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ABSTRACT

Biodegradable  poly(lactide-co-glycolide) (PLGA)-based  microspheres  and
nanoparticles have received much attention over the last twenty-five years for
controlled parenteral delivery of therapeutic protein and peptide drugs. In general,
PLGA-based injectable delivery systems of macromolecular protein and peptide drugs
still suffer from two major technical problems associated with their inherent stability
problem. Initial burst release followed by very slow and incomplete release is one of
the most serious problems in the formulation of PLGA-based protein drugs delivery
system. In this study, two model proteins, bovine serum albumin (BSA) and
lysozyme, and a therapeutic peptide drug, insulin loaded double-walled microspheres
have been fabricated using a fast degrading glucose core, hydroxyl-terminated
poly(lactide-co-glycolide) (Glu-PLGA) and a moderate degrading carboxyl-
terminated PLGA polymers to reduce the high initial burst release and to eliminate the
lag phase from the release profile of PLGA microspheres. Double-walled
microspheres were prepared using a modified water-in-oil-in-oil-in-water (w1/0/0/ws,)
method. In addition, single-polymer microspheres were prepared by a conventional
water-in-oil-in-water (wi/0/w,) emulsion solvent evaporation method for comparison.
The microspheres size, morphology, encapsulation efficiency, thermal properties, in
vitro drug release, and structural integrity of BSA, lysozyme and insulin were
evaluated in this study. The bioactivity of released lysozyme was determined using
Micrococcus lysodeikticus as substrate. Moreover, in vivo release and bioactivity of
insulin was evaluated upon subcutaneous injection of insulin loaded microspheres in
STZ induced diabetic rats. BSA, lysozyme and insulin loaded double-walled
microspheres prepared with Glu-PLGA and PLGA polymers in a mass ratio of 1:1
showed reduced particle size (< 5 um), non-porous, smooth-surfaced, and spherical in
shape. In contrast, highly porous surface was observed for single-polymer
microspheres. Double-walled microspheres comprising Glu-PLGA and PLGA
polymers in a mass ratio of 1:1 exhibited higher encapsulation efficiency for BSA
compared to lysozyme and insulin. A significant reduction in initial burst release was
achieved for double-walled microspheres compared to single-polymer microspheres.
In addition, double-walled microspheres prepared using Glu-PLGA and PLGA
polymers in a mass ratio of 1:1 exhibited continuous and almost complete release of
BSA and insulin after small initial burst release without any lag phase. In contrast,
incomplete release was observed for lysozyme from both double-walled and single-
polymer microspheres. SDS-PAGE result shows that a small fraction of encapsulated
and released proteins (BSA and lysozyme) underwent aggregation and possible
degradation, whereas no substantial aggregation or degradation was observed for
insulin during microspheres fabrication and in vitro release studies. Moreover, the in
vivo studies demonstrated that the bioactivity of insulin was retained throughout the
experimental period. This study suggests that double-walled microspheres made of
Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery
system for pharmaceutical proteins and peptides.
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CHAPTER ONE
INTRODUCTION

1.1 POLYMERIC MICROSPHERES AND NANOPARTICLES AS DRUG
DELIVERY SYSTEMS

Biodegradable polymeric microspheres and nanoparticles are solid or semisolid
colloidal spherical particles in which the drug substance is either dispersed or
dissolved depending on its solubility. Polymeric particles are classified based on their
size; the diameter of microspheres ranging from 1 to 250 um while nanoparticles
having size ranging from 10 nm to 1000 nm (Soppimath et al., 2001). Micro and
macromolecular drugs are both encapsulated in polymeric particulate devices and can
be used as drug carriers. The drug can be adsorbed, dissolved, entrapped, or
encapsulated into the nanoparticles and microspheres matrix.

Nanoparticles, nanocapsules, microspheres, and microcapsules can be obtained
with the same polymer depending on the methods of preparation (Barratt, 2000;
Letchford and Burt, 2007). Nanoparticles and microspheres are matrix systems in
which drug particles are uniformly dispersed. On the other hand, nanocapsules and
microcapsules are reservoir systems consisting of a drug-containing core surrounded
by a rate controlling biodegradable polymer shell. After preparation, the drug loaded
micro and nanoparticles are usually dispersed in aqueous solution before
administration. The prepared drug-loaded micro or nanoparticles can be administered
to humans by a number of routes such as parenteral route, oral route, or applied
topically either to the eye or the skin. Moreover, nanoparticles can be used for
pulmonary delivery by inhalation. The conventional drug delivery system does not

usually provide rate-controlled release or target specific release. It has been observed



that conventional drug administration system provides a very sharp increase of drug
concentration at potentially toxic levels, which follows a relatively short period at the
therapeutic level and drug concentration eventually decreases until re-administration.
On the other hand, particulate drug delivery systems (i.e. microspheres and
nanoparticles) are used as drug carriers to deliver drugs in the areas of interest and to
release the encapsulated drug slowly over a desired period of time by which the
effective local drug concentration is maintained. Due to the advantages of sustained
release and targeted delivery, biodegradable polymeric micro and nanoparticles have
been investigated extensively for the last two decades.

Biodegradable polymeric microspheres/nanoparticles exhibit three major
advantages over conventional drug administration. First, polymeric microspheres or
nanoparticles demonstrate a higher surface area to volume ratio compared to
conventional drug carriers due to their micro or nano scale size. The high surface area
changes particle surface properties and the interactions with disperse phase, especially
with respect to the dissolution rate (Merisko and Liversidge, 2008). More than 40% of
the therapeutic compounds are poorly water soluble, and their clinical usefulness are
greatly limited by their bioavailability (Rasenack and Muller, 2002; Elgart et al.,
2012). Formulating these hydrophobic drugs into a micro or nanoparticle form could
efficiently improve their dissolution rates, and eventually improve their performance.
Second, sustained release of a therapeutic agent could be achieved by encapsulating it
within different polymers. A number of polymers have been investigated to
encapsulate drug compounds including naturally occurring such as chitosan and serum
and synthetic polymers such as polylactide (PLA), polyglycolide (PGA), poly(D,L-
lactide-co-glycolide) (PLGA) and polycaprolactone (PCL). Sustained or triggered

release of drug from micro and nanoparticles could be achieved by selecting



polymers, process parameters and methods of preparation (Cai et al., 2009). Third,
targeted delivery of an encapsulated drug could be achieved by coupling it to a
molecule with an affinity for a particular target such as cancer cells (Chittasupho et
al., 2009). This targeted drug delivery system (DDS) has tremendous significance for
the highly toxic or carcinogenic drugs which are commonly prescribed for the
treatment of cancer. The majority of anti-cancer drugs are considered as highly
biotoxic to most kinds of cells, both cancerous and healthy. Targeted delivery of these
anti-cancer drugs protects normal tissue and thus would minimize the destructive side

effects of chemotherapy.

1.2 PLGA-BASED MICROSPHERES AND NANOPARTICLES FOR
PROTEIN/PEPTIDE DRUGS DELIVERY

Insulin, a potent molecule for treatment of diabetes, was discovered by Banting and
Best in 1921. Since then, extensive research has been going on to explore the most
effective and convenient route of its administration (Brown, 2005). In addition to
subcutaneous injection, various non-invasive routes such as oral, rectal, vaginal,
buccal, pulmonary and nasal routes have been examined, but so far researchers have
not yet developed a successful formulation for its clinical application (Sheshala et al.,
2009; Rekha and Sharma, 2013). In response to the growing advances in
biotechnology and chemistry, the number of recombinant proteins and peptides
available for therapeutic purposes is increasing significantly (Andersen, 2002; Wurm,
2004). Proteins are macromolecules, consisting of one or more long chain amino acid
residues. Amino acid chains with less than 40 residues are usually referred to as
peptides. Unlike low molecular weight drugs, proteins and peptides have different

structures such as primary, secondary, tertiary and in some cases, quaternary structure



with labile bonds and side chains with chemically reactive groups. The primary
structure provides the sequence of different amino acids held together by covalent
peptide bonds. The secondary structure refers to highly regular local sub-structures.
There are two main types of secondary structure; a-helix and B-sheet. The tertiary
structure presents a three-dimensional structure of a single protein molecule. The a-
helix and B-sheets are folded into a compact globule. This is driven by a number of
non-covalent interactions and hydrophobic packing i.e. the affinity to the burial of
hydrophobic residues from water. However, specific interactions such as salt bridges
and disulfide bonds are necessary to stabilize the three dimensional structure. The
quaternary structure is a larger assembly of several protein molecules. Many proteins
do not have the quaternary structure and are active as monomers. However,
expectations concerning the delivery of peptide and protein-based therapeutics for the
treatment of chronic and life threatening diseases have been limited due to their short
biological half-life, fragile structure and low oral bioavailability (Goddard, 1991; Yun
et al., 2013). In addition, most of the protein therapeutics is available in the market in
an injectable form and patients that require chronic treatment with such therapeutics
often require repetitive injections to achieve the desired therapeutic effects resulting in
a low patient compliance (Brown, 2005). Therefore, there is a need of a delivery
system which can release these biologically active molecules continuously for days to
months.

Substantial research efforts have been focused to protect therapeutic
proteins/peptides from proteolysis and to obtain a controlled release and improved
pharmacokinetic profiles after injection (Perez et al., 2002). The most investigated
technique is to encapsulate therapeutic protein/peptide drugs in biodegradable

polymeric microspheres and nanoparticles that release the drug slowly and



continuously due to the gradual degradation of the polymer matrix after hydration and
also cleavage of sensitive bonds present in the polymer chain. Various therapeutic
peptides and proteins encapsulated PLGA micro and nanoparticles have received
much attention over the last twenty-five years for their sustained release application
over an extended period (Kim and Park, 2004; Srinivasan et al., 2005; Geng et al.,
2008; Samadi et al., 2013). Since this technology provides unique advantages over
traditional delivery approaches (e.g. improved drug efficacy and patient compliance),
several formulations of proteins based on biodegradable micro/nanoparticles have
already been marketed, as shown in Table 1.1 (Sinha and Trehan, 2003; Misra, 2010).

In general, PLGA-based injectable delivery systems of macromolecular protein
and peptide drugs still suffer from three major technical problems associated with
their inherent stability problem. Initial burst release followed by very slow and
incomplete release is three most serious problems in the formulation of PLGA-based
protein drug delivery system. Initial burst release means a rapid release of a large
portion of the encapsulated drug during the first few hours of incubation (Huang and
Brazel, 2001). It occurs due to the immediate dissolution of the surface-bound drug as
well as the rapid diffusion of hydrophilic protein and peptide drugs through the pre-
existing pores and channels present in the microspheres matrix (Wang et al., 2002a;

Manoharan and Singh, 2009).



Table 1.1 Marketed Formulations of Proteins Based on Biodegradable Microspheres

Polymer | Drug Trade Name | Company Route of | Application
Administration
PLGA | Leuprolide Lupron Takeda-Abott | 3 months depot | Prostate
acetate Depot® suspension cancer
PLGA | Recombinant | Nutropine Genentech- Monthly  S/C | Growth
human Depot® Alkermes injection hormone
growth deficiency
hormone
PLGA | Goserelin Zoladex® Astra Zeneca | S/C implant Prostate
acetate cancer
PLGA | Octreotide Sandostatin Novartis Injectable S/C | GH
acetate LAR® Depot suspension suppression,
anticancer
PLGA | Triptorelin Decapeptyl® | Debiopharm | Injectable depot | Prostate
cancer
PLGA | Lanreotide Somatuline® | Ipsen Injectable depot | Acromegaly
LA
PLGA | Buserelin Suprecur® Aventis S/C implant Prostate
acetate MP cancer

It has been reported that about 10 to 80% of the loaded drug is released within
a very short period (Ahmed et al., 2012). The initial burst release poses a serious
toxicity threat as excessive release rates could result in drug levels that are close to or
exceed toxic threshold levels. Moreover, microspheres tend to have a very slow
release of the drug (near to zero) after the initial burst. The slow or no release period is
termed as the “lag phase” or “induction period” which continues until the extensive
degradation of PLGA starts. During the induction period, the patients may not be
treated effectively due to release of insufficient drug (Wang et al., 2002a). In some
studies, a significant fraction of the loaded protein was not released after the bulk
degradation of the polymer, either due to protein aggregation or adsorption to the
strong hydrophobic surface of the polymer, resulting in an incomplete protein release
(Bittner et al., 1998; van de Weert et al., 2000a; Jiang et al., 2002a; Kim and Park,

2004). Moreover, due to the accumulation of PLGA degradation products (lactic acid



