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ABSTRACT 

 

Restoring human limb that is lost during accident with prostheses is one challenging 

issue in engineering field. The loss of human limb, involving upper and lower limbs 

leaves great impact on human that it limits daily activities in many ways. There are 

many studies that have been done previously in making and improving prosthetic unit 

for amputees. Most of them are made to replicate the basic functionalities of the 

missing limbs and adopt more conventional passive controllers. As a result, the 

prosthetic unit range of motion is limited and the motion is unnatural. Hence, there is 

a need to develop model based controller for such system to address the problems. 

The goal of the research is to develop a semi-analytical model of a thumb that could 

be used to develop a model based controller. In this work, the information from the 

muscle characteristics is gathered. The electromyography signals from the four 

muscles responsible on thumb flexion are measured and recorded using biosignal 

measurement system. The thumb tip force is measured using thumb training system 

developed for the research. On top, information such as the length of the muscles and 

tendons is collected from the ultrasound probe and magnetic resonance imaging 

(MRI) machine to increase the data accuracy. These data are fed into Hill’s muscle 

model and optimized by the particle swarm optimization (PSO) technique to map the 

relationship between thumb posture, thumb tip force and all the signals measured. The 

resulting thumb model developed using the method proposed in this research work has 

shown lower root mean square error (RMSE) as compared to previous method. 
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CHAPTER ONE 

INTRODUCTION  

1.1 BACKGROUND AND MOTIVATION 

In doing activities for daily living, human hand has work in such wonders. The design 

of human’s hand is complex and its dexterity allows human race to improve 

themselves. Hand is composed of wrist, palm and five fingers which are thumb, index, 

middle, ring and little fingers. There are many muscles responsible and work in unison 

to move a particular finger. Thumb is a unique finger compared to other fingers as it 

works as an opposable digit to all other fingers. There are nine muscles that control 

the movement of a thumb. Four of the muscles are located at the forearm and they are 

known as exterior muscles while the other five muscles are interior muscles and are 

located in the area of hand. 

 
Figure 1.1: Thumb’s muscles on human’s hand 
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Figure 1.2: Extrinsic muscles of thumb 

 

Figure 1.1 and Figure 1.2 depict all the muscles that are related to finger 

(thumb) movements. Figure 1.1 shows the location of the muscles on hand, they are 

Adductor Pollicis (AP), Flexor Pollicis Brevis (FPB), Abductor Pollicis Brevis (APB), 

Opponens Pollicis (OP) and First Dorsal Interosseous (FDI) which help moving the 

thumb and located on hand. From Figure 1.2 shown Flexor Pollicis Longus (FPL), 

Abductor Pollicis Longus (APL), Extensor Pollicis Brevis (EPB) and Extensor 

Pollicis Longus (EPL) which help moving thumb and resided on forearm.   

The unique design and function of the thumb somehow can be greatly affected 

by traumatic accidents or diseases that could result in thumb amputation or paralysis. 

The functionality of the thumb and hand would deteriorate, and thus, would cost lack 

of performance in the activities of daily living (ADL).  

The number of road accidents was in an alarming rate which according to 

Malaysian Institute of Road Safety Research (MIROS, 2015), more than 25 million 

registered vehicles were involved in road accidents through the year of 2014. Some 

road accidents affected the upper extremities including thumb which is vital for job 

implementations that require precise hand coordination. The effects of losing parts of 

the body or its functions may result in unemployment or if there is a job vacancy, jobs 

http://www.miros.gov.my/
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offered may be unrelated to one’s passion and would eventually lead patient to a great 

depression. 

For most of the cases, medical treatment cannot restore the function of the 

hand, thus the only alternative for the patient is to use prosthetic hand. Many 

commercial prosthetic hands can be found commanded by mechanical movement, 

switches and force sensitive devices on hand to move the fingers and forearm. More 

recent prosthetic hand leveraged on the sensed Electromyogram (EMG) signals 

generated by the muscle left after amputation. The EMG signals are sensed through 

electrode pad, and the microprocessor processes the signal activation and command 

the actuator accordingly. 

 

Figure 1.3: DARPA’s prosthetic hand, Modular Prosthetic Limb (MPL) 

 

There are several prosthetic hands that are based on EMG signals available. 

The latest prosthesis sponsored by Defense Advanced Research Projects Agency 

(DARPA), Modular Prosthetic Limb (MPL) is shown in Figure 1.3, it was co-

developed and led by The John Hopkins University Applied Physics Laboratory 

(APL). The distinctive features of the design include MPL control system modalities 

that consist of reduction in order control, Cartesian, joint and muscle space control. 
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The MPL control system modalities are designed to maximize the patient’s interface 

flexibility and modalities control that is available. Reduction in order of control that is 

part of MPL control system modalities allows mapping of suitable formation of 

fingers’ position although the patients does not control all the degree of freedom 

(DOF) that are available on the MPL. The Cartesian space control correlates the motor 

cortex of human brain with the hand position’s movements. The joint space control 

allows the patients to move an individual joint in a time. The muscle space control 

allows control from peripheral nerve signals to move a joint into a direction 

commanded. 

The APL is working hard in envisioning an advance prosthetic hand that can 

be controlled solely by thoughts and can mimic real muscle movements (Michael M. 

Bridges et al., 2011). 

There was a previous work done on thumb-tip force model which used Hill’s 

muscle model (Won-II Park et al., 2012). This study reported thumb mathematical 

modelling, but using marker on skin surface to predict length of muscle and since the 

reading is based on the estimated value, the accuracy of the final model can be further 

improved. The markers are attached on the skin of subject and cameras captured the 

images of the markers’ position and the images were processed by computer to predict 

the position of the muscles and the length of each muscle. Markers usually used to 

locate the position of human body in space at specific period either for body motions 

(Roy Tranberg, 2010) and for joint rotations (E. Ceseracciu et al., 2014). Other 

method of measuring muscle must be proposed in this research work in order to 

collect a better data. 
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In order to have precise control on prosthetic hand like one similar to natural 

body movement, concept of mathematical modelling that assigns input variables 

related to a system and correlate them to the predicted output can be employed. The 

system is designed with variables and constant that can be controlled or fixed in order 

to achieve the output targeted. The modelling saves a lot of cost in development as by 

using calculation and simulation, it allows better comprehension on the system that 

will be built later on. In modeling muscles, Hill’s muscle model is often being used 

because of its simplification and effectiveness. Other mathematical models of the 

same functionality include Huxleys, Ogden, Monte, Carlo, Kevin and Katnelson. 

The research on thumb modelling is still new and previous prosthetic hands 

such as Bebionic and i-limb are on low level controller where the controller is still 

depending on sets of pre-defined functions and unable to do vast possible motions and 

configurations of fingers and thumb. The Bebionic and i-limb use this approach to 

simplify the process of the controller. To improve current controller of prosthetic 

hand, studies on the relationship of the EMG signal to the characteristics of each 

individual muscle need to be done, then analytical model of thumb-tip force can be 

developed. This model can be used to develop model-based controller for the thumb 

of prosthetic hands. 
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1.2 ELECTROMYOGRAM SIGNAL PHYSIOLOGY 

 
Figure 1.4: Neural path to muscle (Pearson Education, 2013) 

 

The electromyogram (EMG) signal is an electrical signal produced when muscle 

contracts and it shows a representation of neuromuscular activity. In a bunch of 

muscles cells, there are many Motor Units (MUs) on the surface of skin used by 

electrodes to read Motor Unit Action Potentials (MUAP) together with noise. By 

increasing the muscle force through muscle contraction, the MUAP and the firing 

rates increased thus produce Interference Pattern (IP). The firing pulses are taken as a 

random function of time and it is non-Gaussian (Akash Kumar Bhoi, 2012). Figure 1.4 

shows the source of EMG signals of muscles which are originated from nerves that 

carry electrical signals sourced from brain through spinal cord to the respective 

muscles. 

In 1922, researchers found that oscilloscope can display electrical signals 

generated by muscles. This was the starting point where interfacing of electronics with 
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human body made possible. However, limited amount of information can be extracted 

from the EMG signals since it is stochastic or random in nature (Raez, Hussain and 

Yasin 2006). Around 1930s to 1950s, the technique to measure EMG signals was 

improved much further. Clinical use for EMG signals started around 1960s. EMG 

activity was recorded by Hardyck, Petrinovich and Ellsworth from laryngeal which 

was a voice box muscle when a subject was reading aloud in 1966. Around 1980s, a 

smaller and lighter EMG measurement devices were produced (Raez et al., 2006). 

EMG signals continue usefulness its wonder when recently it was used to study and 

diagnose muscular dystrophy. It is also now being used widely in physiology, 

physiotherapy, motor control and biomechanics research in laboratories across the 

globe. EMG signals are now used to analyze muscle performance, muscle fatigueness 

and muscle diseases. Together with technology that is ever growing, the robotics is 

now combined with electromyography to help replace limb of amputees with 

prostheses. 

 
Figure 1.5: g.USBamp device, biosignal amplifier 

 

In recording the data of EMG signals from targeted muscles, EMG signal 

amplifier; g.USBamp biosignal amplifier was used in the work as depicted in Figure 


