COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

THERMAL CONDUCTIVITY AND RHEOLOGY OF CNT NANOFLUIDS STABILIZED WITH GUM ARABIC

BY

RASHMI G WALVEKAR

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (Biotechnology Engineering)

> Kulliyyah of Engineering International Islamic University Malaysia

> > FEBRUARY 2012

ABSTRACT

A nanofluid is a suspension of nano sized particles in a base fluid. It is very much essential to know more about stability and thermal characteristics of such a nanofluid for their further use in practical applications. In the present work, Multiwalled Carbon Nanotubes (CNT) are dispersed in water. CNT dispersed in water are highly unstable and they sediment rapidly due to the Vander Waals force of attraction. Thus, to overcome this limitation Gum Arabic (GA) was added which acted as a potential dispersant. Experimental work consisting of stability studies under the effects of CNT concentration (0.01-0.1 wt%), GA concentration (0.25-5.0 wt%) and sonication time (1-24hr), respectively have been carried out. Stability was measured using UV-Vis spectrophotometer. Thermal conductivity, density and rheology of the most stable suspensions were measured as a function of temperature (25-60°C) and CNT concentration. pH of the nanofluid suspensions have also been measured. Further, convective heat transfer experiments were conducted in a laminar flow heat exchanger for CNT concentration of 0.01wt%. GA concentration and sonication time was found to play important role in dispersion of CNTs in water. Nanofluids are found to be stable at 4.0hr sonication time and the optimum GA concentration was found to be between 1.0-2.5 wt% for the range of the CNT concentration studied. Thermal conductivity was observed to be strongly dependent on temperature and CNT concentration. The enhancement in thermal conductivity was from 4.03-125.6% and 37.4-287.5% as the temperatures varied from 25-60 °C, for 0.01wt% and 0.1wt% of CNT, respectively. CNT nanofluids showed slightly shear thinning behavior at low shear rates (<400s⁻¹) and clear Newtonian behavior at high shear rates (400-1000s⁻¹) and temperature. Further, viscosity was also found to be a function of CNT and GA concentration. No significant change in viscosity and density was observed in the presence of GA and CNT and the CNT nanofluid was found to be more stable in pH range between 4.5-5.5. The results on laminar flow using CNT nanofluids show increase in heat transfer coefficient up to 68-138%, which implies nanofluids as promising fluids for heat transfer application. In this study, a new model for thermal conductivity was proposed to explain the possible enhancement, by taking temperature, viscosity of the fluid, Brownian motion, shape and aspect ratio of CNTs apart from other properties of fluid and particles. The proposed model was found to be in good agreement within <10% deviation with experimental data on all CNT nanofluids available in the literature. However, the discrepancy increase as the CNT concentration increased beyond 0.06 volume fraction, which could be primary limitation of the model. Numerical simulations were carried out for 0.01, 0.04 and 0.1wt%, CNT using FLUENT by single phase approach. Numerical results are validated with the theoretical models and experimental results. The numerical results were found to be in good agreement ($\pm 10\%$ error) with the experimental results at low CNT concentration while the deviation increased to 16% with particle concentration. In summary, CNT nanofluids are found to be more suitable for heat transfer applications in many industries due to their enhanced thermal conductivity property. This work provides large information on behavior of CNT nanofluids. The major contributions of this work includes production of stable CNT nanofluid using gum Arabic, various parameters affecting stability of the nanofluid and theoretical model for thermal conductivity.

خلاصة البحث

تعتبر محاليل النانو nanofluids من المعلقات لدقائق متناهية الصغر في سائل. ومن المهم ان نحيط علما باستفراريتها وتصرفها تحت درجات حرارية متباينة للحصول على معلومات بهدف الاستفادة العملية منها. في هذا البحث درست انابيب نانو من الكاربون CNT متعددة الجدر ان معلقة في وسط مائي. هذه المحاليل تعتبر غير مستقرة بسب تواجد قوة "فان در والز" ومن اجل التغلب على هذه الحالة تم اضافة "الصمغ العربي GA " والذي يعمل على تشتيت هذه القوة. درست محاليل حاوية على CNT بتراكيز ,(%O.01-0.1 wt) وبوجود GA بتراكيز (%Gt -0.0 -0.1 wt) ولفترة زمنية تراوحت بين ((1-24hr) ولفترة زمنية تراوحت بين ((1-24hr) باستخدام UV-Vis spectrophotometer. تم دراسة المواصفات الحرارية والكثافة والريولوجية بدرجات حرارية تراوحت بين (Co°C) وتراكيز محاليل CNT والدالة الحامضية pH للمحاليل اضافة الى ذلك اجريت تجارب على تصرفاتها الحرارية باستخدام مبادلات حرارية لمحاليل CNT والحاوية على 0.01wt%. GA وتبين أن تأثير عامل الزمن مهم جدا على استقرارية المعلقات المائية. تبين ايضا ان المعلقات بقت صامده لفترة 4.0 ساعات من sonication time وان افضل التراكيز من الصمغ العربي GA كانت تتراوح بين %tk 2.5-1.0 للتراكيز من CNT التي تم دراستها. أما الموصلية الحرارية فوجد بأنها تعتمد على درجات الحرارة وتراكيز CNT . إن تضخم "enhancement " الموصلية الحرارية الحاصل كان بين %37.4-287.5% and 37.4 وضمن درجات حرارية °C 25-60 للتراكيز %and 0.1wt %and 0 من CNT , على التوالي. كما تبين بأن محاليل النانو nanofluids تتأثر قليلا shear thinning بمعدلات بسيطة (1-400s) وتتصرف كمحاليل Newtonian عند معدلات سحب (1-400-400). و وجد بأن اللزوجة ذاتها تتأثر بتراكيز كل من CNT and GA. لم يلاحظ اي تغير باللزوجة والكثافة بوجود GA وCNT كما وجد بان محاليل النانو nanofluids اظهرت استقرارا بدالات حامضية تراوحت بين.5.5-4.5. أظهرت النتائج ايضا بان استخدام محاليل النانو الحاوية علىCNT زيادة في في معامل نقل الحرارة بمقدار تراوح بين %CNT وهذا يدل على ان محاليل النانو مرشحة في استخدامات التبادل الحراري. نقدم في هذه الدراسة نموذجا للنقل الحراري يوضح امكانية تحسينها بدراسة درجة حرارة واللزوجة للسائل والحركة البراونية ونسب CNT إضافة الى المتغيرات الاخرى للسائل و الدقائق. يبن النموذج المعروض توافق بحدود درجة تباين < 10%> على جميع محاليل النانو الحاوية على CNT والواردة في الادبيات. بدأت الاختلافات تظهر بزيادة تراكيز CNT اكثر من 0.06 (نسب حجمية) والذي يحدد امكانية استخدام النموذج المطروح. أجريت تجارب محاكات على محاليل حاوية على تراكيز "0.04 and 0.1wt من CNT باستخدام FLUENT وبطور واحد. اظهرت النتائج تطابقا مع الموديلات النظرية وفق النتائج التي تم الحصول عليها وضمن تباين لا يتعدى (error %10 ±) عندما يكون تركيز CNT قليلا، بينما زاد التباين الى %16 بزيادة تركيز الدقائق العالقة. وفي الختام ،ان ابرز ما يقدمه بحثنا هذا هو : إمكانية استخدام محاليل النانو nanofluids كوسط للتبادل الحراري في صناعات متعددة نظر الما تمتلكه من صفات جيدة. كما ويقدم البحث معلومات قيمة عن تصرفات محاليل النانو nanofluids ، وسلوكياتها، وطرق تحظير ها، و استقراريتها ـ إضافة الى تقديمنا موديلا للتبادل الحراري.

APPROVAL PAGE

The thesis of Rashmi Walvekar has been approved by the following:

Ahmad Faris Ismail Supervisor

> Faridah Yusof Co-supervisor

Mohammed Saedi Jami Internal Examiner

Mirghani Ishaq Ahmed Internal Examiner

> Wan Ramli Wan Daud External Examiner

Abdi Omar Shuriye Chairman

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Rashmi Walvekar

Signature _____

Date _____

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2012 by International Islamic University Malaysia. All rights reserved.

THERMAL CONDUCTIVITY AND RHEOLOGY OF CNT NANOFLUIDS STABILIZED WITH GUM ARABIC

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Rashmi Walvekar

Signature

Date

This research is dedicated to my parents and family for their endless support and affection

ACKNOWLEDGEMENTS

In The Name of ALLAH, The Most Merciful. The Most Beneficent

A research is a Herculean task, which demands exemplary commitment and hard work. This research has enlisted the help of numerous identities, thanking whom, is the least I can do at the completion of this project. I am immensely and whole heartedly grateful to all the people who contributed towards the culmination of this endeavor and emphasize the impossibility of the same without their cooperative efforts. First and foremost, I would like to place my profound indebtness and deep sense of gratitude to my advisor and chairman of the supervisory committee, Prof. Dr. Ahmad Faris Ismail, my supervisory committees, Assoc. Prof. Dr. Faridah Yusof, Prof. Dr. Waqar Asrar, Assoc. Prof. Dr. Ahmad Tariq Jameel and Dr. Maan Khatib for their wholehearted guidance and support without which this research would not have been possible.

I wish to express my gratitude to Assoc Prof. Dr Iis Sopyan, Br. Hj. Sukiman, Br Syamsul, Br. Aslan and other staff of the biotechnology and material engineering department for their help and the pains they have taken beyond the call of their duty in shaping this research. I would like to thank Br. Mubarak, Br. Abdul Khaliq, Br. Mohammad Saadi for their selfless help during the whole tenure of my research. I would also like to thank Dr Ram Prakash Bharti (IITR-India) for his guidance and support during this research. I would like to dedicate this work to my family, who has been supporting me in achieving all my aspirations and ventures. I am greatly indebted to my mother for her unconditional love and support during the tough times I had.

TABLE OF CONTENTS

Abstract ii				
Abstra	ct in Ara	abic		iii
Appro	val Page			iv
Declar	ation Fo	rm		V
Copyri	ight Forr	n		vi
Dedica	ation			vii
Ackno	wledgm	ents		viii
List of	Tables.			xii
List of	Figure.			xiii
List of	`Svmbol	S		xviii
List of	Abbrev	iations		XX
СНАР	TER O	NE: INTRO	DUCTION	1
1.1	Overvie	ew		1
1.2	Problem	n Statement a	and Its Significance	4
1.3	Researc	h Philosophy	۲	5
1.4	Researc	h Objectives	·	6
1.5	Researc	h Methodolo)gv	7
1.6	Scope of	of Research.		8
1.7	Organiz	zation of The	sis	9
	8			-
CHAF	TER T	WO: LITE	RATURE REVIEW	11
2.1	Introdu	ction		11
2.2	Carbon	Nanotubes		11
2.3	Gum Arabic 13			13
2.4	Computational Fluid Dynamics			14
2.5	Nanoflu	uid Preparatio)n	14
	2.5.1	Physical Di	spersion Method	15
	2.5.2	Chemical D	Dispersion Method	16
	2.5.3	Dispersion	of CNT Nanofluids	17
2.6	Propert	ies of Nanofl	uids	22
	2.6.1	Thermal C	onductivity	22
		2.6.1.1	Effect of Particle Volume Fraction	22
		2.6.1.2	Effect of Particle Material	25
		2.6.1.3	Effect of Base Fluid	28
		2.6.1.4	Effect of Particle Size	29
		2615	Effect of Particle Shape	31
		2.6.1.6	Effect of Temperature	33
		2.6.1 7	Effect of Clustering	34
		2.6.1 8	Effect of pH	35
	2.6.2	Rheology	· · · · - r	37
		2621	Effect of Temperature	41
		2.6.2.2	Effect of Particle Size and Shape	42
		2623	Effect of nH	42
		2.0.2.5	LILLOW OI PIL	

	2.6.3	Density			43
2.7	Theoreti	ical Investig	gations		44
	2.7.1	Mechanis	m of Therma	l Conductivity Enhancements	44
	2.7.2	Thermal	Conductivity.		47
2.8	Convec	tive Heat T	ransfer of Na	nofluids	60
	2.8.1	Heat Trar	nsfer Coeffici	ent	63
2.9	Numeri	cal Simulat	ion		65
2.10	Summa	ry			70
		2			
CHA	PTER T	HREE: MA	ATERIALS A	AND METHODS	72
3.1	Introdu	ction			72
3.2	Material	S			72
	3.2.1	Multiwal	led Carbon N	anotubes	72
	3.2.2	Gum Ara	bic		72
3.3.	Flow Di	agram for H	Research Met	hodology	73
3.4	Measure	ement Tech	niques		74
	3.4.1	Stability I	Measurement	S	75
	3.4.2	Thermal (Conductivity.		77
	3.4.3	Rheology	, 		78
	3.4.4	Density			79
	3.4.5	pH Meası	arement		79
	3.4.6	Heat Tran	sfer Experim	ent	80
		3.4.6.1	Evaluation of	of Heat Transfer Coefficients	83
3.5	Theoreti	ical Analysi	is		84
	3.5.1	Thermal C	Conductivity I	Model	84
	3.5.2	Heat Trar	nsfer Coeffici	ent	90
3.6	Numerio	cal Method.			91
	3.6.1	Structure	of Computati	ional Fluid Dynamics (CFD)	91
	3.6.2	Computat	tional Resour	ce	93
	3.6.3	Geometry	and Grid Ge	eneration	94
	3.6.4	Boundary	Conditions.		95
	3.6.5	Simulatio	n Methodolo	gy	96
	3.6.6	Post-proc	essing		98
3.7	Summar	y			98
CITY 1.1					4.0.0
	PTER FO	JUR: RES	SULTS AND	DISCUSSION	100
4.1		tion	· · · · · · · · · · · · · · · · · · ·		100
4.2	Experim	ental Invest	igations	••••••	100
	4.2.1		E Nanolluids.		100
		4.2.1.1	Effect of So	Incation 1 ime	101
	4.0.0	4.2.1.2	Effect of G		100
	4.2.2	Physical F	Toperties of C	IN I INANOIIUIA	115
		4.2.2.1	I nermal Co		115
			4.2.2.1.1	Effect of GA Concentration	110
			4.2.2.1.2	Effect of UN1 Concentration	117
		4 2 2 2	4.2.2.1.3	Effect of Temperature	120
		4.2.2.2	рн		124
		4.2.2.3	Density		125
		4.2.2.4	Kheology		127

4.3	Heat Transfer Studies		
4.4	Theoretical Investigations	142	
	4.4.1 Thermal Conductivity	142	
	4.4.2 Heat Transfer Coefficient	149	
4.5	Numerical Studies	150	
4.6	Summary	158	
CHA	APTER FIVE: CONCLUSION AND RECOMMENDATION	159	
5.1	Conclusion	159	
5.2	Main Contribution	161	
5.3	Recommendation	161	
BIB	LIOGRAPHY	163	
LIST	Γ OF PUBLICATIONS	182	
PAT	'ENT	183	
AW	ARDS	184	

LIST OF TABLES

Table No		Page No
1.1	Thermal conductivity of various materials	3
2.1	Summary of nanofluids prepared with dispersion techniques	20
2.2	List of thermal conductivity model	48
2.3	Models for effective heat transfer coefficient	65
3.1	Amount of CNT, GA and water used in nanofluid preparation	74
3.2	Heat exchanger specifications	82
3.3	Physical properties of hot fluid	82
3.4	Physical properties of cold fluids	82
3.5	Convergence criteria for flow variables used in present study	97
3.6	Under-relaxation factors used in present study	98
4.1	Optimum values of GA concentration	114
4.2	Comparison on experimental details of CNT nanofluids	120
4.3	Thermal conductivity enhancement of nanofluids in the presence of GA	123
4.4	Percentage enhancement in density of GA solution and CNT nanofluid	126
4.5	Percentage enhancement in Nusselts number as a function of cold fluid flow rate	141

LIST OF FIGURES

Figure No		Page No
1.1	Outline for research methodology	8
2.1	Chiral angle and vector representation of CNT	12
2.2	Comparison of the experimental results of the thermal conductivity ratio for Al_2O_3 /water nanofluid (particle size ~ 40nm)	24
2.3	Comparison of some experimental data on thermal conductivity for CNT/water based nanofluids	25
2.4	Effect of particle material for particles in ethylene glycol (Particle size ~28nm)	26
2.5	Effect of base fluid material for Al_2O_3 in fluids (Particle size ~60nm)	29
2.6	Effect of particle size for Al ₂ O ₃ in water	31
2.7	Effect of particle shape for SiC in water	32
2.8	Effect of temperature for MWCNT in water	34
2.9	Effect of pH on thermal conductivity of Al_2O_3 in water (Particle size~60nm)	36
2.10	Rheological behavior of CNT/water nanofluid at 0.5wt%	38
2.11	Rheological behavior of TiO ₂ /EG nanofluid at 2.0wt%	39
2.12	Rheological behavior of CNT/water nanofluids stabilized by Chitosan (a) viscosity vs shear rate (b) Stress vs shear rate	40
2.13	Viscosity of nanofluids at different particle size as a function of pH	43
2.14	Mechanisms for thermal conductivity enhancement (a) Conductive layer at the liquid/particle interface; (b) Ballistic and diffusive phonon transport in a solid particle; (c) highly conducting clusters	45

2.15	Comparison of the experimental results with theoretical models for Al_2O_3 /water	53
2.16	Comparison of the experimental results with theoretical models for Al_2O_3 /water nanofluid (a) 1.0 vol% (b) 3.0vol%	55
2.17	Comparison of the experimental results with theoretical models for Al_2O_3 /water nanofluid as a function temperature	57
2.18	Comparison of the experimental data with theoretical models for CNT/water nanofluid.	59
2.19	Nusselt number as a function of Reynolds number: summary of literature data for laminar flows	62
2.20	Nusselt number as a function of Reynolds number: summary of literature data for turbulent flows	62
3.1	Flow diagram of research methods and experimental outline	73
3.2	UV Vis absorption spectrum of CNT in water	76
3.3	Calibration curve of light absorption and CNT concentration at 384nm	77
3.4	Laminar flow heat exchanger test section indicating flow direction of hot and cold fluids	80
3.5	Schematic representation of solid-liquid system	84
3.6	Schematic of the stationary particle model	87
3.7	Schematic representations of flow and boundary conditions for concentric tube heat exchanger	94
3.8	2-D axis symmetric grid created using pre-processor GAMBIT 2.3	94
4.1	Effect of sonication time on stability of CNT suspension. (CNT = 0.01 wt% and GA= 1.0 wt%) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different sonication time	102
4.2	Effect of sonication time on stability of CNT suspension $(CNT = 0.1wt\%$ and GA=2.5wt %) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different sonication time	103

4.3	CNT nanofluid samples before sonication	104
4.4	CNT nanofluid samples after 4hr sonication	105
4.5	Effect of GA concentration on stability of CNT=0.01wt% (a) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different GA concentration	107
4.6	Effect of GA concentration on stability of CNT=0.02wt% (a) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different GA concentration	108
4.7	Effect of GA concentration on stability of CNT=0.04wt% (a) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different GA concentration	109
4.8	Effect of GA concentration on stability of CNT=0.08wt% (a) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different GA concentration	110
4.9	Effect of GA concentration on stability of CNT=0.1wt% (a) (a) CNT Concentration vs sediment time (b) Sample images after 1500 hrs of standing at different GA concentration	111
4.10	SEM images showing effect of GA concentration on 0.01wt% CNT (a) GA 1wt% (b)2.5wt% (c) 5wt%	113
4.11	Degradation of GA solution	115
4.12	Effect of GA concentrations on thermal conductivity of water (a) Effective thermal conductivity (b) Percentage enhancement	116
4.13	Effect of CNT concentration on thermal conductivity of CNT nanofluid (a) Effective thermal conductivity (b) percentage enhancement	118
4.14	Comparison on thermal conductivity of CNT/water nanofluids	119
4.15	Effect of temperature on thermal conductivity of (a) GA solution (b) CNT nanofluid	121
4.16	Effect of measurement time on thermal conductivity of CNT-GA nanofluid.	123

4.17	Change in pH with GA concentration and its effect on CNT nanofluid	125
4.18	Density of GA solutions and CNT-GA nanofluids as a function of temperature	126
4.19	Rheological behavior of GA 1.0 wt% solution (a) Stress vs shear rate (b) Viscosity vs shear rate	128
4.20	Rheological behavior of GA 1.5 wt% solution (a) Stress vs shear rate (b) Viscosity vs shear rate	129
4.21	Rheological behavior of GA 2.5 wt% solution (a) Stress vs shear rate (b) Viscosity vs shear rate	130
4.22	State of GA molecules with and without shear	130
4.23	Viscosity of GA solutions at different GA concentration as a function of temperature (at shear rate $=1000s^{-1}$)	131
4.24	Rheological behavior of 0.01wt% CNT nanofluid (a) Stress vs strain (b) Viscosity vs shear rate	133
4.25	Rheological behavior of 0.04wt% CNT nanofluid (a) Stress vs strain (b) Viscosity vs shear rate	134
4.26	Rheological behavior of 0.08wt% CNT nanofluid (a) Stress vs strain (b) Viscosity vs shear rate	135
4.27	Rheological behavior of 0.1wt% CNT nanofluid (a) Stress vs strain (b) Viscosity vs shear rate	136
4.28	Viscosity of CNT-GA nanofluids at different CNT concentration as a function of temperature (at shear rate $=1000s^{-1}$)	137
4.29	Validation of experimental results for water with Shah's correlation	139
4.30	Effect of flow rate on heat transfer rate of water, GA solution and CNT nanofluid	139
4.31	Nusselt number for water, GA solution and CNT nanofluid as a function of flow rate	140
4.32	Comparison of present experimental data with conventional models and present model at 25°C	143

4.33	Comparison of present experimental work with proposed model as a function of temperature	144
4.34	Comparison of experimental data of Jha and Ramaprabhu (2008) with present model as a function of volume fraction	145
4.35	Comparison of experimental data of Jha and Ramaprabhu (2008) with present model as a function of temperature	145
4.36	Comparison of experimental data of Wen and Ding (2004) and Choi et al. (2001) with present model as a function of volume fraction	146
4.37	Comparison of experimental data of Xie et al. (2003) with present model as a function of volume fraction	147
4.38	Comparison of experimental data of Hwang et al. (2007) with present model as a function of volume fraction	147
4.39	Comparison of experimental data of Liu et al. (2005) with present model as a function of volume fraction	148
4.40	Comparison of experimental results of CNT nanofluids with different correlations	150
4.41	Grid independent study and validation with experimental results for water	151
4.42	Comparison of heat transfer rate of experimental and numerical results for water, GA solution and CNT nanofluid	152
4.43	Comparison of Nusselt number of experimental and numerical results for water, GA solution and CNT nanofluid	152
4.44	Contour plots of temperature at different flow rates (a) pure water (b) GA solution (c) CNT nanofluid	154
4.45	Numerical results for heat transfer rate of CNT nanofluids compared to water and optimum GA concentration	155
4.46	Comparison of numerical results with theoretical models for CNT 0.04 wt% nanofluid	156
4.47	Comparison of numerical results with theoretical models for CNT 0.04wt% nanofluid	157

LIST OF SYMBOLS

Symbols		<u>Units</u>
A_i	Internal heat transfer flow area	m^2
A	Flow area	m^2
A_o	External heat transfer flow area	m^2
A_m	Mean heat transfer flow area	m^2
$B_{2,x}$	Depolarization factor along x axis	-
$C_{p,h}$	Specific heat of hot fluid	J/kgK
$C_{p,c}$	Specific heat of cold fluid	J/kgK
$C_{p,p}$	Specific heat of the particle	J/kgK
Cp_{f}	Specific heat of the fluid	J/kgK
$C_{p,eff}$	Effective specific heat	J/kgK
D_p	Diffusivity of the particle	m^2/s
D	Pipe diameter	т
D_o	Outer diameter of outer pipe	т
D_i	Inner diameter of outer pipe	т
d_o	Outer diameter of inner tube	т
d_p	Diameter of the particle	т
d_i	Inner diameter of inner tube	т
G_z	Gratz number	-
G_r	Grashoff number	-
g	Acceleration due to gravity	m/s^2
h	Heat transfer coefficient	W/m^2K
J_x	Heat current vector	W
k _{pe}	Equivalent particle thermal conductivity	W/mK
k_p	Particle thermal conductivity	W/mK
k_f	Fluid thermal conductivity	W/mK
k_{cl}	Cluster thermal conductivity	W/mK
$k_{c,x}$	Effective dielectric constant along x axis	W/mK
k_i	Thermal conductivity of the interface	W/mK
k_B	Boltzmann constant	$m^2 kg/s^2 K$
L	Length of the pipe	т
l_p	Length of the particle	т
m_{h}	Mass flow rate of hot fluid	kg/s
m	Mass	kg
m.	Mass flow rate of cold fluid	kg/s
N	Number of Brownian particles	_
Nu	Nusselt number	_
n.	Number of fluid molecules per unit volume	$1/m^{3}$
nn	Number of particles per unit volume	$1/m^3$
n _s	Shape factor	-
P_r	Prandtl number	-
\vec{P}_{a}	Peclet number	-
c		

$\dot{Q_c}$	Heat transfer rate of cold fluid	W
$\dot{\mathcal{Q}}_h$	Heat transfer rate of hot fluid	W
Q_{avg}	Average heat transfer rate	W
q	Over all heat transfer rate	W
q_f	Heat transfer rate due to fluid	W
q_p	Heat transfer rate due to particle	W
\hat{R}_e	Reynold number	-
r _n	Radius of the particle	т
f f	Radius of the fluid molecule	т
cl	Radius of the cluster	т
So	Annulus flow area	m^2
S_f	Surface area of the fluid molecules paer unit volume	m^2
$\dot{S_p}$	Surface area of the particles per unit volume	m^2
<i>r</i>	Time	S
Г	Temperature	K
1, V, W	Velocity components	m/s
7	Volume of the system	m^3
f	Fluid viscosity	kg/ms
lef	Effective viscosity	kg/ms
\mathbf{p}_f	Density of the fluid	kg/m^3
D_p	Density of the particle	kg/m^3
Deff	Effective density	kg/m^3
(Shear rate	S^{-1}
	Drag on the particles	Pas
- C	Increment time	S
• max	Maximum volume fraction	-
þ	Volume fraction of the particle	-
∮eff	Effective volume fraction of the particles	-
ocl	Volume fraction of the cluster	-
Ψ	Sphericity	-

LIST OF ABBREVATIONS

Ag	Silver
Ag ₂ Al	Silver alumina
Al	Aluminum
Al ₂ Cu	Aluminum copper
Al ₂ O ₃	Aluminum oxide
ANL	Argonne national laboratory
Au	Gold
BmimPF6	1-butyl-3-methylimidazolium hexafluorophosphate
С	Carbon
CFD	Computational Fluid dynamics
СМС	Carboxy methyl cellulose
CNF	Carbon nanofibres
CNT	Carbon nanotube
СТАВ	Cetyltrimethyl ammonium bromide
Cu	Copper
CuO	Cuprous oxide
DWCNT	Double walled carbon nanotubes
EG	Ethylene glycol
F-CNT	Functionalized carbon nanotubes
Fe	Iron
Fe ₂ O ₃	Ferrous oxide
GA	Gum arabic

HCl	Hydrochloric acid	
HEC	Hydroxy ethyl cellulose	
MWCNT	Multiwalled carbon nanotubes	
MEMS	Micro electromechanical systems	
NaDDBS	Sodium dodecyl benzen sulfonate	
Ni	Nickle	
SDBS	Sodium dodecyl benzene sulfonate	
SDS	Sodium dodecyl sulphate	
SEM	Scanning electron microscopy	
SiC	Siliconcarbide	
SWCNT	Single walled carbon nanotubes	
TEM	Transmission electron microscopy	
TiO ₂	Titanium oxide	
VTF	Vogel-Tammann-Fulcher	

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In today's world downsizing has become a new trend in the world of science and technology. Micro electromechanical systems (MEMS) technology and nanotechnology are rapidly emerging and developing as the new revolution in miniaturization, which is strongly interdisciplinary. For example, miniature heat exchangers have numerous attributes, including high thermal effectiveness, high heat transfer surface-to volume ratio, small size, low weight, low fluid inventory and design flexibility.

Nanoparticles are now easily produced using modern material technology with sizes less than 100nm. These nanoparticles have different mechanical, electrical, thermal and optical properties compared to their parent material. The stable suspension of these nanoparticles in conventional base fluids is known as nanofluid, which was first coined by Choi (1995) at the Argonne National Laboratory (ANL), Chicago. Since the development of the concept of nanofluids, many scientists and researchers all over the world have made scientific breakthrough in developing unexpected thermal properties enhancement and also studied and proposed new mechanisms behind enhanced thermal properties of nanofluids.

Great interest has recently been developed in the area of nanostructured carbon materials. Carbon nanomaterials are gaining commercial importance with interest growing rapidly over the decade or so since the discovery of buckminsterfullerene, carbon nanotubes, and carbon nanofibers (Dresselhaus et al., 2001). Carbon nanotubes (CNT) and carbon nanofibers (CNFs) are among the most eminent materials in nanotechnology. The most eye-catching features of these structures are their unique electronic, mechanical, optical, thermal and chemical characteristics, which open new applications.

Ultrahigh performance cooling is one of the most important needs in today's cooling industries. Low thermal conductivity of conventional base fluids (for example, water 0.6 W/mK and ethylene glycol 0.2W/mK) is a primary limitation in developing energy efficient heat transfer fluids. The conventional way to enhance heat transfer rate is by increasing the surface area of cooling devices and the flow velocity. Another way is to disperse solid particles in conventional heat transfer fluids. Due to increasing need for efficient cooling technologies in many industries, a new approach to enhance heat transfer is necessary. Thus, a small amount of nanoparticles uniformly suspended in conventional base fluids can dramatically enhance the heat transfer characteristics of these base fluids. Cooling is one of the top technical challenges facing high tech industries such as micro-electronics, transportation, manufacturing, metrology and defense with heat load increasing 25kW or heat flux exceeding 2000W/cm². In the transportation industry, cooling is a crucial issue due to the trend towards higher engine power and exhaust gas regulation or hybrid vehicles, inevitably leads to larger radiators and increased frontal areas, resulting in additional aerodynamic drag and higher fuel consumption. Thus, nanofluids can offer a great potential in developing high performance, cost effective, compact liquid cooling systems.

Thermal conductivity of heat transfer fluids plays a vital role in the development of energy efficient heat transfer fluids. Conventional base fluids such as oils, water and ethylene glycol have inherently poor thermal conductivities, orders of

2

magnitude smaller than solid particles. Metals in solid form at room temperature have orders of magnitude higher thermal conductivities than liquids as shown in Table 1.1.

Material	Material	Thermal conductivity (W/m K)
Metallic solids	Silver	429
	Copper	401
	Aluminum	237
Non-metallic solids	Diamond	3300
	Carbon nanotubes	3000
	Silicon	148
	Alumina (Al_2O_3)	40
Metallic Liquids	Sodium at 644 K	72.3
Non-metallic liquids	Water	0.613
	Ethylene glycol	0.253
	Engine oil	0.145

Table 1.1Thermal conductivity of various materials (Das et al., 2008)

Nanofluids produced are expected to give the following benefits (Patel, 2007).

- Nanofluids can be made stable and homogeneous with the use of nominal stabilizing agent combined with other techniques such as ultrasonic vibrations and high speed homogenisation.
- ii. Very less sedimentation occurs because of higher stability of nanofluids.Also the particles are always in motion, which assures no fouling.
- iii. Due to the small size and less momentum of particles, there will be practically no erosion of the components.
- iv. Very minor increase in pressure drop occurs resulting from the friction between fluid and particles. However, these nanoparticles may sit in the surface irregularities thereby making them smoother which reduce the friction between fluid and the wall. The resultant effect may be even minor reduction in pressure drop.