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ABSTRACT 

Biodegradable poly(lactide-co-glycolide) (PLGA)-based microspheres and 

nanoparticles have received much attention over the last twenty-five years for 

controlled parenteral delivery of therapeutic protein and peptide drugs. In general, 

PLGA-based injectable delivery systems of macromolecular protein and peptide drugs 

still suffer from two major technical problems associated with their inherent stability 

problem. Initial burst release followed by very slow and incomplete release is one of 

the most serious problems in the formulation of PLGA-based protein drugs delivery 

system. In this study, two model proteins, bovine serum albumin (BSA) and 

lysozyme, and a therapeutic peptide drug, insulin loaded double-walled microspheres 

have been fabricated using a fast degrading glucose core, hydroxyl-terminated 

poly(lactide-co-glycolide) (Glu-PLGA) and a moderate degrading carboxyl-

terminated PLGA polymers to reduce the high initial burst release and to eliminate the 

lag phase from the release profile of PLGA microspheres. Double-walled 

microspheres were prepared using a modified water-in-oil-in-oil-in-water (w1/o/o/w2) 

method. In addition, single-polymer microspheres were prepared by a conventional 

water-in-oil-in-water (w1/o/w2) emulsion solvent evaporation method for comparison. 

The microspheres size, morphology, encapsulation efficiency, thermal properties, in 

vitro drug release, and structural integrity of BSA, lysozyme and insulin were 

evaluated in this study. The bioactivity of released lysozyme was determined using 

Micrococcus lysodeikticus as substrate. Moreover, in vivo release and bioactivity of 

insulin was evaluated upon subcutaneous injection of insulin loaded microspheres in 

STZ induced diabetic rats. BSA, lysozyme and insulin loaded  double-walled 

microspheres prepared with Glu-PLGA and PLGA polymers in a mass ratio of 1:1 

showed reduced particle size (< 5 µm), non-porous, smooth-surfaced, and spherical in 

shape. In contrast, highly porous surface was observed for single-polymer 

microspheres. Double-walled microspheres comprising Glu-PLGA and PLGA 

polymers in a mass ratio of 1:1 exhibited higher encapsulation efficiency for BSA 

compared to lysozyme and insulin. A significant reduction in initial burst release was 

achieved for double-walled microspheres compared to single-polymer microspheres. 

In addition, double-walled microspheres prepared using Glu-PLGA and PLGA 

polymers in a mass ratio of 1:1 exhibited continuous and almost complete release of 

BSA and insulin after small initial burst release without any lag phase. In contrast, 

incomplete release was observed for lysozyme from both double-walled and single-

polymer microspheres. SDS-PAGE result shows that a small fraction of encapsulated 

and released proteins (BSA and lysozyme) underwent aggregation and possible 

degradation, whereas no substantial aggregation or degradation was observed for 

insulin during microspheres fabrication and in vitro release studies. Moreover, the in 

vivo studies demonstrated that the bioactivity of insulin was retained throughout the 

experimental period. This study suggests that double-walled microspheres made of 

Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery 

system for pharmaceutical proteins and peptides. 
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  خلاصة البحث

والمكروسفير والنانوسفير المحضرة منه ( PLGA)غليكوليد -كو-حاز البوليمير المنخرب حيوياُ بولي لاكتيد

بشكل عام . لخمس وعشرين سنة الماضية للإيتاء الحقني المديد للبروتينات والببتيدات العلاجيةاهتماماً كبيراً في ا

تعاني من مشكلتين تقنيتين  PLGA قنية للبروتينات والببتيدات المعتمدة على الـلا تزال أنظمة الإيتاء الح

ً مشكلة . أساسيتين  مرتبطتين بالثباتية التحرر الفجائي المبدئي المتبوع بالتحرر البطيء وغير الكامل هو حقا

واللليزوزيم ( BSA)في هذا البحث تمت كبسلة بروتينين نموذجيين هما الألبومين السيرومي البقري . أساسية

خرب ذو النواة الغلوكوزية والببتيد العلاجي الإنسولين في مكروسفيرات ثنائية الجدار باستخدام البوليمير سريع الت

(Glu-PLGA ) وبوليميرPLGA  آخر متوسط التخرب ذو نهاية طرفية كربوكسيلية ، من أجل إنقاص

تم تصنيع . التأخير من نموذج التحرر من المكروكبسولاتالتحرر الفجائي المبدئي المرتفع وأيضاً لإزالة زمن 

إضافة إلى ذلك، تم . ماء/زيت/زيت/المكروسفيرات ثنائية الجدار بطريقة معدلة من طريقة المستحلب ماء

ماء المتبوعة بتبخير /زيت/تصنيع المكروسفيرات أحادية البوليمير باستخدام الطريقة التقليدية مستحلب ماء

م المكروسفيرات من ناحية الأبعاد، فعالية الكبسلة، الخواص الحرارية، تحرر الدواء في الزجاج، تم تقيي. المحل

إضافة . Micrococcus lysodeikticusتم تقييم الفعالية الحيوية لليزوزيم باستخدام  .وتكامل بنية للبروتينات

حقن تحت الجلد للمكروسفيرات المحملة إلى ذلك تم تقييم التحرر في الحي والفعالية الحيوية للإنسولين بعد ال

المكروسفيرات المحملة بالبروتينات وذات الجدار  .STZبالـبالإنسولين في الجرذان ذات الداء السكري المحرض 

أقل من )نقصاناً في الأبعاد  أظهرت 1:1بنسبة  PLGA و Glu-PLGAالمضاعف المحضرة من البوليميرين 

بالمقابل، أظهرت المكروسفيرات وحيدة البوليمير . السطح، وكروية الشكل، غير مسامية، ملساء (مكرون 5

بنسبة  PLGA و Glu-PLGAالمكروسفيرات ثنائية الجدار المكونة من البوليميرين . مسامية سطحية عالية

تم تحقيق نقصان مهم في . مقارنة بالليزوزيم والإنسولين BSAأظهرت فعالية كبسلة أعلى للبروتين  1:1كتلة 

إضافة . التحرر الفجائي المبدئي باستخدام المكروسفيرات ثنائية الجدار مقارنة بالمكروسفيرات وحيدة البوليمير

 Glu-PLGAالمكروسفيرات المحملة بالبروتينات وذات الجدار المضاعف المحضرة من البوليميرين إلى ذلك، 

ً تحررا مستمراً وشبه كامل للـ أظهرت 1:1بنسبة  PLGA و والإنسولين بعد تحرر فجائي مبدئي  BSA أيضا

بالمقارنة، تمت ملاحظة تحرر غير كامل لليزوزيم من كلا المكروسفيرات ثانئية . صغير ومن دون زمن تأخير

البروتينات المكبسلة أظهرت أن جزءاً صغيراً من  SDS-PAGE نتائج فحص الـ. الجدار وأحادية البوليمير

للتكتل ومن المحتمل التخرب، بينما لم تتم ملاحظة تكتل أو تخرب  تعرضت( والليزوزيم BSA)والمتحررة 

أضف إلى لك، بينت الدراسة . جوهري للإنسولين أثناء تحضير المكروسفيرات وخلال قترة التحرر في الزجاج

ذه كخلاصة، تقترح ه. في الحي أن تكامل البنية والفعالية للإنسولين قد تم الحفاظ عليها على طول فترة التجارب

يمكن أن  1:1بنسبة  PLGA و Glu-PLGAالدراسة أن الكروسفيرات ثنائية الجدار الحضرة من البوليميرين 

 .تمثل نظام إيتاء محتمل للبروتينات والببتيدات الصيدلانية
 

 

 

. 
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CHAPTER ONE 

INTRODUCTION 

1.1 POLYMERIC MICROSPHERES AND NANOPARTICLES AS DRUG 

DELIVERY SYSTEMS  

Biodegradable polymeric microspheres and nanoparticles are solid or semisolid 

colloidal spherical particles in which the drug substance is either dispersed or 

dissolved depending on its solubility. Polymeric particles are classified based on their 

size; the diameter of microspheres ranging from 1 to 250 μm while nanoparticles 

having size ranging from 10 nm to 1000 nm (Soppimath et al., 2001). Micro and 

macromolecular drugs are both encapsulated in polymeric particulate devices and can 

be used as drug carriers. The drug can be adsorbed, dissolved, entrapped, or 

encapsulated into the nanoparticles and microspheres matrix.  

Nanoparticles, nanocapsules, microspheres, and microcapsules can be obtained 

with the same polymer depending on the methods of preparation (Barratt, 2000; 

Letchford and Burt, 2007). Nanoparticles and microspheres are matrix systems in 

which drug particles are uniformly dispersed. On the other hand, nanocapsules and 

microcapsules are reservoir systems consisting of a drug-containing core surrounded 

by a rate controlling biodegradable polymer shell. After preparation, the drug loaded 

micro and nanoparticles are usually dispersed in aqueous solution before 

administration. The prepared drug-loaded micro or nanoparticles can be administered 

to humans by a number of routes such as parenteral route, oral route, or applied 

topically either to the eye or the skin. Moreover, nanoparticles can be used for 

pulmonary delivery by inhalation. The conventional drug delivery system does not 

usually provide rate-controlled release or target specific release. It has been observed 
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that conventional drug administration system provides a very sharp increase of drug 

concentration at potentially toxic levels, which follows a relatively short period at the 

therapeutic level and drug concentration eventually decreases until re-administration. 

On the other hand, particulate drug delivery systems (i.e. microspheres and 

nanoparticles) are used as drug carriers to deliver drugs in the areas of interest and to 

release the encapsulated drug slowly over a desired period of time by which the 

effective local drug concentration is maintained. Due to the advantages of sustained 

release and targeted delivery, biodegradable polymeric micro and nanoparticles have 

been investigated extensively for the last two decades.  

Biodegradable polymeric microspheres/nanoparticles exhibit three major 

advantages over conventional drug administration. First, polymeric microspheres or 

nanoparticles demonstrate a higher surface area to volume ratio compared to 

conventional drug carriers due to their micro or nano scale size. The high surface area 

changes particle surface properties and the interactions with disperse phase, especially 

with respect to the dissolution rate (Merisko and Liversidge, 2008). More than 40% of 

the therapeutic compounds are poorly water soluble, and their clinical usefulness are 

greatly limited by their bioavailability (Rasenack and Müller, 2002; Elgart et al., 

2012). Formulating these hydrophobic drugs into a micro or nanoparticle form could 

efficiently improve their dissolution rates, and eventually improve their performance. 

Second, sustained release of a therapeutic agent could be achieved by encapsulating it 

within different polymers. A number of polymers have been investigated to 

encapsulate drug compounds including naturally occurring such as chitosan and serum 

and synthetic polymers such as polylactide (PLA), polyglycolide (PGA), poly(D,L-

lactide-co-glycolide) (PLGA) and polycaprolactone (PCL). Sustained or triggered 

release of drug from micro and nanoparticles could be achieved by selecting 
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polymers, process parameters and methods of preparation (Cai et al., 2009). Third, 

targeted delivery of an encapsulated drug could be achieved by coupling it to a 

molecule with an affinity for a particular target such as cancer cells (Chittasupho et 

al., 2009). This targeted drug delivery system (DDS) has tremendous significance for 

the highly toxic or carcinogenic drugs which are commonly prescribed for the 

treatment of cancer. The majority of anti-cancer drugs are considered as highly 

biotoxic to most kinds of cells, both cancerous and healthy. Targeted delivery of these 

anti-cancer drugs protects normal tissue and thus would minimize the destructive side 

effects of chemotherapy. 

 

1.2 PLGA-BASED MICROSPHERES AND NANOPARTICLES FOR 

PROTEIN/PEPTIDE DRUGS DELIVERY 

Insulin, a potent molecule for treatment of diabetes, was discovered by Banting and 

Best in 1921. Since then, extensive research has been going on to explore the most 

effective and convenient route of its administration (Brown, 2005). In addition to 

subcutaneous injection, various non-invasive routes such as oral, rectal, vaginal, 

buccal, pulmonary and nasal routes have been examined, but so far researchers have 

not yet developed a successful formulation for its clinical application (Sheshala et al., 

2009; Rekha and Sharma, 2013). In response to the growing advances in 

biotechnology and chemistry, the number of recombinant proteins and peptides 

available for therapeutic purposes is increasing significantly (Andersen, 2002; Wurm, 

2004). Proteins are macromolecules, consisting of one or more long chain amino acid 

residues. Amino acid chains with less than 40 residues are usually referred to as 

peptides. Unlike low molecular weight drugs, proteins and peptides have different 

structures such as primary, secondary, tertiary and in some cases, quaternary structure 
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with labile bonds and side chains with chemically reactive groups. The primary 

structure provides the sequence of different amino acids held together by covalent 

peptide bonds. The secondary structure refers to highly regular local sub-structures. 

There are two main types of secondary structure; α-helix and β-sheet. The tertiary 

structure presents a three-dimensional structure of a single protein molecule. The α-

helix and β-sheets are folded into a compact globule. This is driven by a number of 

non-covalent interactions and hydrophobic packing i.e. the affinity to the burial of 

hydrophobic residues from water. However, specific interactions such as salt bridges 

and disulfide bonds are necessary to stabilize the three dimensional structure. The 

quaternary structure is a larger assembly of several protein molecules. Many proteins 

do not have the quaternary structure and are active as monomers. However, 

expectations concerning the delivery of peptide and protein-based therapeutics for the 

treatment of chronic and life threatening diseases have been limited due to their short 

biological half-life, fragile structure and low oral bioavailability (Goddard, 1991; Yun 

et al., 2013). In addition, most of the protein therapeutics is available in the market in 

an injectable form and patients that require chronic treatment with such therapeutics 

often require repetitive injections to achieve the desired therapeutic effects resulting in 

a low patient compliance (Brown, 2005). Therefore, there is a need of a delivery 

system which can release these biologically active molecules continuously for days to 

months.  

Substantial research efforts have been focused to protect therapeutic 

proteins/peptides from proteolysis and to obtain a controlled release and improved 

pharmacokinetic profiles after injection (Perez et al., 2002). The most investigated 

technique is to encapsulate therapeutic protein/peptide drugs in biodegradable 

polymeric microspheres and nanoparticles that release the drug slowly and 
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continuously due to the gradual degradation of the polymer matrix after hydration and 

also cleavage of sensitive bonds present in the polymer chain. Various therapeutic 

peptides and proteins encapsulated PLGA micro and nanoparticles have received 

much attention over the last twenty-five years for their sustained release application 

over an extended period (Kim and Park, 2004; Srinivasan et al., 2005; Geng et al., 

2008; Samadi et al., 2013). Since this technology provides unique advantages over 

traditional delivery approaches (e.g. improved drug efficacy and patient compliance), 

several formulations of proteins based on biodegradable micro/nanoparticles have 

already been marketed, as shown in Table 1.1 (Sinha and Trehan, 2003; Misra, 2010).  

In general, PLGA-based injectable delivery systems of macromolecular protein 

and peptide drugs still suffer from three major technical problems associated with 

their inherent stability problem. Initial burst release followed by very slow and 

incomplete release is three most serious problems in the formulation of PLGA-based 

protein drug delivery system. Initial burst release means a rapid release of a large 

portion of the encapsulated drug during the first few hours of incubation (Huang and 

Brazel, 2001). It occurs due to the immediate dissolution of the surface-bound drug as 

well as the rapid diffusion of hydrophilic protein and peptide drugs through the pre-

existing pores and channels present in the microspheres matrix (Wang et al., 2002a; 

Manoharan and Singh, 2009).  
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Table 1.1 Marketed Formulations of Proteins Based on Biodegradable Microspheres 

 
Polymer Drug 

 

Trade Name Company Route of 

Administration 

Application 

PLGA Leuprolide 

acetate 

Lupron 

Depot
®
 

Takeda-Abott 3 months depot 

suspension 

Prostate 

cancer 

PLGA Recombinant 

human 

growth 

hormone  

Nutropine 

Depot
®
 

Genentech-

Alkermes 

Monthly S/C 

injection 

Growth 

hormone 

deficiency 

PLGA Goserelin 

acetate 

Zoladex
®
 Astra Zeneca S/C implant Prostate 

cancer 

PLGA Octreotide 

acetate 

Sandostatin 

LAR
®
 Depot 

Novartis Injectable S/C 

suspension  

GH 

suppression, 

anticancer 

PLGA Triptorelin 

 

Decapeptyl
®
  Debiopharm  Injectable depot Prostate 

cancer 

PLGA Lanreotide 

 

Somatuline
®
 

LA 

Ipsen Injectable depot Acromegaly 

PLGA Buserelin 

acetate 

Suprecur
®
 

MP 

Aventis S/C implant Prostate 

cancer 

 

 

 

It has been reported that about 10 to 80% of the loaded drug is released within 

a very short period (Ahmed et al., 2012). The initial burst release poses a serious 

toxicity threat as excessive release rates could result in drug levels that are close to or 

exceed toxic threshold levels. Moreover, microspheres tend to have a very slow 

release of the drug (near to zero) after the initial burst. The slow or no release period is 

termed as the “lag phase” or “induction period” which continues until the extensive 

degradation of PLGA starts. During the induction period, the patients may not be 

treated effectively due to release of insufficient drug (Wang et al., 2002a). In some 

studies, a significant fraction of the loaded protein was not released after the bulk 

degradation of the polymer, either due to protein aggregation or adsorption to the 

strong hydrophobic surface of the polymer, resulting in an incomplete protein release 

(Bittner et al., 1998; van de Weert et al., 2000a; Jiang et al., 2002a; Kim and Park, 

2004). Moreover, due to the accumulation of PLGA degradation products (lactic acid 


