of V  starting 

from 
(0)x  is defined by )(= )(1)( nn xVx 

. By  (0)xV , we denote the set of limiting 

points of the trajectory 

0=

)( }{ n

nx . Since 1

0=

)( }{   m

n

n Sx  and 
1mS  is compact, one has 

that   (0)xV . Obviously, if )( (0)xV  consists of a single point, then the trajectory 
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converges and a limiting point is a fixed point of V . Recall that a Volterra-QSO is 

defined by (2.1.2), (2.1.3) and the additional assumption 

 

  }.,{if0=, jikP kij 
                                   

(2.1.4) 

 The biological treatment of condition (1.2.4)is clear: the offspring repeats the 

genotype (trait) of one of its parents. One can see that a Volterra-QSO has the 

following form:  

 ,,1=
1=

Ikxaxx iki

m

i

kk 







 

                                

(2.1.5) 

 where  

 .0,=12= , IiaandkiforPa iikikki 
                        

(2.1.6) 

 Moreover,  

 1.||=  kiikki aandaa  

 This kind of operator was intensively studied in Dohtani (1992), 

Ganikhodzhaev (1993), Ganikhodzaev (1994), Ganikhodzhaev and ` Eshmamatova 

(2006), Jenks (1969). Note that this operator is a discretization of the Lotka--Volterra 

model (Lotka, 1920; Volterra,1926)  which models an interacting competing species 

in the population system. Such a model has received considerable attention in the 

fields of biology, ecology, mathematics (see for example (Hofbauer et al., 1987; 

Hofbauer and Sigmund, 1988; Plank and Losert,1995; Volterra, 1926)).  Rozikov and 

Zada (2010) introduced a notion of -Volterra-QSO, which generalizes a notion of 

Volterra-QSO. Let us recall it here. In order to introduce a new class of QSO, we need 

some auxiliary notations. We fix I  and assume that elements 
,ij kP  of the matrix 

, , , =1( )m

ij k i j kP  satisfy  

 ,,},,{1,},{0=, IjikanyforjikifP kij  
                 

(2.1.7) 
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 , 0 0 0 0
0 0

> 0 for some ( , ), , , { 1, , }.i j kP i j i k j k k m   
               

(2.1.8) 

 The QSO defined by (2.1.2), (2.1.3), (2.1.7)and (2.1.8) is called  -Volterra-QSO.  

Remark 2.1.1  Here, we stress the following points:   

1. Note that an  -Volterra-QSO is a Volterra-QSO if and only if m= .  

2. It is known (Ganikhodzhaev1993) that there is not a periodic trajectory for 

Volterra-QSO. However, there are such trajectories for  -Volterra-QSO 

(Rozikov and Zada, 2010).  

Following (Rozikov and Zada, 2010), take }{1,...,k , then 0=,ikkP  for ki   

and  

 .==1 ,

1=

,,

1=

ikk

m

i

kkkikk

m

i

PPP 





 

By using kjikij PP ,, =  and denoting ikPa kikki 1,2= , , 1= , kkkkk Pa  one then gets  

 
=1

,

=1 , 1
,

= 1 if = 1,

:

= 1 if = 1, .

m

k k ki i

i

m m

k k ki i ij k i j

i i j
i k j k

x x a x k

V

x x a x P x x k m






 

  
  

 
  
    
  




 

                 

(2.1.9) 

 This is a canonical form of  -Volterra-QSO. Note that  

, ,[ 1,0], | | 1, = 2( ) 2 0, , .kk ki ki ik ik i ik ka a a a P P i k I         

 We say that an operator V  is  permuted  -Volterra-QSO, if there is a 

permutation   of the set I  and an  -Volterra-QSO 0V  such that kk xVxV ))((=))(( 0)(  

for any Ik . In other words, V  can be represented as follows:  

( )

=1

( ) ,

=1 , 1
,

' = 1 if = 1,

:

' = 1 if = 1, .

m

k k ki i

i

m m

k k ki i ij k i j

i i j
i k j k

x x a x k

V

x x a x P x x k m








 

  
  

 
  
    
  




 

          

(2.1.10) 
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 We remark that if m=  then a permuted  -Volterra-QSO becomes a 

permuted Volterra-QSO. Some properties of such operators were studied in 

Ganikhodzhaev and` Eshmamatova (2006),Ganikhodzhaev and Karimov (2000).. The 

dynamics of a certain class of permuted Volterra-QSO has been investigated in 

Mukhamedov et al. (2012). Note that Rozikov and Zada (2010), Rozikov et al. (2012) 

studied a class of  -Volterra-QSO. An asymptotic behavior of permuted  -Volterra-

QSO has not been investigated yet. Some particular cases have been considered in 

Mukhamedov and Jamal (2010). In this thesis, we are going to introduce a new class 

of QSO which contains  -Volterra-QSO and permuted  -Volterra-QSO as a 

particular case. In Ganikhodjaev and Mukhitdinov(2003) a class of Quasi-Volterra 

operators is introduced. For such operators the condition (2.1.5) is not satisfied only 

for very few values of kji ,, . In Ganikhodzhaev (1989) it was considered the 

following family of QSOs :: 22 SSV   

 0 1= (1 ) , 0 1,V V V        

where  

  ,2,2,2=)( 31

2

332

2

221

2

10 xxxxxxxxxxV   

is Volterra operator and  

  2 2 2

1 1 2 3 2 1 3 3 1 2( ) = 2 , 2 , 2 ,V x x x x x x x x x x    

is non-Volterra QSO. Note that behavior of the trajectories of 0V
 is very irregular 

(Lyubich et al., 1992;Ulam, 1964; Zakharevich, 1978). 

Ganikhodzhaev (2000), Ganikhodzhaev and Rozikov (2006) gave a 

constructive description of the matrix P. This construction depends on a probability 

measure   which is given on a fixed graph G  and cardinality of a set of cells 

(configurations). Such kind of operators are defined  Non-Volterra QSO generated by 
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a product measure.  In Ganikhodzhaev (2000) it was proven that the QSO constructed 

by the construction is Volterra if and only if G  is a connected graph. 

Rozikov and Shamsiddinov (2009) described a class of non-Volterra QSOs 

using the construction of QSO for the general finite graph and probability measure   

(here   is product of measures defined on maximal subgraphs of the graph G ). It was 

shown that if   is given by the product of  the probability measures then 

corresponding non-Volterra operators can be studied by N  number (where N  is the 

number of maximal connected subgraphs) of Volterra operators defined on the 

maximal connected subgraphs. Consider 0 = {0} ={0,1,..., }.E E m  Fix a set F E  

and call this set the set of "females" and the set = \M E F  is called the set of "males". 

The element 0  will play the role of "empty-body". Coefficients 
,ij kP  of the matrix P  

we define as follows  















.,,i0,

{0};,o{0},0,i0,

{0};,o{0},0,=i1,

=,

kMjFif

MjirFjikf

MjirFjikf

P kij

    

(2.1.11) 

 Biological treatment of the coefficients (2.1.11) is very clear: a   "child" k  can 

be generated if its parents are taken from different classes F  and M . For a given 

EF   a QSO with (2.1.11) is called a F -QSO. Note that F -QSO is non-Volterra 

for any EF  . In Rozikov and Zhamilov (2008) the F -QSOs are studied for any 

EF  . It was proven that such operators have unique fixed points 
mS)(1,0,...,0  and 

all trajectories converge to this fixed point faster than any geometric progression. 

Recently in Zhamilov and Rozikov (2009) a new class of non-Volterra operators is 

introduced. These operators satisfy  

 .,,},,{0,=, EkjijikifP kij 
                      

(2.1.12) 
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 Such operator is called strictly non-Volterra QSO. For arbitrary strictly non-

Volterra QSO defined on 
2S  in Zhamilov and Rozikov (2009)  it was proved that 

every such an operator has a unique fixed point. Also it was proven that such 

operators have a cyclic trajectory. This is quite different behavior from the behavior of 

Volterra operators, since the Volterra operators have no cyclic trajectory.  

Definition 2.1.2 If XXf :  is a function and ccf =)( , then c  is a fixed point of 

f  . Such fixed point(s) are denoted as )(xFix  . 

Definition 2.1.3 The point x  is called periodic point of f  with the period k  if 

.=)( xxf k
 In other words, x  is a periodic point of f  with period k  if x  is a fixed 

point of 
kf  . The point x  has prime period 0k  if xxf k =)(0  and xxf n )(  whenever 

nk <<0 0  . That is, x  has prime period 0k  if x  returns back to its starting place for 

the first time after exactly 0k  iterations of f  . Such point(s) are denoted as )(
0

xPerk . 

in addition, the investigation of the dynamics is to investigate whether the fixed point 

is attracting or repelling. To begin with, we assume the mapping XXf :  is given 

by the following form 

)).,...,,(),...,,...,,(),,...,,((=),...,,( 21321221121 mmmm xxxfxxxfxxxfxxxf
 

 We let A  be an mm  matrix. An eigenvalue of A  is a root of the 

characteristics polynomial of A  is given by )(=)( EAdet    . We denote a 

Jacobian of f  at point x  by  







































m

mm

m

x

f

x

f

x

f

x

f

xfJ






1

1

1

1

=))((  




