COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

NEUROPROTECTIVE PROPERTIES OF *NIGELLA* SATIVA (L.) SEEDS AND MURRAYA KOENIGII (L.) SPRENG LEAVES EXTRACTS IN EXPERIMENTAL ANIMAL MODELS

BY

ZAHIR UDDIN MOHAMMED BABAR

A thesis submitted in fulfillment of the requirement for the degree of Master in Pharmaceutical Sciences (Pharmacology)

Kulliyyah of Pharmacy International Islamic University Malaysia

NOVEMBER 2016

ABSTRACT

The anti-oxidant properties of both M. koenigii leaves and N. sativa seeds extracts have been associated with many of their pharmacological activities including neuroprotective potentials in experimental animal models. The purpose of the current study was to analyze the anti-oxidant properties and assess neuroprotective effects of the extracts in zebrafish and rat models. The solubility and thin layer chromatographic (TLC) techniques have been used as classical methods for physicochemical characterization. Experimental neuro-excitotoxicity was induced by AlCl₃ (20 µg/mL) and MSG (475 µg/mL) in zebrafish embryos and larvae models through immersion technique while neuroinflammation by two-vessel occlusion (2VO) in healthy male Sprague Dawley rats. It was confirmed that N. sativa oil (NSO) and water soluble extract (WSE) of N. sativa seeds have different physicochemical properties while WSE has exhibited similar R_f value of 0.95 to that of both *Tualang* and *Kelulut* honeys. The presence of thymoquinone (TQ) in NSO was confirmed at ($R_f = 0.86$) compared to the standard TQ. M. koenigii leaves extract (MKLE) has showed the most potent anti-oxidant property with (IC₅₀=7.63 μ g/mL) followed by WSE (IC₅₀= 33.32 μ g/mL), NSO alone (IC₅₀= 73.67 μ g/mL) and NSO + WSE (IC₅₀= 78.22 µg/mL) respectively against 1, 1-diphenyl-2-hydrazyl (DPPH). Both NSO (0.125 $\mu g/mL$) and WSE (80 $\mu g/\mu mL$) have shown to protect the deformities of neurotoxicity significantly (P < 0.05) in AlCl₃-induced neurotoxic zebrafish embryo model only after 48 hours of post-induction (hpi). In addition, WSE has also exhibited to protect the deformities of excitotoxicity in both of MSG-induced embryos (50 µg/mL) and larvae (80 μ g/mL) models significantly (P < 0.05) compared to that of MSG (475 µg/mL) after 48 hpi. 24 healthy adult male Sprague Dawley rats were randomly divided into four groups (n=6); Healthy Control (HC); 2VO-untreated (2VO); 2VO+NSO treated (NSO) and 2VO+MKLE treated (MKLE). The NSO (100%, 1 mL/kg of b.w) and MKLE (50 mg/kg/day orally) groups were pre-treated for 10 days prior to 2VO surgery and continued until all animals were sacrificed at the end of 10th postoperative week. Total RNA was extracted, purified and relatively quantified as per relative normalized gene expression ($\Delta\Delta Cq$) of two-step RT-qPCR assay with predesigned QuantiTect[®] primers. There were significant (P<0.01) folds of difference in GFAP mRNA expression of NSO and HC groups as compared to that of untreated 2VO while there was no significant (P > 0.05) of GFAP mRNA expressions for NSO vs. HC and MKLE vs. 2VO. Conversely, GFAP mRNA expression for MKLE was significantly (P < 0.05) different from NSO group. There was a significantly (P < 0.05) 0.05) down-regulated MAP2 mRNA expression in both 2VO and NSO groups as compared to that of HC. Yet, the MAP2 mRNA expressions in both NSO and MKLE treated groups were not significantly different (P > 0.05) to that of 2VO untreated. The overall findings suggest that MKLE could have mild neuroprotective potential via glutamate receptors only while N.sativa seeds extract could have superior neuroprotective activity via both of glutamate and MI muscarinic acetylcholine receptors. It is proposed that zebrafish embryo model of 24 hpf developed in this study could be used as a reliable tool to investigate neuroprotective potentials of any other crude extract or leading anti-AD drug in neurobehavioral sciences.

خلاصة البحث

لقد ترافقت الخواص المضادة للاكسدة لكل من نبتة الكاري (M. koenigii) والحبة السوداء (N. sativa) مع العديد من التاثيرات الدوائية مثل الوقاية العصبية في نماذج حيوانات التجارب. يهدف هذا البحث الي دراسة التركيب الفيزيوكيميائي وتحديد الخواص المضادة للاكسدة وكذلك خواص الوقائية العصبية في كل من الجرذان وأسماك الزيبرا. تعتبر طريقة الإذابة وتقنية الكروماتوغرافيا على الطبقة الرقيقة (TLC) من الطرق التقليدية المستخدمة في التوصيف الفيزيوكيميائي. تم إحداث السمية الخلوية العصبية بتعريض أجنة اسماك الزيبر المحلول كلوريد الألومنيوم (AlCl₃) بتركيز 20 جزء من المليون وغلوتامات أحادية الصوديوم (MSG) بتركيز 475 جزء من مليون، بينما يتم احداث الالتهاب العصبي لدى ذكور جرذان السبراغ داولي بعمل عقد مزدوج دائمي (2VO). لقد أثبتت التجربة وجود اختلاف في التركيب الفيزيوكيميائي لكل من زيت الحبة السوداء (NSO) وخلاصة بذور الحبة السوداء المنحلة في الماء (WSE) والمستخلصة باستخدام نفس المحلول (الميثانول 98%) بدون أي تجزئة، بينما أظهرت WSE قيمة R مشابهة لكل من خلاصات عسل التوالانغ (Tualang) وعسل الكلولوت (*Kelulut*). تم إثبات وجود الثيموكوينون (TQ) في NSO (6 = R_f) مقارنة بالثيموكوينون المعياري. أظهرت مستخلصات أوراق الكاري (MKLE) أقوى نشاط مضاد للأكسدة (7.63 = IC₅₀) مكروغرام/مل)، تلتها WSE (IC₅₀ مكروغرام/مل)، ثم NSO منفردة (33.32 = IC₅₀ مكروغرام/مل)، ثم مكروغرام/مل)، ثم NSO وNSC و RS2 = IC₅₀ مكروغرام/مل) كلا ضد الجذر الحر الثابت (DPPH). أظهرت كلا من WSE بتركيز 80 مكروغرام و NSO بتركيز 0.125 مكروغرام القدرة على ايقاف سوء التشكل الناتج عن السمية العصبية المحدثة بكلوريد الألمونيوم في اسماك الزيبرا فقط بعد 48 ساعة من الإحداث، بينما أبدت WSE القدرة على ايقاف سوء التشكل في كل من الأجنة واليرقات بعد احداث السمية العصبية بغلوتامات أحادية الصوديوم مقارنة مع WSEمع جرعات 50 و80 جزء من المليون بعد 48 ساعة. أستخدم في هذه التجربة 24 جرذا من نوع سبراوغ داولي، حيث قسمت الى 4 مجموعات كالتالي: مجموعة مرجعية (HC)، مجموعة جرذان غير معالجة بـ 2VO (2VO)، مجموعة جرذان معالجة بـ 2VO و NSO)، (NSO) مجموعة جرذان معالجة بـ 2VO و MKLE (MKLE). عولجت مجموعتي NSO (100%، 1 مل/كغ) و MKLE (50 مغ/كغ/يوم) فمويا عشرة أيام قبل جراحة 2VO ، واستمر العلاج لعشر أسابيع قبل قتلها. تم بعد ذلك جمع عينات الحمض النووي الربوزي (RNA) وتنقيته وثم معايرته بطريقة النسخ العكسي للحمض النووي الريبي (DNA) كتعبير جين معتدل مرتبط (ΔΔCq) من مرحلتين (RT-qPCR) مع اعدادت (@QuantiTect) المجهزة مسبقا. لقد لوحظت اختلافات مهمة (P<0.01) في تعبير GFAP mRNA عند مجموعتي HC و NSO مقارنة مع مجموعة 2VO ، بينما لم يكن هناك اختلاف مهم احصائيا (P< 0.05) في تعبير GFAP mRNA بين مجموعتي NSO وCE وكذلك بين مجموعتي MKLE و 2VO. لقد لوحظ اختلاف مهم احصائيا في تعبير GFAP mRNA عند مجموعة MKLE بالمقارنة مع مجموعة NSO بعد 10 اسابيع من المعالجة. وقد لوحظ ايضا انخفاض مهم احصائيا في تعبير MAP2 mRNA (P<0.05) عند كلا مجموعتي 2VO وNSO بالمقارنة مع مجموعة CE، بينما لم يكن الاختلاف مهما احصائيا تعبير MAP2 mRNA بين مجموعتي NSO و MKLE المعالجة (P>0.05) مقارنة بالمجموعة الغير معالجة بـ 2VO. تشير النتائج النهائية أن MKLE يمتاز بوقاية عصبية خفيفة التي من الممكن أن تكون عن طريق مستقبلات الغلوتامات فقط، بينما من الممكن أن تؤثر مستخلصات الحبة السوداء عن طريق مستقبلات الغلوتامات ومستقبلات الأسينيلكولين الموسكارينية MI والتي تمتاز بفعالية الوقاية العصبية الاعلى. من المقترح أيضا أن نموذج اسماك الزيبرا (24 ساعة بعد التخصيب) الذي طورناه في هذه الدراسة لتكون نماذج مثالية ومفضلة أكثر من أي نماذج أخرى للتحقيق في الخواص المحتملة لمستخلصات أخرى، أو دراسة العقاقير المضادة لمرض الزهايمر في مجال العلوم السلوكية العصبية.

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master in Pharmaceutical Sciences (Pharmacology).

Asst. Prof. Dr. Wan Mohd Azizi Supervisor

Assoc. Prof. Dr. Solachuddin Jauhari Arief Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master in Pharmaceutical Sciences (Pharmacology).

Assoc. Prof. Dr. Abdul Razak Kasmuri Internal Examiner

Assoc. Prof. Dr. Sarni External Examiner

This thesis was submitted to the Department of Basic Medical Science and is accepted as a fulfillment of the requirement for the degree of Master in Pharmaceutical Sciences (Pharmacology).

> Asst. Prof. Dr. Nurul Asyiqin Head, Department of Basic Medical Science

This thesis was submitted to the Kulliyyah of Pharmacy and is accepted as a fulfillment of the requirement for the degree of Master in Pharmaceutical Sciences (Pharmacology).

Asst. Prof. Dr. Siti Hadijah Dean, Kulliyyah of Pharmacy

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Zahir Uddin Mohammed Babar

Signature.....

Date.....

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

NEUROPROTECTIVE EFFECTS OF *NIGELLA SATIVA* (L.) SEEDS AND *MURRAYA KOENIGII* (L.) SPRENG LEAVES EXRACTS IN EXPERIMENTAL ANIMAL MODELS

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2016 Zahir Uddin Mohammed Babar and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Zahir Uddin Mohammed Babar

Signature

Date

ACKNOWLEDGEMENTS

First of all, I would like to thank the Al-Mighty Allah for granting me a chance to pursue higher education at IIUM. Secondly, I would like to express my deepest sense of gratitude towards my revered Supervisor, Asst. Prof. Dr. Wan Mohd Azizi bin Wan Sulaiman and Co-supervisor, Assoc. Prof. Dr. Solachuddin Juahari Arief for their continuous encouragement, learned counseling and knowledgeable advices. My heartfelt thank should also go to Assoc. Prof. Dr. Qamar Uddin Ahmed, Assoc. Prof. Dr. M. Taher Bin Bakhtiar (Ex-Deputy Dean of PG) and Assoc. Prof. Dr. Siti Zaiton Bt. Mat So'ad for their kind permission to work in their respective laboratories and use facilities.

In addition, I would like to thank and appreciate Assoc. Prof. Dr. Norlelawati Bt. A. Talib (Co-Researcher) for her valuable guidance on PCR analyses and providing facilities at her Molecular Research Lab, Faculty of Medicine, IIUM. I would also like to thank all the staffs of Basic Medical Science laboratory of Faculty of Pharmacy and Medicine, especially, Sr. Zatur Rawihah Bt. Kamaruzaman, the Science Officer of Molecular Research Lab and Sr. Norrul Afzan Zainal Abidin, the Science Officer of Zebrafish Lab of ICRACU.

I would also like to show my deepest heartfelt gratitude to Dean (Asst. Prof. Dr. Siti Hadijah Binti Shamsudin), Deputy Dean for Postgraduate and Research (Asst.Prof. Dr. Che Suraya Haji Mohd Zin), the Head of Basic Medical Science Departments of both Faculty of Pharmacy (Asst. Prof. Dr. Nurul Asyiqin Bt. Yusof) and Medicine (Prof. Dr. Nasuruddin Bin Abdullah) for their courageous words, facilitations and endorsements given.

I would also like to thank and pay humble respect to all of my Uncles in-laws including Mr. Jawad Uddin Ahmed (a Foundation Engineer in Singapore), Prof. Dr. Wakar Uddin (Microbiologist, Penn. State University, USA), Mr. Reza Uddin (Biochemist, Portland, USA) and my father-in-law, Mr. Ekram Uddin Ahmed (Pharmacist) and A.F.K Jilani (Author) and my Aunty Ishrat Fatema for their continuous engagements, encouragements and supports towards my education.

I would also like to thank Dr. Marwan Saad Azzubaidi and the Research Management Centre (RMC) of IIUM for supporting this project financially with the endowment fund bearing project ID of EDW/B11/215/0693.

All the credits of my work should go to the souls of my departed parents (Sayedul Bashar@ U Khin Maung and Ambia Khatun), family members and friends, especially, my wife (Sadia Fatema) and daughter (Ruhi Fatema). Finally, I would like to express my heartfelt gratitude to Turkey Diyanet Foundation (Turkiye Diyanet Vakfi) for assisting me with its prestigious Scholarship program for pursuing the degree of Master in Pharmaceutical Sciences (Pharmacology) at International Islamic University Malaysia as a Rohingya Student from Myanmar.

TABLE OF CONTENTS

Abstractii
Abstract in Arabic
Approval pageiv
Declaration
Cpyright Pagevi
Acknowledgements
Table of contents
List of Tables
List of Figures
List of Abbreviationsxvii
CHAPTER ONE: INTRODUCTION1
1.1 Background of the Study
1.2 General Objective
1.2.1 Specific Objectives
1.2.1 Specific Objectives
1.5 Hypothesis
CHAPTER TWO: LITERATURE REVIEW14
2.1 Dementia
2.2 Epidemiology of AD16
2.2.1 Distribution of AD
2.2.2 Prevalence
2.2.3 Female to Male Ratio
2.2.4 Risk Factors
2.2.4.1 Non-Modifiable Risk Factors
2.2.4.2 Modifiable Risk Factors
2.3 Hypothesis and Concepts of AD
2.3.1 The Cholinergic Hypothesis
2.3.2 Calcium Hypothesis (Glutamate Neurotoxicity)
2.3.2 Calcium Hypothesis (Outamate Neurotoxicity)
2.3.4 The Reactive Oxygen and Nitrogen Species Hypothesis
2.3.6 The Mitochondrial Dysfunction Hypothesis
2.3.7 The Vascular Hypothesis
2.3.8 Oxidative Stress and Glial Inflammation Hypothesis
2.3.9 The Latest Hypothesis of Causative Gene of AD
2.3.10 Microtubules and MAP2
2.4 Murine Models of AD
2.4.1 Transgenic Mice
2.4.2 Chemically Induced Neurodegeneration
2.4.2.1 Local Cerebral Intoxication
2.4.2.2 Systemically
2.4.3 Two-vessel Occlusion (2VO) Surgery
2.4.3.1 Physiological Reactions to 2VO Surgery40

2.4.3.2 Postoperative Complications	42
2.5 Neuroprotection	48
2.5.1 Nigella sativa (L.) Seeds	49
2.5.2 Murraya koenigii (L.) Spreng leaves	53
2.5.3 Zebrafish (Danio rerio)	
2.5.4 Reverse Transcription Quantitative PCR (RT-qPCR)	58
2.5.4.1 Template Preparation	
2.5.4.2 Primer and Amplicon design	
2.5.5 Relative Quantification	
2.5.5.1 Standard Curve Analysis for PCR Efficiency	
2.5.5.2 The Major Components of qPCR	
2.5.6 Controls used in qPCR Assay	
1 5	
CHAPTER THREE: MATERIALS AND METHODS	64
3.1 Research Skeleton	64
3.2 Plant Materials and Chemicals	65
3.3 Extraction of N. Sativa Oil (NSO) and Water Soluble Extract (WSE)	65
3.4 Extraction of <i>M. Koenigii</i> Leaves Extract (MKLE)	67
3.5 Preparation of WSE Solution of N.Sativa Seeds	68
3.6 Conversion of NSO (ME) into a series of Secondary Emulsions (SE)	68
3.7 Conversion of (SE) into a series of Tertiary Emulsions (TE)	69
3.8 Preparation of MKLE Solution	69
3.9 Preparation of MSG Stock Solution	
3.10 Preparation of AlCl ₃ Stock Solution	
3.11 Solubility Tests of NSO, WSE and MKLE	
3.12 DPPH Assay	73
3.13 Thin Layer Chromatographic (TLC) Analysis	73
3.14 Zebrafish Embryo and Larvae Handling	75
3.15 Development of Zebrafish Neurotoxicity Models	77
3.15.1 Optimization of AlCl ₃ and MSG Concentrations	
3.15.2 Optimization of the Effective Extract Concentrations	
3.15.3 Selection of Age and Induction Period for both Embryo and	
Larvae	78
3.16 Embryo and Larvae Neurotoxic Models Testing Method	80
3.17 Assessment of Neuroprotective Effects of MKLE, NSO And WSE.	83
3.18 Data Analysis	83
3.19 Materials and Methods	85
3.19.1 Research skeleton	85
3.20 Herbal Extractions	86
3.20.1 Extraction of NSO	86
3.20.2 Extraction of <i>M. koenigii</i> Leaves Extract (MKLE)	86
3.20.3 Animals and Treatment Groups	
3.20.4 Animals' Inclusion Criteria	89
3.20.5 Exclusion Criteria.	89
3.21 2VO Procedure	
3.21.1 Hippocampal Tissues Collection by Euthanasia	91
3.21.2 Removal of Hippocampal Tissues from Allprotect [™] Tissue	
Reagent	92

3.21.3 Determination of the Starting Material based on RNA	
extraction kit	92
3.21.4 Criteria for Humane End Points (HEP)	93
3.21.5 Tissue Disruption and Homogenization	
3.21.6 Precautions	95
3.22 Quality Control of RNA	96
3.22.1 Storage	96
3.22.2 Quantification of RNA Purity and Quality	96
3.22.3 Reverse Transcription (RT) or cDNA Synthesis	97
3.22.4 Primers Design	
3.22.5 Gradient Analysis	100
3.22.6 Standard curve analysis	
3.22.7 Reverse Transcription Quantitative PCR (RT-qPCR) As	
3.23 Statistical Analysis	105
CHARTER FOUR DEGLITTE AND DISCUSSION	107
CHAPTER FOUR: RESULTS AND DISCUSSION	
4.1 Yeilds of NSO, WSE And MKLE	
4.2 Result of Solubility Tests	
4.2.1 Solubility of NSO	
4.2.2 Solubility of WSE	
4.2.3 Solubility of MKLE	10/
4.3 DPPH Scavenging Activities of NSO, WSE, NSO + WSE and MKLE.	107
4.4 Thin Layer Chromatographic (TLC) Analysis	
4.5 Screening of Tween 80 on Zebrafish Embryo and Larvae	
4.6 Screening of AlCl ₃ Concentrations on Embryo	
4.7 Screening of AlCl ₃ on Larvae for 24 hpi	
4.7.1 Screening of AlCl ₃ on Larvae for 48 hpi	
4.8 Screening of MSG Concentrations on Embryo (24 and 48 hpi)	
4.9 Screening of MSG Concentrations on Larvae after 48 hpi	
4.10 Screening of Selected NSO Concentrations on Embryo (24 &	
hpi)	
4.11 Screening of Selected NSO Concentrations on Larvae (24 hpi)	
4.11.1 Screening of Selected NSO Concentrations on Larvae (4	
hpi)	
4.12 Screening of Selected WSE Concentration on Embryo (24 hpi)	
4.12.1 Screening of Selected WSE Concentrations on Embryo	
hpi)	
4.13 Screening of Selected WSE Concentrations on Larvae (24 and	
hpi)	
4.14 Screening of Standardized MKLE Concentrations on Embryo	
and 48 hpi)	•
4.15 Screening of MKLE Concentration on Larvae (24 hpi)	
4.15.1 Screening of MKLE Concentration on Larvae (48 hpi)	
4.16 Assessment of Neuroprotective Effects of the Extracts	
4.16.1 NSO Treatment on AlCl ₃ -induced Embryo (24 hpi)	
4.16.2 NSO Treatment on AlCl ₃ -induced Embryo (48 hpi)	
4.16.3 NSO Treatment on AlCl ₃ -induced Larvae (24 hpi)	
4.16.4 NSO Treatment on AlCl ₃ -induced Larvae (48 hpi)	

4.16.5 NSO Treatment on MSG-induced Embryo (24 hpi)	118
4.16.6 NSO Treatment on MSG-induced Embryos (48 hpi)	
4.16.7 NSO Treatment on MSG-induced Larvae (24 hpi)	
4.16.8 NSO Treatment on MSG-induced Larvae (48 hpi)	
4.16.9 WSE Treatment on AlCl ₃ -induced Embryo (24 hpi)	
4.16.10 WSE Treatment on AlCl ₃ -induced Embryo (48 hpi)	121
4.16.11 WSE Treatment on MSG-induced Embryo (24 hpi)	122
4.16.12 WSE Treatment on MSG-induced Embryo (48 hpi)	122
4.16.13 WSE Treatment on MSG-induced Larvae (24 hpi)	123
4.16.14 WSE Treatment on MSG-induced Larvae (48 hpi)	
4.16.15 WSE Treatment on AlCl ₃ -induced larvae (24 hpi)	
4.16.16 WSE Treatment on AlCl ₃ -Induced Larvae (48 hpi)	
4.16.17 MKLE Treatment on AlCl ₃ -Induced Embryo (24 & 48 hpi	/
4.16.18 MKLE Treatment on AlCl ₃ -Induced Larvae (24 hpi)	
4.16.19 MKLE Treatment on AlCl ₃ -Induced Larvae (48 hpi)	
4.16.20 MKLE Treatment on MSG-induced Embryo (24 hpi)	
4.16.21 MKLE Treatment on MSG-induced Embryo (48 hpi)	
4.16.22 MKLE Treatment on MSG-induced Larvae (24 hpi)	
4.16.23 MKLE Treatment on MSG-Induced Larvae (48 hpi)	
4.16.24 RNA Extraction and Purity 4.16.25 Standard Curve	
4.16.26 Relative Gene Expressions	
4.16.27 MAP2 and GFAP MRNA Expressions between 2VO and	130
HC	131
4.16.28 MAP2 mRNA Expressions in MKLE and NSO treated	1.91
Animals	132
4.16.29 GFAP MRNA Expressions in MKLE and NSO treated	
Animals	132
4.17 Discussion	134
	1.55
CHAPTER FIVE: CONCLUSION	155
REFERENCES	157
APPENDIX I: RESULTS OF SOLUBILITY TESTS OF NSO AND WSF	7 WITH
THEIR DETAILED PHYSICOCHEMICAL CHARACTERISTICS	
APPENDIX II: RESULTS OF DPPH SCAVENGING ASSAY	
APPENDIX III: RESULTS OF SCREENING AND OPTIMIZATIO	
CONTROLS AND TREATMENTS	
APPENDIX IV: RESULTS OF NEUROPROTECTIVE ASSESSMENT (JF THE
EXTRACTS APPENDIX V: RESULTS OF RELATIVE GENE EXPRESSION	205
APPENDIX VI: RESULTS OF THIN LAYER CHROMATOGE	
ANALYSIS	232
APPENDIX VII: LIST OF PUBLICATIONS / ABSTRACTS	
PROCEEDINGS	233

LIST OF TABLES

Table 2.1 The vascular risk factors and possible outcome	25
Table 2.2 Heart-related and peripheral risk factors	25
Table 2.3 The criteria for designing a good primer	60
Table 2.5 Summary of controls used in qPCR assays.	63
Table 3.1 Showing the list of solvent systems used for solubility test	72
Table 3.2 Showing the solvent systems, ratios, and the presence and absence of t sample	the 75
Table 3.3 Showing the morphological features observed	82
Table 3.4 RNeasy Spin Column Specifications	93
Table 3.5 The master mix preparation for RT-qPCR assay	103
Table 3.6 The details of Master-mix preparation	104
Table 5.1 Showing the results of solubility tests for NSO and WSE	184
Table 5.2 Solubility test results of MKLE	187
Table 5.3 Showing the screening of different AlCl ₃ concentrations	193
Table 5.4 Showing the screening of different MSG concentrations	194
Table 5.5 Showing the screening of different NSO concentrations	195
Table 5.6 Showing the screening of different WSE concentrations	196
Table 5.7 Showing the screening of different MKLE concentrations	197
Table 5.8 The relative normalized MAP2 mRNA expression	230
Table 5.9 The relative normalized GFAP mRNA expression	230
Table 5.10 List of major laboratory apparatus used in the study	231
Table 5.11 Showing the R_f values of NSO, WSE and MKLE	232

LIST OF FIGURES

Figure 2.1: The pathological pathway to develop AD	32
Figure 2.2 The oxidative and glial inflammation hypothesis of AD	34
Figure 2.3 The major components of qPCR based on MIQE guidelines.	62
Figure 3.1 Research framework (Zebrafish Models)	64
Figure 3.2 Research framework (2VO Rats Model)	64
Figure 3.3 Showing the mass, color, texture of the WSE	66
Figure 3.4 Project conceptual framework	85
Figure 3.5 The summary of animals and treatment groups	89
Figure 3.6 Showing the steps involved in collection and isolation of hippocampal tissues	l 91
Figure 3.7 Showing the preparation of a six-log dilution series for standard curve analysis	101
Figure 3.8 The schematic diagram showing RT-qPCR work flow	104
Figure 5.1 Showing how NSO turns into milky white colour	188
Figure 5.2 Showing the linearity and precision value of DPPH assay for the stand	lard 189
Figure 5.3 Showing the linearity and precision value of DPPH assay for NSO	189
Figure 5.4 Showing the linearity and precision value of DPPH assay for MKLE	190
Figure 5.5 Showing the linearity and precision value of DPPH assay for WSE	190
Figure 5.6 Showing the linearity and precision value of DPPH assay for NSO + V	WSE 191
Figure 5.7 Showing the effects of Tween 80 (5%, 2.5% and 1.25%)	192

Figure 5.8 Showing the lethality of 5% T80 in zebrafish embryo198

Figure 5.9 Showing the deformation of face (doggy-face) in 19 hpf embryo caused by
MSGMSG198Figure 5.10 Showing an exemplary image for severe acute yolk edema in MSG199

Figure 5.11 Showing the deformities observed in MSG (475 μ g/mL) treated zebrafish larvae after 48 hours of exposure 199

Figure 5.12 Showing the lethality of MSG (475 μ g/mL) + MKLE 200

Figure 5.13 Showing an exemplary image of head-in-chorion (HIC) found in MSG + MKLE 200

Figure 5.14 Showing the lethality and visual post-mortem of zebrafish larvae in MSG + MKLE 201

Figure 5.15 Showing the lethality and visual post-mortem of zebrafish larvae in MSG + NSO 201

Figure 5.16 Showing the complete prevention of hatching in survived embryos (24 hpf model) even after 72 hours of post-induction by AlCl₃ 202

Figure 5.17 Showing a comparative lethality found in $AlCl_3 (20 \ \mu g/mL) + MKLE$ (750 $\mu g/mL$) treatment of larvae model after just 24 hours of post-induction 202

Figure 5.18 Showing an exemplary image of AlCl₃ (20 μ g/mL) lethality in zebrafish larvae model after 48 hpi 203

Figure 5.19 Showing the neuroprotective effect of NSO (1 μ g/mL) against AlCl₃ (20 μ g/mL) in larvae model 203

Figure 5.20 Showing the neuroprotective effect of WSE (80 μ g/mL) against AlCl₃ (20 μ g/mL) in embryo model 204

Figure 5.21 Showing the neuroprotective effect of WSE (80 μ g/mL) against AlCl₃ (20 μ g/mL) in embryo model 204

Figure 5.22 Showing the number of survived and hatched embryo per group of NSO treatment against AlCl₃ induction 205

Figure 5.23 Showing the number of embryos survived, hatched or deformed in a group of NSO treatment against AlCl₃ induction 206

Figure 5.24 Showing the number of survived and deformed larvae per group of NSO treatment against AlCl₃ induction 207

Figure 5.25 Showing the survived died larvae with or without deformities per group of NSO treatment against AlCl₃ induction 208

Figure 5.26 Showing the survived hatched and deformed embryos per group of NSOtreatment after 24 hours against MSG induction209
Figure 5.27 Showing the survived hatched or deformed embryos per group of NSOtreatment after 48 hours against MSG induction210
Figure 5.28 Showing the number of larvae survived, deformed or died per group ofNSO treatment after 24 hours against MSG induction211
Figure 5.29 Showing the number of survived, died or deformed larvae per group ofNSO treatment after 48 hours against MSG induction212
Figure 5.30 Showing the number of embryos survived, hatched and deformed per group of WSE treatment after 24 hours against AlCl3 induction213
Figure 5.31 Showing the number of embryos survived, hatched and deformed per group of WSE treatment after 48 hours against AlCl3 induction214
Figure 5.32 Showing the number of embryos survived, hatched and deformed per group of WSE treatment after 24 hours against MSG induction215
Figure 5.33 Showing the number of embryos survived, hatched and deformed per group of WSE treatment after 48 hours against MSG induction216
Figure 5.34 Showing the number of survived and deformed larvae per group of WSEtreatment after 24 hours against MSG induction217
Figure 5.35 Showing the number of larvae survived and deformed per group of WSEtreatment after 48 hours against MSG induction218
Figure 5.36 Showing the number of larvae survived and deformed per group of WSEtreatment after 24 hours against AlCl3 induction219
Figure 5.37 Showing the number of survived, died and deformed larvae per group ofWSE treatment after 48 hours against AlCl3 induction220
Figure 5.38 Showing the number of survived, hatched and deformed embryos per group ($n = 9$) of MKLE treatment after 48 hours against AlCl ₃ induction 221
Figure 5.39 Showing number of survived died and deformed larvae per group (n = 9) after 24 hours of treatment against AlCl ₃ (20 μ g/mL) induction 222
Figure 5.40 Showing the number of zebrafish larvae survived, died and deformed per group ($n = 9$) after 48 hours of MKLE treatment against AlCl ₃ induction 223
Figure 5.41 Showing the number of zebrafish embryo survived and hatched per group $(n = 9)$ after 24 hours of MKLE treatment against MSG induction 224

Figure 5.42 Showing the number of survived, hatched and deformed embryos after 48 hours of MKLE treatment against MSG induction 225

Figure 5.43 Showing the number of survived, died and deformed larvae after 24 hours of MKLE treatment against MSG induction 226

Figure 5.44 Showing the number of survived and deformed after 48 hours of treatment with MKLE against MSG induction 227

Figure 5.45 The hippocampal MAP2 mRNA expressions for 2VO vs. HC 228

Figure 5.46 The hippocampal GFAP mRNA expressions for 2VO vs. HC 228

Figure 5.47 The hippocampal MAP2 mRNA expressions between MKLE and NSO treated animal groups vs. 2VO and HC 229

Figure 5.48 The hippocampal GFAP mRNA expressions for treated groups vs. 2VO and HC groups 229

LIST OF ABBREVIATIONS

AD	Alzheimer's disease
AChE	Acetyl cholinesterase enzyme
ADAD	Autosomal dominant Alzheimer's disease
AlCl ₃	Aluminium chloride
AF	Arterial fibrillation
Al-20	Aluminium chloride (20 μ g/mL) / Co-treated AlCl ₃
ALS	Amyotrophic lateral sclerosis
AMV	Avian myeloblastoma leukemia virus
ARMD	Age-related macular degeneration
AP	Awkward position (zebrafish)
APP	Amyloid precursor protein
APOE	Apolipoprotein E
ATP	Adenosine triphosphate
Avg.	Average
BBB	Blood brain barrier
BDNF	Brain derived neurotrophic factor
BH	Black honey (Tualang Honey)
BM	Body movement
BSC	Biosafety cabinet
bp	Base pair
b.w	Body weight
CA	Cardiac arrhythmia
CA1	Central amygdala (hippocampus)/ cortical area 1 (pyramidal cells)
CBF	Cerebral blood flow
CCA	Common carotid artery (-ies)
CCH	Chronic cerebral hypoperfusion
CGRP	Calcitonin gene related peptide
CHF	Congestive heart failure
CMA	Chymase gene / Heart Chymase
CNS	Central nervous system
Conc.	Concentration
CRGP	Calcitonin Gene Related Peptide
CRPF	Cortical renal plasma flow
CRS	Chinese Restaurant Syndrome
CVD	Cardiovascular disease
CLU	Clusterin
CR1	Chicken Repeat 1
D.log	Displaced log along the slope Difference
DCM	Dichloromethane
DF	Deformed face or Doggy face (zebrafish)
Dif.	Difference
DM	Diabetes mellitus
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethyl sulfoxide

DO	Dissolved oxygen
DPPH	Diphenyl-2-picryl-hydrazyl
dpf	Days of post-fertilization
DS	Down's syndrome
ds	Double strand
DZ	Drowsiness
ELT	Escape latency time
EOFAD	Early onset Familial Alzheimer's disease
EP	Escape platform
EPSP	Excitatory synaptic potential
Eqs	Equations
EtBr	Ethidium bromide
GADPH	Glyceraldehyde-3-phosphate dehydrogenase
GC	Gas chromatography
GFAP	Glial fibrillary acidic protein
GFR	Glomerular filtration rate
GMO	Genetically modified organism
GRP	Glial restricted precursor cells
GOI	Gene of interest
GSH-Px	Glutathione peroxidase
HA	Hyperactive
HC	Healthy control
HC1	Hydrogen chloride
HD	Hungtington's disease
HPLC	High performance liquid chromatography
HPRT1	Hypoxanthine phosphoribosyltransferease 1
hpf	Hours of post-fertilization
hpi (HPI)	Hours of post-induction
HIC	Head in chorion
ICRACU	Integrated Centre for Research Animal Care and Use
IC50	50% inhibitory concentration
IP	Intraperitoneal
IRI	Ischemia-reperfusion injury
LBs	Lewy bodies
LNs	Lewy neuritis
MAP2	Microtubule associated protein 2
MCI	Mild cognitive impairment
MDA	Malondialdehyde
ME	Mother emulsion
MKLE	Murraya koenigii leaves extract / MKLE treated group
MKL	Murraya koenigii leaves
MMLV	Monoley murine leukemia virus
MWM	Morris water maze
NFT	Neurofibrillary tangles
ng	Nanogram
NMDA	N-methyl-D-aspartate receptor
MSG	Monosodium glutamate
NC	Normal control
NO	Nitric oxide

NSAIDs	Non-steroidal anti-inflammatory drugs
NSAIDS	Nigella sativa seeds extract / NSO treated group
NSS	Nigella sativa seeds
NSO	Nigella sativa seeds
NTC	No template control (Blank well)
NTP	Notemplate control (Blank wen) National Toxicological Program (USA)
NIP	National Toxicological Program (USA) Nitric oxide
NO OD	
PD	Optical density Parkinson's disease
PE	Primary emulsion
PICALM	Phosphatidylinositol Clathrin Assembly Lymphoid-Myeloid
IICALIVI	Leukemia
RT-qPCR	Reverse transcriptase quantitative-polymerase chain reaction
RNS	Reactive oxygen species
RO	Reverse osmosis
ROS	Reactive oxygen species
S	Stock
SBH	Stingless bee honey (Kelulut honey)
SD	Sprague Dawley rats
SE	Secondary emulsion
SFE	Supercritical Fluid Extraction
SORL1	Sortilin-related receptor, L (DLR Class) A
SS	Single strand
Т	Tyrosine
TE	Thrombotic episode or Tertiary emulsion
TLC	Thin layer chromatography
TM	Tail movement
TQ	Thymoquinine
TREM2	Triggering Receptor Expressed on Myeloid Cells 2
Te	End temperature
Tm	Melt temperature
TO	Initial temperature or Begin temperature
T80	Tween 80
VD	Vascular dementia
VEGF-A	Vascular endothelial growth factor A
2VO	Two-vessel occlusion / 2VO untreated group
Vol.	Volume
W	Working
WM	White matter
WSE	Water soluble extract of <i>N.sativa</i> seeds

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Nigella sativa L. (N.sativa) is an annual herbaceous flowering plant belonging to Ranunculaceae family widely grown in the Mediterranean countries, Western Asia, Middle East, and Eastern Europe. The preventive and relieving effects of N.sativa seeds have been attributed to its prominent phytoconstituents such nigellicine, nigellidine, TQ, dithymoquinone, thymol and carvacrol (Ahmad et al., 2013). The essential oil of *N.sativa* seeds has been reported to contain various pharmacologically active constituents including TQ (30-48%), thymol, thymohydroquinone, dithymoquinone, p-cymene (7-15%), carvacrol (6-12%), sesquiterpene longifolene (1-8%), 4-terpineol (2-7%), t-anethol (1-4%) and a-pinene (Houghton et al., 1995; Ahmad et al., 2013).

The seeds were also reported to possess many non-oily and non-caloric components in trace amounts including pyrazole alkaloids (nigellidine and nigellicine), isoquinoline alkaloids (nigellicimine and nigellicimine-N-oxide), saponin, vitamins (riboflavin, thiamine, niacin, pyridoxine, folic acid and vitamin E), and minerals (potassium, sodium, calcium, phosphorus, magnesium, copper and iron) (Nergiz et al., 1993; Gholamnezhad et al., 2016).

The fixed oil (36-38%) of *N.sativa* seeds has been reported to compose mainly of unsaturated fatty acids including arachidic and eicosadienoic acids (Houghton et al., 1995). TQ has been reported to have potential therapeutic properties such as anti-inflammatory, anti-histaminic, hepatoprotective, anti-oxidant and neuroprotective in

animal models (Hosseinzadeh et al., 2007; Khazdair, 2015). According to (Mohamed et al., 2002), TQ (1 mg/kg, injected into the tail vein) has increased the glutathione level and reduced perivascular inflammation and encephalomyelitis symptoms in rats. It was also reported that TQ (15 mg/kg, i.p injection in mice) treatment has showed 90% preventive and 50% curative effects in chronic relapsing multiple sclerosis (Mohamed et al., 2008).

Murraya koenigii (L.) Spreng (*M.koenigii*) or curry leaves belong to *Rutaceae* family is one of the most well-known ingredients in South and Southeast Asian cuisines including Malaysia. The leave have a little pungently bitter and softly citrus taste. From the leaves, different compounds have been isolated including carbazole alkaloids, volatile oils and many others. Several studies have been carried on its phytochemical screening using different types of solvents for extraction such as petroleum ether, ethyl acetate, chloroform, ethanol, methanol and water (Handral et al., 2012).

It was reported that the leaves contain proteins, carbohydrates, fiber, minerals, carotene, nicotinic acid and vitamin C with high amount of oxalic acid. The leaves were also found to have crystalline glycosides, carbazole alkaloids, koenigin and resin (Handral et al., 2012). Alkaloids such as giriminbine, iso-mahanimbin, koenine, koenigine, koenidine and koenimbine were also found in the leaves (Narasimhan et al., 1975). These compounds were known to exhibit various bioactivities including anti-oxidant and anti-amnesic activities (Mani et al., 2012; Mani et al., 2013). The petroleum ether extract of the leaves pre-treatment (300 and 500 mg/kg) for 15 days has been reported to improve memory and learning in aged mice which was comparable with the effect of standard Piracetam (400 mg/kg) and it was also found that the same dose of petroleum ether extract has remarkably reduced the brain

cholinesterase activity but inferior to that of Doneprezil (0.5 mg/kg) treated mice (Tembhurne, 2010; Handral et al., 2012). Isolated carbazole alkaloids such mahanimbine and koenigine from the leaves have been reported to exhibit high degree of DPPH free radical scavenging activity (Rao et al., 2007). Many pharmacological activities of this plant have been investigated so far where most of the studies have been carried on the leaves using various solvents including methanol (Handral et al., 2012).

Recently, both *N.sativa* or black cumin seeds and *M.koenigii* or curry leaves have been considered as effective natural remedies against neuroinflammationmediated neurodegeneration, ROS in apoptosis, cerebral ischemia and hypoxia of CCH (Alsaif, 2007). Studies on these two natural herbs have reported them possessing some common bioactivities such as anti-inflammatory, anti-oxidant and anti-amnesic activities (Vasudevan et al., 2009; Tembhurne, 2010).

Inflammation in central nervous system (CNS) is a key factor in neurodegenerative diseases including Alzheimer's disease (AD). Many relevant scientific studies suggested that neuroglial cells (i.e., astroglia and microglia) play critical role in inflammation-mediated neurodegeneration which could experimentally be achieved by two-vessel occlusion (2VO) in murine models of AD (Farkas et al., 2007; Choi et al., 2011). A series of experiments with chronic cerebral hypoperfusion (CCH) in rat and gerbil models had been started in 1989 and continued until now. The glucose-oxygen levels can easily be manipulated or compromised physiologically by altering the hemodynamic status of cerebral blood flow (CBF) using a rat model that would assume some clinical relevance. CBF could be influenced by manipulating one or more of the three parameters: (1) age of rat, (2) duration of CCH and (3) severity of CCH (Ni et al., 1994; De la Torre, 2000). The severity depends on the supply of glucose and oxygen to the brain and the duration could be maintained for 1 to 52 weeks while both young and/or aged rats could be used. However, neither 2VO nor 3-VO was sufficient to elicit any sensory-motor deficits or cardio-pulmonary problems in these animals during the period of observation (De la Torre et al., 1993). The 2VO model is easier to perform and less-intrusive surgical intervention compared to that of four-vessel occlusion which increases the risk of extraneous factors confounding the response to the ischemic injury while reduces the scope for recovery experiments (McBean et al., 1998).

Previous studies have showed that microscopic changes of a brain were usually observed after 2VO consisting visuo-spatial memory impairment, hippocampal gliosis (astrogliosis/ microgliosis), mean hippocampal CBF reduction of 32%, loss of microtubule associated protein 2 (MAP2) in the apical dendrites of CA1 (a marker of protein synthesis and pre-synaptic activity), cytochrome oxidase decline in CA1 and posterior parietal cortex (a marker of neuronal energy activity), increased hemeoxygenase-1 expression (a marker of oxidative stress), and extracellular deposits of amyloid precursor protein (APP) which is localized to neuronal cell membranes and concentrated in synapses of neurons .

With the help of the 2VO models, elucidation of the causal and sequential interactions of neurodegeneration, chronic cerebral ischemia and/or hypoxia, neuronal injury and memory deficits could be evaluated. The initiating role of chronic cerebral ischemia in neural damage to the hippocampus, the cerebral cortex, the white matter (WM) areas and the visual system has been demonstrated (Bouma et al., 1991; Farkas et al., 2005).

The 2VO model has been applied successfully by scientists for other research fields, like ischemic WM injury and ischemic eye diseases by the time association of

decreased CBF, particularly in the temporal and parietal cortices, with AD has been firmly established (Matsuda, 2001; Farkas et al., 2007).

Moreover, the relationship between regional protein synthesis in the brain and regional CBF has been shown to be closely linked to AD (Kalia, 2005; Girouard et al., 2006). When blood flow in CNS reduces to 60% of the total flow, protein synthesis is practically suppressed (Xie et al., 1989).

In rodents, permanent ligation of the common carotid arteries or 2VO induces not only morphological abnormalities in hippocampal cells (i.e., microglia and astroglia or neuroglia) but also quantifiable cell loss within 7 months of blood flow reduction (De la Torre et al., 1992; Pappas et al., 1996). The loss of neuronal cell bodies and synaptic contacts are the most obvious signs of neurodegeneration in 2VO models (Ohtaki et al., 2006; Farkas et al., 2007).

In resting condition, microglias monitor the health of neurons cautiously and have strong desire to alleviate the suffering. When the brain is being injured physically, chemically or infected, glial cells become activated and secrete a variety of inflammatory mediators and neurotoxic factors that cause neuronal death (Boje et al., 1992; Chao et al., 1992).

Chronic neuroinflammation, cerebral ischemia and hypoxia with elevated proinflammatory cytokines are closely associated with neurodegenerative diseases including AD, Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), taupathies, and age-related macular degeneration (ARMD). Neuroglial crises with chronic neuroinflammation is the starting point for elevated levels of a wide range of potentially neurotoxic molecules such as pro-inflammatory cytokines, proteinases and reactive oxygen species (ROS) (Boje et al., 1992; Jeohn et al., 1998). Several methods have been developed gradually to identify the activated