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ABSTRACT

A nanofluid is a suspension of nano sized particles in a base fluid. It is very much
essential to know more about stability and thermal characteristics of such a nanofluid for
their further use in practical applications. In the present work, Multiwalled Carbon
Nanotubes (CNT) are dispersed in water. CNT dispersed in water are highly unstable and
they sediment rapidly due to the Vander Waals force of attraction. Thus, to overcome this
limitation Gum Arabic (GA) was added which acted as a potential dispersant.
Experimental work consisting of stability studies under the effects of CNT concentration
(0.01-0.1 wt%), GA concentration (0.25-5.0 wt%) and sonication time (1-24hr),
respectively have been carried out. Stability was measured using UV-Vis
spectrophotometer. Thermal conductivity, density and rheology of the most stable
suspensions were measured as a function of temperature (25-60°C) and CNT
concentration. pH of the nanofluid suspensions have also been measured. Further,
convective heat transfer experiments were conducted in a laminar flow heat exchanger for
CNT concentration of 0.01wt%. GA concentration and sonication time was found to play
important role in dispersion of CNTs in water. Nanofluids are found to be stable at 4.0hr
sonication time and the optimum GA concentration was found to be between 1.0-2.5 wt%
for the range of the CNT concentration studied. Thermal conductivity was observed to be
strongly dependent on temperature and CNT concentration. The enhancement in thermal
conductivity was from 4.03-125.6% and 37.4-287.5% as the temperatures varied from 25-
60 °C, for 0.01wt% and 0.1wt% of CNT, respectively. CNT nanofluids showed slightly
shear thinning behavior at low shear rates (<400s-1) and clear Newtonian behavior at high
shear rates (400-1000s-1) and temperature. Further, viscosity was also found to be a
function of CNT and GA concentration. No significant change in viscosity and density
was observed in the presence of GA and CNT and the CNT nanofluid was found to be
more stable in pH range between 4.5-5.5. The results on laminar flow using CNT
nanofluids show increase in heat transfer coefficient up to 68-138%, which implies
nanofluids as promising fluids for heat transfer application. In this study, a new model for
thermal conductivity was proposed to explain the possible enhancement, by taking
temperature, viscosity of the fluid, Brownian motion, shape and aspect ratio of CNTs
apart from other properties of fluid and particles. The proposed model was found to be in
good agreement within <10% deviation with experimental data on all CNT nanofluids
available in the literature. However, the discrepancy increase as the CNT concentration
increased beyond 0.06 volume fraction, which could be primary limitation of the model.
Numerical simulations were carried out for 0.01, 0.04 and 0.1wt%, CNT using FLUENT
by single phase approach. Numerical results are validated with the theoretical models and
experimental results. The numerical results were found to be in good agreement ( 10%
error) with the experimental results at low CNT concentration while the deviation
increased to 16% with particle concentration. In summary, CNT nanofluids are found to
be more suitable for heat transfer applications in many industries due to their enhanced
thermal conductivity property. This work provides large information on behavior of CNT
nanofluids. The major contributions of this work includes production of stable CNT
nanofluid using gum Arabic, various parameters affecting stability of the nanofluid and
theoretical model for thermal conductivity.
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خلاصة البحث  

من المعلقات لدقائق متناھیة الصغر في سائل. ومن المھم ان نحیط علما nanofluidsتعتبر محالیل النانو 
لیة باستفراریتھا وتصرفھا تحت درجات حراریة متباینة للحصول على معلومات بھدف الاستفادة العم

متعددة الجدران معلقة في وسط مائي. ھذه CNTمنھا. في ھذا البحث درست انابیب نانو من الكاربون 
المحالیل تعتبر غیر مستقرة بسب تواجد قوة "فان در والز" ومن اجل التغلب على ھذه الحالة تم اضافة 

بتراكیز CNTویة على درست محالیل  حا" والذي یعمل على تشتیت ھذه القوة.GA"الصمغ العربي  
(0.01-0.1 wt%), وبوجودGA بتراكیز(5.0-0.25 wt%)  ولفترة زمنیة تراوحت بین(24-1hr),

. تم دراسة المواصفات الحراریة والكثافة والریولوجیة  UV-Vis spectrophotometerباستخدام 
للمحالیل  pHالحامضیة  والدالةCNTوتراكیز محالیل (C°60-25)بدرجات حراریة تراوحت بین 

CNT.اضافة الى ذلك اجریت  تجارب على تصرفاتھا الحراریة باستخدام مبادلات حراریة لمحالیل  
وتبین أن تأثیرعامل الزمن مھم جدا على استقراریة المعلقات المائیة.0.01wt%. GAوالحاویة على 

وان افضل التراكیز من sonication timeساعات من 4.0تبین ایضا ان المعلقات بقت صامده لفترة 
التي تم دراستھا. أما CNTللتراكیز من %wt 2.5-1.0كانت تتراوح بین GAالصمغ العربي 

enhancement. إن تضخم "CNTالموصلیة الحراریة فوجد بآنھا تعتمد على درجات الحرارة وتراكیز 
%125.6-4.03" الموصلیة الحراریة الحاصل كان بین   and 37.4-287.5% وضمن  درجات حراریة

25-60 °C 0.01للتراكیزwt% and 0.1wt%من, CNT.كما تبین بأن محالیل النانو على التوالي
nanofluids تتأثر قلیلاshear thinning بمعدلات بسیطة(<400s-1) وتتصرف كمحالیلNewtonian

. CNT and GAجة ذاتھا تتأثر بتراكیز كل من .  و وجد بأن اللزو(1000s-1-400)عند معدلات سحب 
nanofluidsكما وجد بان محالیل النانو CNTوGAلم یلاحظ اي تغیر باللزوجة والكثافة بوجود

أظھرت النتائج ایضا بان استخدام محالیل ..5.5-4.5اظھرت استقرارا بدالات حامضیة تراوحت بین
وھذا یدل %138-68نقل الحرارة بمقدار تراوح بین زیادة في في معاملCNTالنانو الحاویة على

على ان محالیل النانو مرشحة في استخدامات التبادل الحراري. نقدم في ھذه الدراسة نموذجا للنقل 
الحراري یوضح امكانیة تحسینھا بدراسة درجة حرارة واللزوجة للسائل والحركة البراونیة ونسب

CNTیبن النموذج المعروض توافق بحدود درجة لسائل و الدقائق.إضافة الى المتغیرات الاخرى ل
والواردة في الادبیات. بدأت الاختلافات CNTعلى جمیع محالیل النانو الحاویة على %10>تباین < 

(نسب حجمیة) والذي یحدد امكانیة استخدام النموذج 0.06اكثر من CNTتظھر بزیادة تراكیز 
من,%and 0.1wt 0.04 ,0.01ت على محالیل حاویة على تراكیزالمطروح. أجریت تجارب محاكا

CNT باستخدامFLUENT وبطور واحد. اظھرت النتائج تطابقا مع المودیلات النظریة وفق النتائج
)التي تم الحصول علیھا وضمن تباین لا یتعدى 10% error) عندما یكون تركیزCNT قلیلا، بینما

إمكانیة بزیادة تركیز الدقائق العالقة. وفي الختام ،ان ابرز ما یقدمھ بحثنا ھذا ھو :%16د التباین الى زا
كوسط للتبادل الحراري في صناعات متعددة نظرا لما تمتلكھ من nanofluidsاستخدام محالیل النانو 

، وسلوكیاتھا، nanofluidsصفات جیدة. كما ویقدم البحث معلومات قیمة عن تصرفات محالیل النانو
.وطرق تحظیرھا، و استقراریتھا ـ إضافة الى تقدیمنا مودیلا للتبادل الحراري
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

In today’s world downsizing has become a new trend in the world of science and

technology. Micro electromechanical systems (MEMS) technology and

nanotechnology are rapidly emerging and developing as the new revolution in

miniaturization, which is strongly interdisciplinary. For example, miniature heat

exchangers have numerous attributes, including high thermal effectiveness, high heat

transfer surface-to volume ratio, small size, low weight, low fluid inventory and

design flexibility.

Nanoparticles are now easily produced using modern material technology with

sizes less than 100nm. These nanoparticles have different mechanical, electrical,

thermal and optical properties compared to their parent material. The stable

suspension of these nanoparticles in conventional base fluids is known as nanofluid,

which was first coined by Choi (1995) at the Argonne National Laboratory (ANL),

Chicago. Since the development of the concept of nanofluids, many scientists and

researchers all over the world have made scientific breakthrough in developing

unexpected thermal properties enhancement and also studied and proposed new

mechanisms behind enhanced thermal properties of nanofluids.

Great interest has recently been developed in the area of nanostructured carbon

materials. Carbon nanomaterials are gaining commercial importance with interest

growing rapidly over the decade or so since the discovery of buckminsterfullerene,

carbon nanotubes, and carbon nanofibers (Dresselhaus et al., 2001). Carbon nanotubes
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(CNT) and carbon nanofibers (CNFs) are among the most eminent materials in

nanotechnology. The most eye-catching features of these structures are their unique

electronic, mechanical, optical, thermal and chemical characteristics, which open new

applications.

Ultrahigh performance cooling is one of the most important needs in today’s

cooling industries. Low thermal conductivity of conventional base fluids (for example,

water 0.6 W/mK and ethylene glycol 0.2W/mK) is a primary limitation in developing

energy efficient heat transfer fluids. The conventional way to enhance heat transfer

rate is by increasing the surface area of cooling devices and the flow velocity. Another

way is to disperse solid particles in conventional heat transfer fluids. Due to increasing

need for efficient cooling technologies in many industries, a new approach to enhance

heat transfer is necessary. Thus, a small amount of nanoparticles uniformly suspended

in conventional base fluids can dramatically enhance the heat transfer characteristics

of these base fluids. Cooling is one of the top technical challenges facing high tech

industries such as micro-electronics, transportation, manufacturing, metrology and

defense with heat load increasing 25kW or heat flux exceeding 2000W/cm2. In the

transportation industry, cooling is a crucial issue due to the trend towards higher

engine power and exhaust gas regulation or hybrid vehicles, inevitably leads to larger

radiators and increased frontal areas, resulting in additional aerodynamic drag and

higher fuel consumption. Thus, nanofluids can offer a great potential in developing

high performance, cost effective, compact liquid cooling systems.

Thermal conductivity of heat transfer fluids plays a vital role in the

development of energy efficient heat transfer fluids. Conventional base fluids such as

oils, water and ethylene glycol have inherently poor thermal conductivities, orders of
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magnitude smaller than solid particles. Metals in solid form at room temperature have

orders of magnitude higher thermal conductivities than liquids as shown in Table 1.1.

Table 1.1
Thermal conductivity of various materials (Das et al., 2008)

Material Material Thermal conductivity (W/m K)

Metallic solids Silver
Copper
Aluminum

429
401
237

Non-metallic solids Diamond
Carbon nanotubes
Silicon
Alumina (Al2O3)

3300
3000
148
40

Metallic Liquids Sodium at 644 K 72.3
Non-metallic liquids Water

Ethylene glycol
Engine oil

0.613
0.253
0.145

Nanofluids produced are expected to give the following benefits (Patel, 2007).

i. Nanofluids can be made stable and homogeneous with the use of nominal

stabilizing agent combined with other techniques such as ultrasonic

vibrations and high speed homogenisation.

ii. Very less sedimentation occurs because of higher stability of nanofluids.

Also the particles are always in motion, which assures no fouling.

iii. Due to the small size and less momentum of particles, there will be

practically no erosion of the components.

iv. Very minor increase in pressure drop occurs resulting from the friction

between fluid and particles. However, these nanoparticles may sit in the

surface irregularities thereby making them smoother which reduce the

friction between fluid and the wall. The resultant effect may be even

minor reduction in pressure drop.




