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ABSTRACT

The increase in frequency spectrum for wireless communication system has led to the
growing interest of thin film electroacoustic technology that scale favourably upon
miniaturization. To date, current off chip SAW resonators are made from bulk
piezoelectric materials and cannot be easily integrated with silicon substrate.
Monolithic CMOS-MEMS integration provides robust platform to realize low power
and low cost mass production for a single chip solution. Non-ferroelectric
piezoelectric thin films namely Aluminium Nitride and Zinc Oxide are the most
promising material for CMOS-MEMS integration due to its silicon compatibility and
good piezoelectric properties. This work addresses the implementation of CMOS-
MEMS SAW resonators using three different piezoelectric thin film namely
Aluminium Nitride (AIN), Zinc Oxide (ZnO) and Al doped Zinc Oxide (AZO). The
work begins with finite element modeling using COMSOL Multiphysics to evaluate
the performance in terms of resonance frequency, quality factor and electromechanical
coupling coefficient. The fabricated devices are based on the optimized simulation
results. Post CMOS approach namely piezoelectric thin film deposition,
photolithography and wet etching were implemented to fabricate the silicon
compatible devices. XRD, AFM and profilometer characterization were conducted to
evaluate the quality of piezoelectric thin film. Various issues have been explored such
as dependence of RF sputtering power to c-axis orientation and investigation on
suitable etchant for AZO thin film. Measurement results revealed AZO thin film
enhanced the performance in terms of insertion loss and quality factor compared to
ZnO thin film due to improvement in the piezoelectric properties by Al doping.
CMOS-MEMS SAW resonator based on AIN thin film demonstrated highest quality
factor of 746.8 at 1.040 GHz resonance frequency, giving figure of merit of Q x fs =
7.76 x 10" Hz. Among the three deposited piezoelectric thin films, AIN thin film has
the closest to ideal c-axis orientation which leads to highest piezoelectric properties.
This result is comparable to current RF MEMS acoustic wave resonators. This work
indicates that AIN, ZnO and AZO piezoelectric thin films have high potential to
realize single chip transceiver for the next generation of wireless communication
system.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The Internet has evolved from the former Internet of Data that traditionally shared
computers and documents to the Internet of Things (IoT). These have enabled
computing to be truly ubiquitous in offering advanced connectivity of devices, system
and services (Sheng, Zeadally, Luo, Chung, & Maamar, 2009) (Mattern &
Floerkemeier, 2010). To achieve this, a variety of objects have to communicate
wirelessly anywhere and with anything. A wireless transceiver system consists of RF
integrated circuits and passive devices such as surface acoustic wave (SAW) devices
that are needed to realize wireless connectivity.

Among the advantages of SAW devices include excellent aging properties
besides being small, lightweight and are easily reproducible (Weigel, Morgan, Owens,
Ballato, Lakin, Hashimoto, & Ruppel, 2002a) (Springer et al., 1998) (C. W. Ruppel et
al., 1993) (Morgan, 2003). Therefore, SAW devices are widely used in RF
communication systems as surface acoustic wave (SAW) filter and resonator (Le
Brizoual et al., 2008; Nordin & Zaghloul, 2007) (Weigel, Morgan, Owens, Ballato,
Lakin, Hashimoto, & Ruppel, 2002). Some specific examples of communications
systems are mobile cell phones (C. C. Ruppel, Reindl, & Weigel, 2002), global
positioning systems (GPS) (De Escobar & McGinnis, 2002) as well as radars and
satellite receivers (Campbell, 1998) . In recent years, there has been a rising demand
for high data rate in mobile communication. This has led to the need for RF modules

to use high frequency bands of up to the GHz range. In recent years, surface acoustic



wave (SAW) technology has a lot of progress in the GHz range frequencies (Le
Brizoual et al., 2008) (Udo Ch Kaletta et al., 2013) (Hashimoto et al., 2012).

In addition to that, the application for SAW devices are not limited to
communication system only, but have also been extended to biosensing and
microfluidic applications to be SAW biosensor and droplet ejector (Fu et al., 2010;
Tigli, 2007) (Johnston, Kymissis, & Shepard, 2010), automotive electronics (Jakoby,
Eisenschmid, & Herrmann, 2002) and industrial applications as gas sensors (Ahmadi,
Korman, Zaghloul, & Huang, 2003). All of this serves as clear evidence testifying the
importance of SAW devices in the wireless communication system and biosensing
applications.

To date, passive devices such as SAW resonators cannot be easily miniaturized
and integrated. It is because they have to be implemented on bulk piezoelectric
materials such as quartz (Habti, Bastien, Bigler, & Thorvaldsson, 1995) and Lithium
Niobate (Naumenko & Abbott, 2003). Therefore, the potential to integrate the passive
devices with circuitry for wireless transceiver system can be realised with Radio
Frequency Micro Electromechanical Systems (RF-MEMS) (Varadan, Vinoy, & Jose,
2003). RF-MEMS are believed to respond to the challenges of Moore’s Law by
bridging the gap between mature RF circuitry with emerging MEMS devices that
crosses the borders between the electrical and mechanical world. RF-MEMS acoustic
wave resonators play a significant role in replacing bulky and off-chip resonators.

Furthermore, the innovation of Complementary Metal Oxide Semiconductor
(CMOS) as the predominant IC technology allows the RF-MEMS acoustic wave
resonator to integrate with the circuitry parts in order to realize single-chip transceiver
system. A complete integration into a single chip offers 1) low manufacturing cost due

to a single-chip integration at large volume production ii1) reducing the parasitic effects



