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ABSTRACT 

 
 
 
 
A new technique which implements heating upstream of the micronozzle throat and 
cooling downstream of the throat through the side-walls of the micronozzle is 
proposed.  Thermoelements are used to pump heat from the cold section (supersonic) 
to the hot section (subsonic) of the micronozzle using Peltier effect. The proposed 
micronozzle is given herein the name Thermo-electrically Controlled Micronozzle 
(TECMN). A generalized quasi-one-dimensional model is developed to solve the flow 
of gaseous propellant inside the micronozzle in the presence of heat pumping from the 
supersonic to the subsonic through the side walls. The improvement in the efficiency 
due to using TECMN is verified, which is more significant for reduced divergent wall 
temperature and mass flow rate. The model also involves the thermoelectricity effects 
in the solid walls. A general energy equation of one-dimensional heat transfer in a 
non-uniform wall subjected to a longitudinal electrical field and lateral heat 
convection is developed and solved analytically for uniform wall and numerically for 
non-uniform walls. A set of non-dimensional parameters which affects the 
performance of the TECMN are identified and studied for better heat exchange with 
the flowing gas. It is found that the uniform TE wall performs better than non-uniform 
wall in heating-cooling process. The two-dimensional laminar Navier-Stokes 
equations are solved numerically for gas flow in a micronozzle for different thermal 
boundary conditions; isothermal divergent wall, uniform heating, and non-uniform 
heating-cooling in uniform side-walls. The non-uniform heating-cooling boundary 
condition is a imitation of the thermoelectric wall. It is found that heating upstream 
the throat always affect mass flow rate, while heating downstream the throat increases 
the thrust which may decrease with any mass flow reduction, however the thrust per 
unit mass flow and viscous losses increase always with heating. It is found that heat 
supply in the convergent-divergent side-wall results in enhancement of thrust level, 
specific impulse, mass consumption saving, and efficiency of specific impulse. 
Outcome of heat developing to/absorbing from a gas flowing into a convergent-
divergent micronozzle for a range of Reynolds numbers below 103 is investigated 
assuming one-dimensional thermal analysis of a uniform side-wall. It was found that 
the improvement in the specific impulse efficiency increases with decreasing 
Reynolds number. This improvement reaches up to 9.35% at Re = 15 during the 
heating-cooling process through the side-walls. Heating process and heating-cooling 
process through the wall are more useful to improve efficiency at low Reynolds 
numbers below 100. This research concludes that the utilization of thermoelectricity to 
supply heat upstream of micronozzle throat and remove heat downstream of throat 
through thermoelement side walls is very useful to improve the micronozzle 
efficiency and reduces propellant consumption. 
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 ReynoldsاBG_O^[ اCFO\]QO RSBTK UV WXBYZ IوIP اBNOز وFGH IJBK ارBCم 
I`abG_Oاح . اRdCا eZ ،IVFbdT_Oا I\g\XBg\_Oا h^FOا I_iXا Ijء ودراBm[djا n_H FYo

 BpارRqوRdgOا ro egsd_Oا ]aG_Oا Wة وهFpFP I\G[Z)TECMN ( لwmsOض اRNO
n`^ذي اداء ا ]aGV {|H .أF~V  W~XB�Oار اF�Oا U\bTdo مB\[Oا wه I\G[dOه�� ا n_H

n~C ا�XBbO واF�|O FpR~dOار FYo اRNO �XBbOض U\bTZ اBNOز ��K UV �FpR~Z eل 
]aG_Oءة واداء اBaآ UV UTs\j rXا F[dYp ]\q ارF�Oار . اF�Oا W^R� FpR~Z و U\bTZ

~V �Tq n_YZ IpارRqوRdgOا IY�C UV ارF�Oا h\GmZ I�jاwo نwg\j أFPeltier  .
 U\bTZ hV �\Cد ]aG_O ذجw_X W^ BpدFH �B�Zا� IpدBqا I�~� IVBYOا IOدBY_Oا nq eZ
اBNOز ا�Oي R�pي �sZ IHRTo اIHRTO اI\ZwmO وwgp BVFGH �FpR~Zن waZ IHRToق 

]aG_Oاداء ا W^ UTsZ FPوو I\ZwmOا IHRTOا . ���O اريRqوRdgO�Oار اF�Oا BVا
 rdjدرا �_Z F[^ I\G[dOاI|maV رةwmo B`pا . I\|�BadOا IOدBY_Oا IoBdآ �_Z F[^

w_GOذج F�|Oار ذو �eidGV R\� ng اh�[_O وB~dHBoر آn ا�B_qل اRsOارIp و 
وآ�nq eZ �O . اI\SBoR�gO وB�G_� UV اB[dXل اRsOارة ا�XBP {|H WOBYO اF�Oار

IXرB[_Oض اRNO B\|\|sZ h�[_Oا eidGV ذجw_X nq eZو BpدFH ذجw_GOو. ا Ijدرا eZ
اB_GOذج wPwoد R\NZات ^wH WاnV رFo IowTsV I\T\Sون وFqات B\Cس RNOض 

I\G[dOاداء ه�� ا {|H nVاwYOه�� ا R\��Z I^RYV.  WSBG�Oن اBpR�Oا IOدBYV nq eZ F[O
ا�BYoد و اw[O IY�BbOا�aq U\X اB_Oدة واW^ ICB�O اaG_O[ اFH �\CFOدBp و FH �sZة 

G_Oار اFP {|H IpودFq وفR�Wو ه ]a : ارةRsOا IPج ذو دراRaG_Oء اQ�Oار اFP
 ng�o ارةRsOص اBmdVوا F\OwZو ،]aG_Oار اFP nKدا eidGV ارةRq F\OwZ و ،IdoB�Oا

]aG_Oار اFP nKدا eidGV R\� . BGTsZ eidG_Oارة اRsOا F\OwZ FGH  �SBdGOت اRا�� FCو
وآ�U\TsZ �O آBaءة  I_\C W^ B�ws|V اh^FO وا�B^FXع اWHwGO و BpRP n\|[Zن اBNOز

]aG_|O WHwGOع اB^FXا�.  W^ eidGV R\� ng�o ارةRsOص اBmdVوا F\OwZ وفR� FGH
وآ�nq eZ �O  103اRe ( UV nC(اF�Oار n_H eZ ا�B~dKر �_FV Uى ارBCم رFOwGpز 

eidG_Oا h�[_Oار ذي اF�Oا nKارة داRsOل اB[dXBo  ~Gd|O FY~Oا IpدBqز اBNOد�ت اBYV .
اW^ UTsdO آBaءة ا�B^FXع اaG_|O WHwGO[ QdZاws|V ng�o Fpظ FGH ارBCم  O]F وFP ان

 FGH اوحRdZ زFOwGp100ر  BرهFC دةBpQo UTsdOا nJو FC و ،nC9.35او ا % FGH
I^B��Bo اO} اrX . ا�BGء U\bTZ I\|_H و FP FpR~Zار اRe=15 (]aG_O(رeC رFOwGpز 

�SBdX W�YZ دوجQ_Oا U\bTdOو ا FpR~dOا I\|_H  n\|[Z W^ eidG_Oا U\bTdOا UV n`^ا
]aG_Oا W^ زBNOن اBpRP دBmdCوا�. 
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1 CHAPTER ONE 

INTRODUCTION 

 

1.1 BACKGROUND  

Miniaturization of engineering systems is one of the distinct characteristics of modern 

industry. With obvious strict limitations on weight and size, space industry is, by no 

means, an exception. The future of satellite technology advances toward launching 

increasingly smaller satellites. Small satellites may be classified according to their 

weight into Micro-satellites (<100 kg), Nano-satellites (<10 kg), and Pico-satellites (< 

1 kg). A mission which is typically performed by one big satellite can be done by a 

group of Nano-satellites with a fraction of the required budget. The number of 

launched micro and nano-satellites increased during the last two decades, further a 

significant presence of nano-satellites (< 20 kg) in the past last decade, as the recent 

statistics given by Cheah and Chin (2011). Those trends in the spacecraft industry are 

driving the development of low-thrust propulsion systems. These may be needed for 

fine attitude control or to reduce the mass of the propulsion system through the use of 

small lightweight and micro scale components. However, MEMS supersonic 

micronozzle, a key component of micropropulsion systems, has suffered from low 

efficiency due to viscous effect in micro scale. Micro-scale flow analysis differs from 

macro-scale one in many aspects. First, the hydrodynamic slip and the thermal 

temperature jump conditions may arise on the micro-scale level as a consequence of 

the rarefied gas flow. Secondly, viscous losses are more significant at low Reynolds 

numbers, and viscous dissipation on a micro-scale level changes the temperature 

distribution because it works as an energy source, which is induced by the shear stress. 
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This in turn will affect heat transfer rates. Moreover, due to the reduced physical size 

of microthrusters, surface effects such as friction and heat transfer can dominate the 

gas flow in such devices, at which may require cooling. In this research, the wall 

temperature and wall heat fluxes play a significant role in controlling the gaseous flow 

and thruster performance. 

 

1.2 THERMOELECTRICALLY CONTROLLED MICRONOZZLE 

The effects of area change, friction and heat transfer on compressible flow have been 

separately considered in the literature. A convergent-divergent nozzle under the effect 

of heat adding or removing through a thermoelectric wall is configured for better 

expected performance. Heat exchange with the flow across the nozzle walls is one of 

the important effects that may have a direct impact on the properties of the flow 

especially when the surface area-to-volume ratio is high. Thermoelectric effect is 

proposed to provide heating in the convergent part and cooling in the divergent part of 

a micronozzle. We call such micronozzle a thermoelectrically controlled micronozzle 

(TECMN).  

Compressible gas flow through a duct, whose cross-sectional area is varying, 

occurs in many engineering devices, including nozzles. The general effects of area 

variation on the isentropic flow through a nozzle are derived from the conservation 

laws, the ideal gas law, and the definition of Mach number. The physical effects of 

area change on Mach number (M) are summarized as stated by Shapiro (1953); 

When M < 1 (subsonic flow), and A increases, M decreases. 

When M > 1 (supersonic flow), and A increases, M increases. 

When M = 1, dA = 0. 
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The results above show that if a subsonic flow is to be accelerated to a 

supersonic velocity it must be passed through a convergent-divergent passage or 

nozzle. The convergent portion accelerates the flow up to a Mach number of sonic 

velocity at the throat, and the divergent section then accelerates the flow to supersonic 

velocity. At the throat, since dA=0, the Mach number is sonic. The duct area at which 

the critical conditions (sonic velocity) exist is signed as A*, where Mach number M* is 

equal to (1) at this section.  

Heat addition or removal may result, for example, from the heating or cooling 

of the wall of the duct through which the gas is flowing or from chemical reactions 

that occur in the flow such as in a combustion chamber or due to evaporation of liquid 

droplets being carried in the flow. The effect of heating or cooling of the flow appears 

in changing the stagnation temperature of the flow. The physical changes due to 

changing stagnation temperature of the flow are shown in the figure below, which is 

drawn from using the Mach number-stagnation temperature relation explained in 

Oosthuizen and Carscallen (1997).  
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Figure 1.1: Variation of stagnation temperature ratio in constant area duct with heat 
exchange (Rayleigh flow). 

 

It is evident from the Figure 1.1 that, if heat is added to the flow, the Mach 

number tends towards (1) while if heat is extracted from the flow, the Mach number 

moves away from (1) in both subsonic and supersonic flow. In other words, heating 

accelerates the subsonic flow and decelerates the supersonic flow, whereas cooling 

decelerates the subsonic flow and accelerates the supersonic flow; Figure 1.1. 

 

1.3 THERMOELECTRICITY 

Temperature gradient induces through a thermoelement (TE) supplied to an electrical 

field at the junctions due to the occurrence of heat pumping from the cold side to the 

hot side. The lateral surface of the TE is a not isothermal surface due to the 

temperature gradient within the TE. The temperature at the TE surface drops from hot 

temperature TH to the cold temperature TC. Typically, TE is assumed to be insulated 

on the lateral surfaces. So, heat exchange is normally considered and calculated at the 

junctions only. The TE planned to be used here is insulated at all lateral surfaces 
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except the side which is exposed to gas flow. As a result of Peltier effect, the rate of 

heat pumping at the cold junction (Tc ) is given by πabI. Using the Kelvin’s 

relationship ( ab c/ Tπ=S ), we can write;  

ab MI (T T / 2)Iπ = − ∆S      (1.1) 

Or 

Cq (T )*I= S       (1.2) 

S is the Seebeck effect coefficient (S=V/∆T) which is measured in V/K or more 

often in µv/K, TM is the mean absolute temperature (TH+TC)/2 and ∆T is the 

temperature difference TH-TC as defined by Rowe (1995). 

 

 I 
TH 

Heat Absorbed Heat Rejected 

TC 

+ 

Electrical 

power input 

 

Figure 1.2: Thermoelectric refrigerator (The Peltier effect), as quoted from Rowe 
(2006). 

The cooling effect at the source junction is opposed by Joule heating in the 

thermoelement (TE) and by heat conducted from the hot junction to the cold one. Half 

of the overall Joule heating travels to each of the junctions. Thus, the rate of 

absorption of heat from the source (at the cold side) is given by;  




