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ABSTRACT

A new technique which implements heating upstream of the micronozzle throat and
cooling downstream of the throat through the side-walls of the micronozzle is
proposed. Thermoelements are used to pump heat from the cold section (supersonic)
to the hot section (subsonic) of the micronozzle using Peltier effect. The proposed
micronozzle is given herein the name Thermo-electrically Controlled Micronozzle
(TECMN). A generalized quasi-one-dimensional model is developed to solve the flow
of gaseous propellant inside the micronozzle in the presence of heat pumping from the
supersonic to the subsonic through the side walls. The improvement in the efficiency
due to using TECMN is verified, which is more significant for reduced divergent wall
temperature and mass flow rate. The model also involves the thermoelectricity effects
in the solid walls. A general energy equation of one-dimensional heat transfer in a
non-uniform wall subjected to a longitudinal electrical field and lateral heat
convection is developed and solved analytically for uniform wall and numerically for
non-uniform walls. A set of non-dimensional parameters which affects the
performance of the TECMN are identified and studied for better heat exchange with
the flowing gas. It is found that the uniform TE wall performs better than non-uniform
wall in heating-cooling process. The two-dimensional laminar Navier-Stokes
equations are solved numerically for gas flow in a micronozzle for different thermal
boundary conditions; isothermal divergent wall, uniform heating, and non-uniform
heating-cooling in uniform side-walls. The non-uniform heating-cooling boundary
condition is a imitation of the thermoelectric wall. It is found that heating upstream
the throat always affect mass flow rate, while heating downstream the throat increases
the thrust which may decrease with any mass flow reduction, however the thrust per
unit mass flow and viscous losses increase always with heating. It is found that heat
supply in the convergent-divergent side-wall results in enhancement of thrust level,
specific impulse, mass consumption saving, and efficiency of specific impulse.
Outcome of heat developing to/absorbing from a gas flowing into a convergent-
divergent micronozzle for a range of Reynolds numbers below 10° is investigated
assuming one-dimensional thermal analysis of a uniform side-wall. It was found that
the improvement in the specific impulse efficiency increases with decreasing
Reynolds number. This improvement reaches up to 9.35% at Re = 15 during the
heating-cooling process through the side-walls. Heating process and heating-cooling
process through the wall are more useful to improve efficiency at low Reynolds
numbers below 100. This research concludes that the utilization of thermoelectricity to
supply heat upstream of micronozzle throat and remove heat downstream of throat
through thermoelement side walls is very useful to improve the micronozzle
efficiency and reduces propellant consumption.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Miniaturization of engineering systems is one of the distinct characteristics of modern
industry. With obvious strict limitations on weight and size, space industry is, by no
means, an exception. The future of satellite technology advances toward launching
increasingly smaller satellites. Small satellites may be classified according to their
weight into Micro-satellites (<100 kg), Nano-satellites (<10 kg), and Pico-satellites (<
1 kg). A mission which is typically performed by one big satellite can be done by a
group of Nano-satellites with a fraction of the required budget. The number of
launched micro and nano-satellites increased during the last two decades, further a
significant presence of nano-satellites (< 20 kg) in the past last decade, as the recent
statistics given by Cheah and Chin (2011). Those trends in the spacecraft industry are
driving the development of low-thrust propulsion systems. These may be needed for
fine attitude control or to reduce the mass of the propulsion system through the use of
small lightweight and micro scale components. However, MEMS supersonic
micronozzle, a key component of micropropulsion systems, has suffered from low
efficiency due to viscous effect in micro scale. Micro-scale flow analysis differs from
macro-scale one in many aspects. First, the hydrodynamic slip and the thermal
temperature jump conditions may arise on the micro-scale level as a consequence of
the rarefied gas flow. Secondly, viscous losses are more significant at low Reynolds
numbers, and viscous dissipation on a micro-scale level changes the temperature

distribution because it works as an energy source, which is induced by the shear stress.



This in turn will affect heat transfer rates. Moreover, due to the reduced physical size
of microthrusters, surface effects such as friction and heat transfer can dominate the
gas flow in such devices, at which may require cooling. In this research, the wall
temperature and wall heat fluxes play a significant role in controlling the gaseous flow

and thruster performance.

1.2 THERMOELECTRICALLY CONTROLLED MICRONOZZLE

The effects of area change, friction and heat transfer on compressible flow have been
separately considered in the literature. A convergent-divergent nozzle under the effect
of heat adding or removing through a thermoelectric wall is configured for better
expected performance. Heat exchange with the flow across the nozzle walls is one of
the important effects that may have a direct impact on the properties of the flow
especially when the surface area-to-volume ratio is high. Thermoelectric effect is
proposed to provide heating in the convergent part and cooling in the divergent part of
a micronozzle. We call such micronozzle a thermoelectrically controlled micronozzle
(TECMN).

Compressible gas flow through a duct, whose cross-sectional area is varying,
occurs in many engineering devices, including nozzles. The general effects of area
variation on the isentropic flow through a nozzle are derived from the conservation
laws, the ideal gas law, and the definition of Mach number. The physical effects of
area change on Mach number (M) are summarized as stated by Shapiro (1953);

When M < 1 (subsonic flow), and 4 increases, M decreases.

When M > 1 (supersonic flow), and 4 increases, M increases.

When M =1, dA =0.



The results above show that if a subsonic flow is to be accelerated to a
supersonic velocity it must be passed through a convergent-divergent passage or
nozzle. The convergent portion accelerates the flow up to a Mach number of sonic
velocity at the throat, and the divergent section then accelerates the flow to supersonic
velocity. At the throat, since dA=0, the Mach number is sonic. The duct area at which
the critical conditions (sonic velocity) exist is signed as A", where Mach number M" is
equal to (1) at this section.

Heat addition or removal may result, for example, from the heating or cooling
of the wall of the duct through which the gas is flowing or from chemical reactions
that occur in the flow such as in a combustion chamber or due to evaporation of liquid
droplets being carried in the flow. The effect of heating or cooling of the flow appears
in changing the stagnation temperature of the flow. The physical changes due to
changing stagnation temperature of the flow are shown in the figure below, which is
drawn from using the Mach number-stagnation temperature relation explained in

Oosthuizen and Carscallen (1997).
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Figure 1.1: Variation of stagnation temperature ratio in constant area duct with heat
exchange (Rayleigh flow).

It is evident from the Figure 1.1 that, if heat is added to the flow, the Mach
number tends towards (1) while if heat is extracted from the flow, the Mach number
moves away from (1) in both subsonic and supersonic flow. In other words, heating
accelerates the subsonic flow and decelerates the supersonic flow, whereas cooling

decelerates the subsonic flow and accelerates the supersonic flow; Figure 1.1.

1.3 THERMOELECTRICITY

Temperature gradient induces through a thermoelement (TE) supplied to an electrical
field at the junctions due to the occurrence of heat pumping from the cold side to the
hot side. The lateral surface of the TE is a not isothermal surface due to the
temperature gradient within the TE. The temperature at the TE surface drops from hot
temperature Ty to the cold temperature Tc. Typically, TE is assumed to be insulated
on the lateral surfaces. So, heat exchange is normally considered and calculated at the

junctions only. The TE planned to be used here is insulated at all lateral surfaces



except the side which is exposed to gas flow. As a result of Peltier effect, the rate of

heat pumping at the cold junction (T, ) is given by m,/. Using the Kelvin’s

relationship (S =7z, /T,), we can write;
7, 1=8(T,-AT/2)I (1.1)

Or
q=S(T,)*I (12)

S is the Seebeck effect coefficient (S=V/4T) which is measured in V/K or more

often in pv/K, T is the mean absolute temperature (75+7¢)/2 and AT is the

temperature difference 7x-T¢ as defined by Rowe (1995).
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Figure 1.2: Thermoelectric refrigerator (The Peltier effect), as quoted from Rowe
(2006).

The cooling effect at the source junction is opposed by Joule heating in the

thermoelement (TE) and by heat conducted from the hot junction to the cold one. Half

of the overall Joule heating travels to each of the junctions. Thus, the rate of

absorption of heat from the source (at the cold side) is given by;





