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ABSTRACT

A nanofluid is a suspension of nano sized particles in a base fluid. It is very much
essential to know more about stability and thermal characteristics of such a nanofluid for
their further use in practical applications. In the present work, Multiwalled Carbon
Nanotubes (CNT) are dispersed in water. CNT dispersed in water are highly unstable and
they sediment rapidly due to the Vander Waals force of attraction. Thus, to overcome this
limitation Gum Arabic (GA) was added which acted as a potential dispersant.
Experimental work consisting of stability studies under the effects of CNT concentration
(0.01-0.1 wt%), GA concentration (0.25-5.0 wt%) and sonication time (1-24hr),
respectively have been carried out. Stability was measured using UV-Vis
spectrophotometer. Thermal conductivity, density and rheology of the most stable
suspensions were measured as a function of temperature (25-60°C) and CNT
concentration. pH of the nanofluid suspensions have also been measured. Further,
convective heat transfer experiments were conducted in a laminar flow heat exchanger for
CNT concentration of 0.01wt%. GA concentration and sonication time was found to play
important role in dispersion of CNTs in water. Nanofluids are found to be stable at 4.0hr
sonication time and the optimum GA concentration was found to be between 1.0-2.5 wt%
for the range of the CNT concentration studied. Thermal conductivity was observed to be
strongly dependent on temperature and CNT concentration. The enhancement in thermal
conductivity was from 4.03-125.6% and 37.4-287.5% as the temperatures varied from 25-
60 °C, for 0.01wt% and 0.1wt% of CNT, respectively. CNT nanofluids showed slightly
shear thinning behavior at low shear rates (<400s™) and clear Newtonian behavior at high
shear rates (400-1000s™) and temperature. Further, viscosity was also found to be a
function of CNT and GA concentration. No significant change in viscosity and density
was observed in the presence of GA and CNT and the CNT nanofluid was found to be
more stable in pH range between 4.5-5.5. The results on laminar flow using CNT
nanofluids show increase in heat transfer coefficient up to 68-138%, which implies
nanofluids as promising fluids for heat transfer application. In this study, a new model for
thermal conductivity was proposed to explain the possible enhancement, by taking
temperature, viscosity of the fluid, Brownian motion, shape and aspect ratio of CNTs
apart from other properties of fluid and particles. The proposed model was found to be in
good agreement within <10% deviation with experimental data on all CNT nanofluids
available in the literature. However, the discrepancy increase as the CNT concentration
increased beyond 0.06 volume fraction, which could be primary limitation of the model.
Numerical simulations were carried out for 0.01, 0.04 and 0.1wt%, CNT using FLUENT
by single phase approach. Numerical results are validated with the theoretical models and
experimental results. The numerical results were found to be in good agreement (£ 10%
error) with the experimental results at low CNT concentration while the deviation
increased to 16% with particle concentration. In summary, CNT nanofluids are found to
be more suitable for heat transfer applications in many industries due to their enhanced
thermal conductivity property. This work provides large information on behavior of CNT
nanofluids. The major contributions of this work includes production of stable CNT
nanofluid using gum Arabic, various parameters affecting stability of the nanofluid and
theoretical model for thermal conductivity.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

In today’s world downsizing has become a new trend in the world of science and
technology. Micro electromechanical systems (MEMS) technology and
nanotechnology are rapidly emerging and developing as the new revolution in
miniaturization, which is strongly interdisciplinary. For example, miniature heat
exchangers have numerous attributes, including high thermal effectiveness, high heat
transfer surface-to volume ratio, small size, low weight, low fluid inventory and
design flexibility.

Nanoparticles are now easily produced using modern material technology with
sizes less than 100nm. These nanoparticles have different mechanical, electrical,
thermal and optical properties compared to their parent material. The stable
suspension of these nanoparticles in conventional base fluids is known as nanofluid,
which was first coined by Choi (1995) at the Argonne National Laboratory (ANL),
Chicago. Since the development of the concept of nanofluids, many scientists and
researchers all over the world have made scientific breakthrough in developing
unexpected thermal properties enhancement and also studied and proposed new
mechanisms behind enhanced thermal properties of nanofluids.

Great interest has recently been developed in the area of nanostructured carbon
materials. Carbon nanomaterials are gaining commercial importance with interest
growing rapidly over the decade or so since the discovery of buckminsterfullerene,

carbon nanotubes, and carbon nanofibers (Dresselhaus et al., 2001). Carbon nanotubes



(CNT) and carbon nanofibers (CNFs) are among the most eminent materials in
nanotechnology. The most eye-catching features of these structures are their unique
electronic, mechanical, optical, thermal and chemical characteristics, which open new
applications.

Ultrahigh performance cooling is one of the most important needs in today’s
cooling industries. Low thermal conductivity of conventional base fluids (for example,
water 0.6 W/mK and ethylene glycol 0.2W/mK) is a primary limitation in developing
energy efficient heat transfer fluids. The conventional way to enhance heat transfer
rate is by increasing the surface area of cooling devices and the flow velocity. Another
way is to disperse solid particles in conventional heat transfer fluids. Due to increasing
need for efficient cooling technologies in many industries, a new approach to enhance
heat transfer is necessary. Thus, a small amount of nanoparticles uniformly suspended
in conventional base fluids can dramatically enhance the heat transfer characteristics
of these base fluids. Cooling is one of the top technical challenges facing high tech
industries such as micro-electronics, transportation, manufacturing, metrology and
defense with heat load increasing 25kW or heat flux exceeding 2000W/cm?. In the
transportation industry, cooling is a crucial issue due to the trend towards higher
engine power and exhaust gas regulation or hybrid vehicles. inevitably leads to larger
radiators and increased frontal areas, resulting in additional aerodynamic drag and
higher fuel consumption. Thus, nanofluids can offer a great potential in developing
high performance, cost effective, compact liquid cooling systems.

Thermal conductivity of heat transfer fluids plays a vital role in the
development of energy efficient heat transfer fluids. Conventional base fluids such as

oils, water and ethylene glycol have inherently poor thermal conductivities, orders of



magnitude smaller than solid particles. Metals in solid form at room temperature have

orders of magnitude higher thermal conductivities than liquids as shown in Table 1.1.

Table 1.1

Thermal conductivity of various materials (Das et al., 2008)

Material Material Thermal conductivity (W/m K)
Metallic solids Silver 429
Copper 401
Aluminum 237
Non-metallic solids Diamond 3300
Carbon nanotubes 3000
Silicon 148
Alumina (Al,03) 40
Metallic Liquids Sodium at 644 K 72.3
Non-metallic liquids Water 0.613
Ethylene glycol 0.253
Engine oil 0.145

Nanofluids produced are expected to give the following benefits (Patel, 2007).

1. Nanofluids can be made stable and homogeneous with the use of nominal

stabilizing agent combined with other techniques such as ultrasonic

vibrations and high speed homogenisation.

11. Very less sedimentation occurs because of higher stability of nanofluids.

Also the particles are always in motion, which assures no fouling.

1ii. Due to the small size and less momentum of particles, there will be

practically no erosion of the components.

1v. Very minor increase in pressure drop occurs resulting from the friction

between fluid and particles. However, these nanoparticles may sit in the

surface irregularities thereby making them smoother which reduce the

friction between fluid and the wall. The resultant effect may be even

minor reduction in pressure drop.






