COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

CHARACTERISATION OF α-GLUCOSIDASE INHIBITORS FROM *Clinacanthus nutans* (Burm.f.) Lindau LEAVES EXTRACT USING METABOLOMICS APPROACH AND MOLECULAR DOCKING SIMULATION

BY

SUGANYA A/P MURUGESU

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in Pharmaceutical Sciences (Pharmaceutical Chemistry)

> Kulliyyah of Pharmacy International Islamic University Malaysia

> > DECEMBER 2018

ABSTRACT

The use of medicinal plants to combat various diseases has grown intensively due to the side effects from commercial synthetic drugs. Clinacanthus nutans (Burm.f.) Lindau is a traditional medicinal plant native to Malaysia, yet to be explored for its antidiabetic effect. Therefore, this study aimed to investigate the antidiabetic potential of the plant using metabolomics approach and molecular docking simulation. The 80% methanolic crude extract of this plant leaves was partitioned using different polarity solvents viz., *n*-hexane, *n*-hexane: ethyl acetate (1:1, v/v), ethyl acetate, ethyl acetate: methanol (1:1, v/v) and methanol. All fractions were screened for antioxidant and antidiabetic activity via bioassays techniques. The α -glucosidase inhibitors of the plant were identified using gas and liquid chromatography fitted with mass spectrometry (GCMS and LCMS, respectively) based metabolomics. All the inhibitors identified were then docked to α glucosidase enzyme crystal structure to predict its ligand-protein interaction. The study also developed a validated regression model using Fourier transform infrared (FTIR) spectroscopy. Lastly, the most active fraction was investigated for its toxicity level using zebrafish (Danio rerio) embryos. Despite a moderate antioxidant capacity, nhexane fraction exhibited a good α -glucosidase and dipeptidyl peptidase-IV inhibiting activities. The *n*-hexane fraction also improved glucose uptake in a dose-dependent manner. Chemical profiling utilising GCMS based metabolomics derived 11 bioactive compounds namely; palmitic acid, phytol, hexadecanoic acid (methyl ester), 1monopalmitin, stigmast-5-ene, pentadecanoic acid. heptadecanoic acid. 1linolenoylglycerol, glycerol monostearate, α -tocospiro В and stigmasterol corresponding to the distinct biological activity. Meanwhile, LCMS revealed 4 compounds tentatively identified as: 4.6.8-megastigmatrien-3-one; N-isobutyl-2nonen-6,8-diynamide; 1',2'-bis(acetyloxy)-3',4'-didehydro-2'-hydro-β, ψ-carotene and 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. The docking results predicted the interaction of all the identified compounds to be in noncompetitive mode with majorly involving hydrophobic interactions with the protein residues. Some of the residues involved include LYS156, THR310, PRO312, LEU313, GLU411 and ASN415, etc with hydrogen bond while TRP15, VAL232, HIE280, ALA292, PHE314, ARG315, etc in hydrophobic contact. The partial least square model generated using FTIR analysis was validated using external sample and could potentially predict the α -glucosidase inhibitory activity of C. nutans leaves extracts thus can be applied for quality control purposes. The toxicity assessment showed the morphological defects caused by *n*-hexane fraction such as hyperactivity, delayed hatching, crooked backbone, reduced pigmentation, awkward position and oedema at 125 μ g/mL. The LC₅₀ value was calculated to be 75.49 μ g/mL. However, the plant extract can be developed as an antidiabetic agent after the removal of the toxicants. Conclusively, the metabolomics approach in this study has revealed the antidiabetic potential of C. nutans leaves through identification of the active α -glucosidase inhibitors from this plant.

خلاصة البحث

استخدام النباتات الطبية لمكافحة العديد من الأمراض نمت بشكل مكثف بسبب الآثار الجانبية النابجة عن الأدوية المصنعة تجاري كليناكانتس نيوتنس هو نبات ماليزي أصلى و معروف عادة باستخدامه ضد امراض النقرس و فرط حمض يوريك الدم و التهابات و الحمي و الطفح جلدي و غير ذلك ؛ ومع ذلك لا يزال يتعين استكشاف تأثيرها على مرض السكر. ولذلك ، تحدفت الدراسة إلى التحقق من فاعلية النبات على مرض السكر باستخدام نهج الاستقلاب ومحاكاة الالتصاق الجزيئي. خام مستخلص الميثانول بنسبة 80٪ من أوراق النبات تم استخلاصه باستخدام مذيبات قطبية مختلفة. جميع المستخلصات تم التحقق من تأثيره مرض السكر و مضادات الاكسدة. تم تحديد مثبطات الالفا كليكوزيدز للنبات باستخدام الغاز والكروماتوغرافيا السائلة المزودة بمقياس الطيف الكتلى (LCMS و GCMS) مع نهج الاستقلاب . تم ربط جميع الموانع المحددة إلى بنية بلورة إنزيم الالفا كليكوزيدز للتنبؤ بتفاعل المركب . كما طورت الدراسة نموذج انحدار معتمد باستخدام التحليل الطيفي للأشعة تحت الحمراء(FTIR) . وأخيرا تم التحقيق الجزء الأكثر نشاطا لمستوى سميته باستخدام الأجنة (دانيو ريريو) الزرد. على الرغم من قدرة مضادات الأكسدة المعتدلة ، عرض جزء ن - هكسان جيد الالفا كليكوزيدز وأنشطة تثبيط-DPP .IV تحسّن أيضًا جزء ن - هكسان من امتصاص الغلوكوز بطريقة تعتمد على الجرعة. التنميط الكيميائي باستخدام نهج الاستقلاب مع GCMS مستمدة من 11 مركبات المقابلة للنشاط البيولوجي المميز. وفي الوقت نفسه ، كشف LCMS عن 4 مركبات تم تحديدها مبدئياً .-تنبأت نتائج الالتحام بتفاعل جميع المركبات التي تم تحديدها في وضع غير تنافسي مع وجود تفاعلات كارهة للماء مع مخلَّفات البروتين. تتضمن بعض الوحدات البنائية المتضمنة LYS156 وRO31, THR31 وLEU313 و GLU411 وASN415 ، إلخ مع رابطة هيدروجينية بينما TRP15 وVAL232 و HIE280 وARG315 PHE314 وARG315 وما إلى ذلك في اتصال مسعور. تم التحقق من صحة النموذج الجزئي الأقل مربع الذي تم إنشاؤه باستخدام تحليل FTIR باستخدام عينة خارجية ويمكن أن يتنبأ على الأرجح بالأنشطة المثبطة الالفا كليكوزيدز لمستخلصات أوراق كليناكانتس وبالتالي يمكن تطبيقها لأغراض مراقبة الجودة. أظهر تقييم التشوهات المورفولوجية التي تسببها أجزاء ن – هكسان مثل فرط النشاط ، الفقس المتأخر ، العمود الفقري المتعرج ، التصبغ المخفف ، الموضع الغريب والوذمة عند 125 ميكروغرام / مل. تم حساب قيمة LC50 لتكون 75.49 ميكروغرام / مل. و لذلك يمكن تطوير المستخلص النباتي كعامل مضاد لمرض السكر.

APPROVAL PAGE

The thesis of Suganya A/P Murugesu has been approved by the following:

Alfi Khatib Supervisor

Qamar Uddin Ahmed Co-Supervisor

Bisha Fathamah Uzir Co-Supervisor

Siti Zaiton Md So'ad Internal Examiner

Jalifah Latip External Examiner

Hasmah Abdullah External Examiner

Norlelawati A. Talib Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Suganya A/P Murugesu

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

CHARACTERISATION OF α-GLUCOSIDASE INHIBITORS FROM *Clinacanthus nutans* (Burm.f.) Lindau LEAVES EXTRACT USING METABOLOMICS APPROACH AND MOLECULAR DOCKING SIMULATION

I declare that the copyright holders of this thesis are jointly owned by the student and IIUM.

Copyright © 2018 Suganya A/P Murugesu and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Suganya A/P Murugesu

Signature

Date

To Appa and Amma,

Mr. Murugesu and Mrs. Anjalai

ACKNOWLEDGEMENTS

I'm grateful to God, who has been with me throughout this journey. Although, it has been tasking, the endless mercies and blessings on me ease the herculean task of completing this thesis.

I am most indebted to my supervisor, Assoc. Prof. Dr. Alfi Khatib, whose enduring disposition, kindness, promptitude, thoroughness and friendship have facilitated the successful completion of my research work. His brilliant grasp of the aim and content of this work led to his insightful comments, suggestions and queries which helped me a great deal. Despite his commitments, he took time to listen and attend to me whenever requested. I am also grateful and thankful to my co-supervisor, Assoc. Prof. Dr. Qamar Uddin Ahmed whose support and cooperation contributed to the outcome of this work. The moral support he extended to me is in no doubt a boost that helped in building and writing the draft of this research work and not to forget many thanks to Asst. Prof. Dr. Bisha Fathamah Uzir for her endless support and motivation. Not forgetting Dr. Zalikha Ibrahim, who helped me to learn and grasp a new computational study involving molecular docking in a very short time and easier way.

I would also like to thank the Ministry of Higher Education (MOHE) for their sponsorship by providing a full scholarship (MyPhD) that enables me to dream and to pursue this dream successfully.

Lastly, my gratitude goes to my loving parents; Mr. Murugesu and Mrs. Anjali, and sisters; Mrs. Jamuna, Miss. Periya Lahtha and Dr. Ghanapriyah (MBBS), as well as my dearest brother, Mr. Raghu Velu (PW II, TDM), for their endless love, prayers, understanding and endurance while away as well as to my awesome friend, Dr. Vikneswari Perumal, who have always been of a great support and positive vibe throughout this journey and not to forget all my colleagues and lab mates. I humbly dedicate my thesis work to all of them.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval Page	iv
Declaration	v
Copyright Page	vi
Dedication	vii
Acknowledgements	viii
List of Tables	xiii
List of Figures	xv
List of Abbreviations	xviii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of the Study	1
1.2 Problem Statement	5
1.3 Research Objectives	8
1.4 Research Hypotheses	8
1.5 Significance of the Study	9
CHAPTER TWO: LITERATURE REVIEW	10
2.1 Natural Sources as Medicinal Product	10
2.2 Acanthaceae	13
2.2.1 Family Characteristics	13
2.3 Clinacanthus nutans (Burm.f.) Lindau	14
2.3.1 Botanical Identification	14
2.4 Traditional Uses of <i>C. nutans</i>	16
2.5 Pharmacological Properties of C. nutans	17
2.5.1 Antioxidant Activity	18
2.5.2 Anticancer Activity	18
2.5.3 Anti-inflammatory Activity	19
2.5.4 Antidiabetic Activity	19
2.5.5 Antimicrobial Activity	20
2.5.6 Anti-venom Activity	21
2.6 Diabetes Mellitus (DM)	25
2.6.1 Definition and Epidemiology	25
2.6.2 Prevalence of DM	25
2.6.3 Types of DM	26
2.6.3.1 Type 1 DM	26
2.6.3.2 Type 2 DM	27
2.6.3.3 Gestational DM	27
2.6.4 Pathogenesis of Type 2 DM	28
2.6.5 Diagnosis of DM	29
2.6.6 Treatment of DM	30
2.6.7 Treatment of DM Using Herbs	33
2.7 In vitro Bioassays To Screen Bioactivity of Clinacanthus nutans	
Leaves Extracts	37

	2.7.1 Antioxidant and Diabetes	. 37
	2.7.1.1 Antioxidant activity bioassays	. 38
	2.7.1.1.1 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical	
	Scavenging Assay	. 38
	2.7.1.1.2 Ferric Reducing Antioxidant Potential (FRAP)	
	Assay	. 39
	2.7.1.1.3 Xanthine Oxidase Inhibitory Assay	. 39
	2.7.2 Antidiabetic Activity Bioassays	. 41
	2.7.2.1 α-Glucosidase Inhibitory Assay	. 41
	2.7.2.2 Dipeptidyl Peptidase-IV Inhibitory Assay	. 43
	2.7.2.3 2-NBDG Uptake in 3T3-L1Cells Assay	. 44
2.8	B Importance of Phytochemical Profiling	. 45
2.9	Plants Metabolomics	. 47
	2.9.1 Fourier Transform Infrared (FTIR) Analysis	. 47
	2.9.2 Chromatography Analysis	. 48
	2.9.3 Nuclear Magnetic Resonance (NMR) Spectroscopy	. 49
2.1	0 Molecular Docking	. 50
2.1	1 Toxicity Study using Zebrafish Embryo	. 53
СНАРТЕ	CR THREE: MATERIALS AND METHODS	. 59
3.1	Materials	. 59
3.2	2 Apparatus	. 60
3.3	Sample Collection	. 60
3.4	Preliminary Analysis for Plant Activity	. 60
	3.4.1 Crude Extract Preparation	. 60
	3.4.2 Plant Fractions Preparation	. 61
	3.4.3 Percentage of Yield	. 62
	3.4.4 In vitro Antioxidant Activity Analysis	. 62
	3.4.4.1 2.2- Diphenyl-1-picrylhydrazyl (DPPH) Radical	
	Scavenging Assay	. 62
	3.4.4.2 Ferric Reducing Antioxidant Potential (FRAP) Assay	. 63
	3.4.4.3 Xanthine Oxidase Inhibitory Assay	. 63
	3.4.5 In vitro Antidiabetic Activity Analysis	. 64
	3.4.5.1 α-Glucosidase Inhibitory (AGI) Assay	. 64
	3.4.5.2 Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Assay	. 65
	3.4.5.3 2-NBDG Uptake in 3T3-L1 Cells Assay	. 66
	3.4.5.3.1 Cell Culture	. 66
	3.4.5.3.2 Cell Viability Assay	. 66
	3.4.5.3.3 3T3-L1 Preadipocyte Differentiation	. 67
	3.4.5.3.4 2- NBDG Uptake in 3T3-L1 Cells Assay	. 68
3.5	Metabolites Profiling of <i>Clinacanthus nutans</i> Leaves using	
	Metabolomics Approach	. 69
	3.5.1 Metabolites Profiling using GCMS	. 69
	3.5.1.1 Derivatisation process	. 69
	3.5.1.2 Analytical Method	. 70
	3.5.1.3 Data Processing	. 70
	3.5.2 Quantification of Active Phytoconstituents	. 71
	3.5.2.1 Development of Standard Curve of the Reference	. 72
	3.5.2.2 Determination of LOD and LOQ Concentration	. 72
	-	

3.5.2.3 Determination of Recovery of the Internal Standard	
(Methylnonadecanoate)	73
3.5.2.3.1 Development of Standard Curve of the Internal	
Standard (IS)	73
3.5.2.3.2 Calculation of the Recovery of the Internal	
Standard (IS)	73
3.5.2.3.3 Determination of Targeted Metabolites	
Concentration in the Sample	74
3.5.3 Metabolites Profiling using Q-ToF LCMS	74
3.6 Molecular Docking	75
3.7 Fingerprinting of <i>Clinacanthus nutans</i> Leaves using FTIR Based	
Metabolomics	76
3.7.1 Analytical Method	76
3.7.2 Multivariate Data Analysis (MVDA) and Data Pre-Processing	77
3.7.3 Validation and Predicitve Capability of MVDA	78
3.8 Toxicity Evaluation using Zebrafish Embryo	78
3.8.1 Maintenance of Zebrafish	78
3.8.2 Spawning of Zebrafish and Embryo Care	79
3.8.3 Fraction Preparation and Treatment Procedure	79
3.8.4 Microscopic Observations	80
3.9 Statistical Data Analysis	80
CHAPTER FOUR: RESULTS AND DISCUSSION	83
4.1 In vitro Bioactivity Analysis of Clinacanthus nutans Leaves	83
4.1.1 Yield of Extraction and Fractionation	83
4.1.2 In vitro Antioxidant and Antidiabetic Activity Assay	84
4.1.2.1 Antioxidant Activity Assays (DPPH, FRAP and XO)	84
4.1.2.2 α-Glucosidase Inhibitory Assay	85
4.1.2.3 Dipeptidyl peptidase- IV (DPP-IV) Inhibitory Activity	86
4.1.2.4 2-NBDG Uptake in 3T3-L1 Cells Assay	87
4.1.2.4.1 Cell Viability	87
4.1.2.4.2 2-NBDG Uptake in 3T3-L1 Cells	89
4.1.3 Discussion	90
4.2 Metabolite Profiling of <i>Clinacanthus nutans</i> Leaves using	
Metabolomics Approach	96
4.2.1 Metabolites Profiling using GCMS	96
4.2.1.1 GCMS Analysis of <i>C. nutans</i> Leaves Fractions	96
4.2.1.2 Multivariate Data Analysis (MVDA)	98
4.2.1.3 Bioactivity Confirmation and Ouantification of 3	
Bioactive Compounds	104
4.2.1.4 Discussion	105
4.2.2 Metabolites Profiling using O-ToF LCMS	108
4.2.2.1 O-ToF LCMS Analysis of <i>C. nutans</i> Leaves Fractions	108
4.2.2.2 Structure Elucidation using Fragmentation Pathway	112
4.2.2.3 O-ToF LCMS Profiling	118
4.2.2.4 Discussion	118
4.3 Molecular Docking	120
4.3.1 Molecular Docking Simulation	120
4.3.1.1 Docking of GCMS Metabolites	120

4.3.2 Discussion 137 4.4 Fingerprinting of Clinacanthus nutans Leaves using FTIR Based 143 Metabolomics 143 4.4.1 FTIR-ATR Spectra Analysis 143 4.4.2 Multivariate Data Analysis (MVDA) 146 4.4.3 Validation and Predictive Capability of MVDA 150 4.4.4 Discussion 151 4.5 Toxicity Assessment of Clinacanthus nutans Leaves Active Fraction 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of n-Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 166 REFERENCES 171 APPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 APPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 APPENDIX C: GCMS SPECTRA 202 APPENDIX C: GCMS QUANTIFICATION STANDARD CURVE 217 APPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218	4.3.1.2 Docking of Q-ToF LCMS Metabolites	132
4.4 Fingerprinting of Clinacanthus nutans Leaves using FTIR Based 143 Metabolomics 143 4.4.1 FTIR-ATR Spectra Analysis 143 4.4.2 Multivariate Data Analysis (MVDA) 146 4.4.3 Validation and Predictive Capability of MVDA 150 4.4.4 Discussion 151 4.5 Toxicity Assessment of Clinacanthus nutans Leaves Active Fraction 154 (H _{fr}) using Zebrafish Embryos 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of n-Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.7 Metaty Rate 160 4.5.8 Grade References 171 APPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 APPENDIX C: GCMS SPECTRA 202	4.3.2 Discussion	137
Metabolomics 143 4.4.1 FTIR-ATR Spectra Analysis 143 4.4.2 Multivariate Data Analysis (MVDA) 146 4.4.3 Validation and Predictive Capability of MVDA 150 4.4.4 Discussion 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 QUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 193 APPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 APPENDIX C: GCMS SPECTRA 202 APPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 APPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 </td <td>4.4 Fingerprinting of Clinacanthus nutans Leaves using FTIR Based</td> <td></td>	4.4 Fingerprinting of Clinacanthus nutans Leaves using FTIR Based	
4.4.1 FTIR-ATR Spectra Analysis 143 4.4.2 Multivariate Data Analysis (MVDA) 146 4.4.3 Validation and Predictive Capability of MVDA 150 4.4.4 Discussion 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.7 GCMMENDATIONS 166 REFERENCES 171 APPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 APPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 197 APPENDIX C: GCMS SPECTRA 202 APPENDIX C: GCMS QUANTIFICATION STANDARD CU	Metabolomics	143
4.4.2 Multivariate Data Analysis (MVDA) 146 4.4.3 Validation and Predictive Capability of MVDA 150 4.4.4 Discussion 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 151 4.5 Toxicity Assessment of <i>Clinacanthus nutans</i> Leaves Active Fraction 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 197 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION PATHWAY 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 224 PPENDIX H: TOXICITY ASSAY RAW DA	4.4.1 FTIR-ATR Spectra Analysis	143
4.4.3 Validation and Predictive Capability of MVDA	4.4.2 Multivariate Data Analysis (MVDA)	146
4.4.4 Discussion 151 4.5 Toxicity Assessment of Clinacanthus nutans Leaves Active Fraction 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of n-Hexane Fraction (H _{fr}). 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.7 MORENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION PATHWAY 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PPENDIX H: TOXICITY ASSAY RAW DATA 265	4.4.3 Validation and Predictive Capability of MVDA	150
4.5 Toxicity Assessment of Clinacanthus nutans Leaves Active Fraction 154 (H _{fr}) using Zebrafish Embryos 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of n-Hexane Fraction (H _{fr})	4.4.4 Discussion	151
(H _{fr}) using Zebrafish Embryos 154 4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H _{fr}) 154 4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.6 Discussion 161 4.5.7 Heartbeat Rate 161 4.5.6 Discussion 161 4.5.7 Beartbeat Rate 161 4.5.6 Discussion 161 4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 ECOMMENDATIONS 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227	4.5 Toxicity Assessment of Clinacanthus nutans Leaves Active Fraction	l
4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H _{fr})	(H _{fr}) using Zebrafish Embryos	154
4.5.2 Morphological Defect of the Hfr on Zebrafish Embryos 155 4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 EFERENCES 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC50 GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PDENDIX H: TOXICITY ASSAY RAW DATA 265	4.5.1 Lethal Concentration Dose (LC ₅₀) of <i>n</i> -Hexane Fraction (H_{fr})	154
4.5.3 Mortality Rate 160 4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 ECOMMENDATIONS 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PDENDIX H: TOXICITY ASSAY RAW DATA 265	4.5.2 Morphological Defect of the H _{fr} on Zebrafish Embryos	155
4.5.4 Hatchability of Zebrafish Embryos 160 4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 ECOMMENDATIONS 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 DENDIX H: DESEADCH DUBLY LCATHONS AND RDESENTATIONS 265	4.5.3 Mortality Rate	160
4.5.5 Heartbeat Rate 161 4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 ECOMMENDATIONS 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC50 GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PDENDIX H: TOXICITY ASSAY RAW DATA 265		160
4.5.6 Discussion 161 HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH 166 ECOMMENDATIONS 166 EFERENCES 171 PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC50 GRAPHS 197 PPENDIX C: GCMS SPECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PPENDIX H: TOXICITY ASSAY RAW DATA 265	4.5.4 Hatchability of Zebrafish Embryos	100
HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH ECOMMENDATIONS	4.5.4 Hatchability of Zebrafish Embryos 4.5.5 Heartbeat Rate	161
REFERENCES 171 .PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 .PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 .PPENDIX C: GCMS SPECTRA 202 .PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 .PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 .PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 .PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227	4.5.4 Hatchability of Zebrafish Embryos4.5.5 Heartbeat Rate4.5.6 Discussion	160 161 161
PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA 193 PPENDIX B: α-GLUCOSIDASE INHIBITORY ASSAY IC ₅₀ GRAPHS 197 PPENDIX C: GCMS SPECTRA	 4.5.4 Hatchability of Zebrafish Embryos	160 161 161
PPENDIX A. EATRACTION TIELD AND BIOASSATS NAW DATA	 4.5.4 Hatchability of Zebrafish Embryos	160 161 161 166 171
APPENDIX C: GCMS SPECTRA 202 APPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 APPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 APPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 APPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 APPENDIX H: TOXICITY ASSAY RAW DATA 265 APPENDIX L: DESEADCH DURL ICATIONS AND DESENTATIONS 202	 4.5.4 Hatchability of Zebrafish Embryos	160 161 161 166 171
PPENDIX C: GCMS SI ECTRA 202 PPENDIX D: GCMS QUANTIFICATION STANDARD CURVE 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PPENDIX L: DESEADCH PURI LCATIONS AND DRESENTATIONS 266	4.5.4 Hatchability of Zebrafish Embryos 4.5.5 Heartbeat Rate 4.5.6 Discussion HAPTER FIVE: CONCLUSION AND FUTURE RESEARCH ECOMMENDATIONS EFERENCES EFERENCES PPENDIX A: EXTRACTION YIELD AND BIOASSAYS RAW DATA PPENDIX B: G-CLUCOSIDASE INHIBITORY ASSAY ICTO CRAPHS	160 161 161 161 161 161 161
PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 217 PPENDIX E: LCMS CHROMATOGRAM (FRACTIONS) 218 PPENDIX F: LCMS/MS FRAGMENTATION SPECTRA 223 PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY 227 PPENDIX H: TOXICITY ASSAY RAW DATA 265 PPENDIX L: DESEADCH PURILICATIONS AND PRESENTATIONS 266	 4.5.4 Hatchability of Zebrafish Embryos	100 161 161 161 166 171 193 197 202
PPENDIX E. LCMS CHROMATOGRAM (FRACTIONS)	 4.5.4 Hatchability of Zebrafish Embryos	160 161 161 161 166 171 193 197 202 217
PPENDIX G: LCMS/MS FRAGMENTATION STECTRA PPENDIX G: LCMS/MS FRAGMENTATION PATHWAY	 4.5.4 Hatchability of Zebrafish Embryos	100 161
PPENDIX G. LEWIS/WIS FRAGMENTATION FATHWAT	 4.5.4 Hatchability of Zebrafish Embryos	100 161 171
ALLENDIA II. LUAIULLI AUDALI NA W DALA	 4.5.4 Hatchability of Zebrafish Embryos	160 161 161 161 161 166 171 193 193 197 202 217 218 223 223
	 4.5.4 Hatchability of Zebrafish Embryos 4.5.5 Heartbeat Rate 4.5.6 Discussion CHAPTER FIVE: CONCLUSION AND FUTURE RESEARCH ECOMMENDATIONS EFERENCES	160 161 161 161 161 166 171 193 197 202 217 218 223 227 265

LIST OF TABLES

Table No.		Page No.
2.1	Phytoconstituents reported present in the C. nutans and their therapeutic functions.	. 22
2.2	Some local plants reported to possess antidiabetic effects	34
2.3	Stages of embryonic development of the zebrafish (Parichy et al., 2009)	56
3.1	List of chemicals, reagents, standards and enzymes used	59
4.1	Yields of extraction and fractionation of C. nutans leaves	83
4.2	Antioxidant activities (DPPH, FRAP and XO) of <i>C. nutans</i> leaves fractions	84
4.3	The half maximal inhibitory concentration (IC ₅₀) of α -glucosidase inhibitory activity of <i>C. nutans</i> leaves fractions	85
4.4	The percentage inhibition for DPP-IV inhibitory assay of <i>C. nutans</i> leaves <i>n</i> -Hexane fraction (H_{fr})	86
4.5	Compounds identified in the <i>C. nutans</i> leaves fractions through GCMS analysis (Appendix C)	102
4.6	The half maximal inhibitory concentration (IC ₅₀) of α -glucosidase inhibitory activity of the quantified reference compounds	104
4.7	Linearity, detection limits and quantification limits measured by GCMS	105
4.8	Tentative α -glucosidase inhibitors identified in the <i>C. nutans</i> leaves fractions through Q-ToF LCMS/MS fragmentation using positive ionisation	116
4.9	Molecular interaction results of α - glucosidase enzyme protein with the known inhibitor (Quercetin) and the active metabolites quantified using GCMS	122
4.10	Molecular interaction results of α -glucosidase enzyme protein with other active metabolites identified using GCMS	127
4.11	Molecular interaction results of α - glucosidase enzyme protein with the known inhibitor (Quercetin) and the active tentative metabolites identified using Q-ToF LCMS	133

4.12	Infrared spectral assignments of <i>C. nutans</i> leaves fractions based on Pavia et al. (2014)	145
4.13	Measured and predicted α - glucosidase inhibitory activity of the <i>n</i> -Hexane fraction (H _{fr}) of <i>C. nutans</i> leaves obtained from 5 different sources in Peninsular Malaysia (Appendix A)	150
4.14	Teratogenic defects of varying concentrations of <i>C. nutans</i> leaves fraction (H_{fr}) at 72 hpf in <i>D. rerio</i> larvaes	159
4.15	The mortality rate, hatchability and heartbeat rate (72 hpf) of the developing embryos treated with different concentrations of <i>C. nutans</i> leaves <i>n</i> -Hexane fraction (H_{fr}) in <i>D. rerio</i> embryos	161

LIST OF FIGURES

<u>Figure No.</u> <u>P</u>		Page No.
2.1	Vegetative characteristic of <i>C. nutans</i> ; (a) the whole plant (Photograph courtesy of EES farm), (b) leaves separated from the stems, (c) the terrete stem attached by petioles with simple lanceolate leaves and (d) simple and lanceolate leaf and opposite leaf arrangement (Photographed after sampling)	15
2.2	Some of the reported antidiabetic compounds	36
2.3	Reaction mechanism of DPPH scavenging (Liang and Kitts, 2014)	38
2.4	Reduction mechanism of ferric tripyridyltriazine complex into ferrous (2,4,6-tripyridyl-s-triazine) ₂ (Shalaby and Shanab, 2013)	39
2.5	Mechanistic diagram of xanthine oxidase (XO) action that leads to the production of reactive oxygen species (H_2O_2 and O_2^-) (Galeano et al. (2016)	40
2.6	α-glucosidase inhibiting drugs	42
2.7	Life cycle of the zebrafish (Adapted from D'Costa and Shepherd, 2009)	55
2.8	Lateral view of the development of zebrafish embryo to larvae immersed in embryo water (14 hpf to 48 hpf) observed under Danioscope at the resolution of 100x; a: 10 somites at 14 hpf; b: 15 somite at 16 hpf; c: 20 somite 19 hpf; d: Prim 5 at 24 hpf; e: Prim 25 at 36 hpf and f: Long pec at 48 hpf.	57
3.1	Preliminary analysis tests	62
3.2	Flowchart of Methodology	82
4.1	The DPP-IV half maximal inhibitory concentration curve of <i>C. nutans</i> leaves <i>n</i> -Hexane fraction (H_{fr})	87
4.2	The cell viability of rosiglitazone-treated cells. Data presented in mean \pm SD. Means that do not share a letter are significantly different with <i>p</i> value < 0.05. SD = Standard Deviation	88
4.3	The cell viability of <i>C. nutans</i> leaves <i>n</i> -Hexane fraction (H _{fr}) treated cells. Data presented in mean \pm SD. Means that do not share a letter are significantly different with <i>p</i> value < 0.05. SD = Standard Deviation.	88

4.4	The 2-NBDG glucose uptake in differentiated 3T3-L1 cells in the absence (0 nM) and presence (100 nM) of insulin at different concentration of <i>C. nutans</i> leaves H _{fr} (25–200 µg/mL) and positive control rosiglitazone ($18 \times 10-3 - 14.4 \mu g/mL$). Means that do not share a letter are significantly different with <i>p</i> value < 0.001. SD = Standard Deviation	90
4.5	GCMS chromatogram of metabolites in <i>C. nutans</i> leaves fractions $(H_{fr}, HE_{fr}, E_{fr}, EM_{fr} \text{ and } M_{fr})$	97
4.6	PLS score scatter plot of C. nutans leaves fractions (H_{\rm fr}, HE_{\rm fr}, E_{\rm fr}, EM_{\rm fr} and M_{\rm fr})	100
4.7	PLS Observed versus Predicted IC_{50} values of <i>C. nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr}) with the R ² value of 0.9497	
4.8	PLS loading column plot of <i>C. nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr}); Assignments: 1- Palmitic Acid, 2- Phytol, 3- Sucrose, 4- Hexadecanoic acid, 5- Maltose, 6- 1- Monopalmitin, 7- D-Glucose, 8- Stigmast-5-ene, 9- D-Gluconic acid, 10- Pentadecanoic acid, 11- Heptadecanoic acid, 12- 1-Linolenoylglycerol, 13- Glycerol monostearate, 14- alpha-Tocospiro B, and 15- Stigmasterol	101
4.9	Metabolites identified as potential α -glucosidase inhibitors from <i>C</i> . <i>nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr})	103
4.10	PLS score scatter plot of <i>C. nutans</i> leaves fractions ($H_{\rm fr}$, $HE_{\rm fr}$, $E_{\rm fr}$, $EM_{\rm fr}$ and $M_{\rm fr}$) analysed using Q-ToF LCMS positive ionisations	110
4.11	PLS Observed versus Predicted PerIC ₅₀ values of <i>C. nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr}) with the R^2 value of 0.9891	111
4.12	PLS loading scatter plot of <i>C. nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr}) analysed using Q-ToF LCMS with positive ionisation. The identified α -glucosidase inhibitors are (1) 4,6,8-Megastigmatrien-3-one; (2) N-Isobutyl-2-nonen-6,8-diynamide; (3) 1',2'-bis(acetyloxy)-3',4'-didehydro-2'-hydro- β , ψ -carotene and (4) 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid	112
4.13	The tentative metabolites responsible for the inhibition of α -glucosidase	117
4.14	The 2D diagram of the protein-ligand interactions between the residues and the quantified metabolites. A- control ligand (α -D-glucose), B-Positive control (Quercetin), C- Stigmasterol, D- Palmitic acid and E- Heptadecanoic acid. [green indicates the H-bonding and the rest are van der Waals interactions (pink- alkyl and π - alkyl bond, light blue-C-H bond, purple- π bond)]	124

4.15	The superimposed 3D diagram showing the binding site of the ADG, quercetin, palmitic acid, heptadecanoic acid and stigmasterol embedded in the enzyme (Domain A)	125
4.16	The 2D diagram showing the protein-ligand interactions between the residues and other metabolites identified using GCMS. [green indicates the H-bonding and the rest are van der Waals interactions (pink- alkyl and π - alkyl bond, light blue-C-H bond, purple- π -sigma bond)]	128
4.17	The 3D diagram showing showing the superimposition of 1- linolenoylglycerol, 1-monoplamitin, α -tocospiro B, glycerol monostearate, hexadecenoic acid (methyl ester), pentadecanoic acid, phytol and stigmast-5-ene embedded in the enzyme (Domain A)	132
4.18	The 2D diagram showing the the protein-ligand interactions between the residues and the tentative metabolites (Compound 1, 2, 3, and 4) identified using Q-ToF LCMS. [green indicates the H-bonding and the rest are van der Waals interactions (pink- alkyl and π - alkyl bond, light blue-c-h bond, purple- π bond)]	134
4.19	The superimposed 3D diagram showing the binding site of compound 1, 2, 3 and 4 embedded in the enzyme (Domain A)	137
4.20	FTIR spectra of C. nutans leaves fractions (H_{fr} , HE_{fr} , E_{fr} , EM_{fr} , and M_{fr})	144
4.21	PLS score scatter plot of <i>C. nutans</i> leaves fractions (H_{fr} , HE_{fr} , E_{fr} , EM_{fr} and Mfr) analysed using FTIR-ATR	147
4.22	PLS line loading plot of C. nutans leaves fractions ($H_{\rm fr}$, $HE_{\rm fr}$, $E_{\rm fr}$, $EM_{\rm fr}$ and $M_{\rm fr}$) analysed using FTIR-ATR	148
4.23	Permutation test result of <i>C. nutans</i> leaves fractions (H_{fr} , HE_{fr} , E_{fr} , EM_{fr} and M_{fr}). The intercept of the total sum of the squares (R2Y) was -0.0187 while the intercept of the predictive ability (Q2Y) of the model was -0.483	149
4.24	PLS Observed versus Predicted IC_{50} values of <i>C. nutans</i> leaves fractions (H _{fr} , HE _{fr} , E _{fr} , EM _{fr} and M _{fr}) with the R ² value of 0.9395	149
4.25	Lethal concentration (LC ₅₀) value of <i>C. nutans n</i> -Hexane fraction (H _{fr}) based on probit analysis calculation	155
4.26	Morphological observation of the in <i>D. rerio</i> larvaes treated with different concentration of <i>C. nutans n</i> -Hexane fraction (H _{fr}); (A1: Normal embryo, A2: Normal larvae, B: 15.63 μ g/mL, C: 31.25 μ g/mL, D: 62.5 μ g/mL E: 125 μ g/mL, F: 250 μ g/mL and G: 500	
	μ g/mL) at 72 hpf.	157

LIST OF ABBREVIATIONS

ACD	Advanced Chemistry Database
AGI	α-Glucosidase inhibitory
ALA	Alanine
ASH	Protonated Aspartic acid
ASN	Asparagine
ASP	Aspartic acid
ARG	Arginine
DEX	Dexamethasone
DM	Diabetes Mellitus
DMEM	Dulbecco's Modified Eagle Media
DPM	Differentiation Progression Medium
DPPH	2,2- Diphenyl-1-picrylhydrazyl
FBG	Fasting Blood Glucose
FBS	Fetal Bovine Serum
FRAP	Ferric Reducing Antioxidant Potential
GLH	Protonated Glutamic acid
GAD	Glutamic Acid Decarboxylase
GCMS	Gas Chromatography Mass Spectrometry
GIP	Glucose-Dependent Insulinotropic Polypeptide
GLN	Glutamine
GLP	Glucagon-like Peptide
GLU	Glutamic acid
HID	Histidine neutral δ-protonated
HIE	Histidine neutral ε-protonated
HSV	Herpes Simplex Virus
IBMX	3-isobutyl-1-methylxanthine
ILE	Isoleucine
IS	Internal Standard
JOD	Juvenile Onset Diabetes
LDL	Low Density Lipid
LEU	Leusine
LYS	Lysine
MSD	Mass Selective Detector
NAC	N-acetylcysteine
NCBI	National Center for Biotechnology Information
NHMS	National Health and Morbidity Surveys
NIST14	National Institute of Standards and Technology
NMR	Nuclear Magnetic Resonance

OGTT	Oral Glucose Tolerance Test
OPLS	Orthogonal Partial Least Square
PCA	Principal Component Analysis
PHE	Phenylalanine
PLS	Partial Least Square
PRO	Proline
Q-ToF LCMS	Quadrupole Time-of-Flight Liquid Chromatography
	Mass Spectrometry
RBG	Random Blood Glucose
RMSE _E	Root Mean Square Error of Estimation
RMSE _{CV}	Root Mean Square Error of Cross Validation
SER	Serine
STZ	Streptozotocin
THR	Threonine
TRP	Tryptophan
TYR	Tyrosine
TZD	Thiazolidinediones
VAL	Valine
XO	Xanthine Oxidase
μg	microgram
μL	microliter
mL	mililiter
g	gram
nM	nanomolar
nm	nanometer
w/v	weight per volume
m/z	mass per charge

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND OF THE STUDY

A natural product derived from natural sources especially from herbs have been observed in a wide range of pharmacological studies and commercialized by established pharmaceutical industries. Herbal plants have been discovered and utilized for various purposes to cure and combat diseases since ancient times (Babiaka et al., 2014). At recent times, researchers are investigating and producing more scientific findings on the use and utilizations of plant sources as alternative medicines to cure various ailments. Likewise, pharmaceutical industries have been widely producing natural derived products to be used as an alternative treatment in multiple cases (Katz and Baltz, 2016). However, precise scientific findings are needing to be acquired before commercialisation of any natural product could take place. The current study highlights on the use of the medicinal plant as an alternative cure for one of the major disorders suffered by most Malaysians; diabetes mellitus. It will aid in identifying the specific bioactive compound(s) responsible to manage the disorder.

Diabetes mellitus (DM) is indeed known as a chronic metabolic disorder caused by genetic defects (most commonly inherited from both parents) or due to the deficiency in insulin secretion and irresponsiveness of the organs to secreted insulin. This deficiency in turn will lead to hyperglycemia which is characterised by increased blood glucose level which causes interruption in some of the body's systems and organ damages including blood vessels and nerves (Inzucchi et al., 2015). DM is a global metabolic epidemic and increasing in the proportions throughout the world. It is a major leading cause of mortality, morbidity and disability across the world, thus affecting some of the essential biochemical activities in almost every age group being affected (Choudhary et al., 2014). DM affects major global population and the number of people suffering of diabetes is rising rapidly in most parts of the world, especially in developing countries like Malaysia, Thailand, Indonesia and India (Mohamed et al., 2012). The two most recent National Health and Morbidity Surveys (NHMS) demonstrated a drastic increment in the prevalence of diabetes from 8.3% out of 1996 to 14.9% out of 2006 for Malaysian adults aged 30 years or above. This is an expansion of 80% over 10 years' time. Moreover, about 36% of the diabetic populace are left undiagnosed. The same survey also demonstrated that the predominance of obesity had increased tragically from 4.4% to 14.0% from 1996 to 2006 among adults in Malaysia aged 18 years and above. Moreover, the Second National Health and Morbidity survey indicated that 3.4 million Malaysians were diabetic in 2010. It is an alarming situation where, Malaysia has the greatest number of overweight and obese individuals in Asia compared with only 24.1%, 10 years ago. Obesity is a primary cause of diabetes as 54% of the grownup populace are corpulence. This causes 7 out of 10 Malaysian adults to suffer chronic illnesses which are associated with diabetes (Tee and Yap, 2017).

Digested carbohydrates from our diet increases the postprandial plasma glucose levels. A sudden raise of the blood glucose level leads to hyperglycemia in type 2 DM patients which is typically facilitated by enteric enzymes which includes pancreatic α -amylase and α -glucosidase that are attached to the brush border of intestinal cells. Monosaccharides (e.g. glucose and fructose) can be transported out of the intestinal lumen into the bloodstream while complex starches like disaccharides and oligosaccharides must be broken down into monosaccharides before they can be absorbed into the bloodstream via duodenum and upper jejunum (Ching et al., 2013; Wong et al., 2014).

Hyperglycemia is critical in the early treatment of DM and for reducing chronic vascular complications. One of the effective ways for the management of type 2 DM is via strong inhibition of intestinal α -glucosidases and the mild inhibition of pancreatic α -amylase (Marín-Peñalver et al., 2016), which will eventually retard the absorption of glucose in the digestive tract, thus reducing postprandial hyperglycemia in patients with DM, achieved by preventing the absorption of carbohydrates after food uptake. Inhibitors of these enzymes delay carbohydrate digestion as well prolong the overall carbohydrate digestion time, thus reduce the rate of glucose absorption and consequently blunting the postprandial blood glucose rise. Currently, various α -glucosidase inhibitors including acarbose, miglitol and voglibose that are used as oral anti-hyperglycaemic drugs, with metformin as the most commonly prescribed oral antidiabetic drug in Malaysia for type 2 DM patients. However, these therapeutic drugs have biggest drawbacks that cause side effects to human health in the long run and with limited efficacy is still a challenge to the medical system (Inzucchi et al., 2015; Ismail and Deshmukh; 2012).

Many natural resources have been investigated with respect to suppress glucose production from carbohydrates in the gut or glucose absorption through the intestine (Bahmani et al., 2014). In recent times, great attention is given to the management of diabetes using medicinal plants along with dietary restriction (Choudhary et al., 2014). In most regions of the developing countries including Malaysia, traditional medicine using herbs are more an affordable source for healthcare. This leads to increasing interest in the use of medicinal plants as an alternative management of type 2 DM. Herbs play an important role in the development of complementary and alternative medicine. Many herbs have been developed as natural medicine and being utilized as an alternative for modern treatment in many common diseases. The mixture of compounds in plants which work synergistically on the complex system of human body has made it a choice for alternative and complementary medicine. Besides that, certain compounds in the herbs could help to reduce the toxicity in human body unlike the modern medicine that could be metabolised into dangerous toxin that may lead to chronic diseases in prolong use (Abdul et al., 2011; Ifeoma and Oluwakanyinsol, 2013).

Clinacanthus nutans (Burm.f.) Lindau, (C. nutans) or locally known as Sabah snake grass is a native Malaysian plant. C. nutans leaves extract has been used traditionally for the treatment of skin rashes, snake bites, allergic reaction, diuretics and diabetes. Experimentally, numerous studies have shown the therapeutic potential of C. nutans which include antiviral, anti-inflammatory, antioxidant, neuromodulator and anti-cancer (Alam et al., 2016; Arullappan et al., 2014; Kamarudin et al., 2017; Li et al., 2013; Yuann et al., 2012). Wanikiat et al. (2008) evaluated the anti-inflammatory property of C. nutans and a compound (4,5-dinonyl-1,3-dioxolane) possessing the antiinflammatory and anti-arthritic activities were later isolated and identified by Sreena et al. (2012). Lee et al. (2014) conducted antidiabetic analysis via in-vitro bioassay using α -glucosidase inhibition activity for the plant's methanolic extract which exert mild inhibition for its leaves and stem extracts. However, no other evidence on the activity of other solvent extracts or compound(s) responsible for the activity have been reported up until now. Whilst, this study provides the evidence of C. nutans extract effectiveness against hyperglycaemia condition. In order, to explore the efficacy of C. nutans against hyperglycaemia, the *in vitro* evaluation against α -glucosidase was carried out (Javadi et al., 2014). The chromatography and spectroscopy analytical techniques were utilised in this study that further facilitated the identification of the bioactive compound(s) involved in anti-hyperglycaemia action and the determination of the efficacy of the C. nutans leaves extract against diabetes.

Metabolomics approach coupled with chromatography and spectroscopy associated with multivariate data analysis has been exploited to determine the metabolites responsible for the bioactivity observed. Metabolites profiling helps us to understand the metabolic pathways in cells, tissues, organs or organisms' mechanisms (Kuhlisch and Pohnert, 2015). In recent times, metabolomics approach has been practiced in fulfilling the lacking in the identification of bioactive compounds in medicinal herbs. Besides that, it also rationalises the therapeutic superiority of many plant extracts over single isolated constituent. Metabolomics can help in to identify and quantify multiple targets to obtain an overview of all compounds classes and brings an important insight into the natural product by linking putative bioactivity with some compounds in a targeted plant (Wolfender et al., 2015).

1.2 PROBLEM STATEMENT

The available synthetic drugs that are prescribed for diabetes such as voglibose and acarbose have led to many side effects such as diarrhea, nausea, vomiting, bloating and flatulence, to sensitive patients or in prolonged use. Besides that, the use of synthetic drugs in long term will eventually lead to complications involving major organs especially kidney and liver (Alhadramy, 2016; Azmi et al., 2012). Therefore, drug discovery leads to zero side effects and less toxicity were recently implemented. One of the strategies is the use of natural medicinal herbs. Although herbs are considerably safer than commercial synthetic drugs and at the same time can treat the diseases, the scientific proof to use herbs for medicinal purpose is still lacking.

C. nutans leaves extract has been reported to possess various pharmacological actions (Alam et al., 2016; Arullappan et al., 2014; Lau et al., 2014; Li et al., 2013). Arullappan et al. (2014) have mentioned that it has been used traditionally to treat