

THE IMPACT OF WIDER FRONTAGE DESIGN OF LOW-COST DOUBLE STOREY TERRACE HOUSE (LCDSTH) TO AIRFLOW AND NATURAL VENTILATION IN MALAYSIA

BY

NURULASHIKIN BTE MD TAIB @ MD TALIB

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

2007

"It is God Who made your habitations homes of rest and quiet for you..."

(Al-Nahl: 80)

THE IMPACT OF WIDER FRONTAGE DESIGN OF LOW-COST DOUBLE STOREY TERRACE HOUSE (LCDSTH) TO AIRFLOW AND NATURAL VENTILATION IN MALAYSIA

BY

NURULASHIKIN BTE MD TAIB @ MD TALIB

A thesis submitted in fulfilment of the requirement for the degree of Master of Science in Built Environment

Kulliyyah of Architecture and Environmental Design International Islamic University Malaysia

APRIL 2007

ABSTRACT

This thesis presents the results of an analysis which was done to predict the impact of wider frontage design of low-cost double storey terrace house (LCDSTH) to airflow and natural ventilation in Kuala Lumpur. The existing LCDSTH has narrow frontage and deep plan which necessitates its internal planning with partitions to divide the spaces and arranged the rooms to have single-sided openings. These arrangements have extremely limited cross-ventilation potential and caused discomfort to occupants. Due to the availability of natural ventilation from the prevailing wind in Malaysia, the LCDSTH design could be manipulated to enhance the natural ventilation to flow into the living spaces and gives cooling effect to ameliorate occupants' thermal comfort. Predictions of the mean internal air velocity in the existing and proposed LCDSTH are used to identify the potential plan for improving thermal comfort. Computational Fluid Dynamic is chosen due to its capability in fluid dynamic studies. A specific software named FLOVENT is used to predict the internal air velocity by simulating the simplified building configuration of the existing and proposed model of LCDSTH. The outcomes of the simulated results are then compared using the graphic velocity vectors and contour from FLOVENT and also from the mean internal air velocity The results show that although the proposed design with wider frontage, graph. shorter depth plan and different building height in a staggered and checker board pattern position give the best solution as compared to the existing plan, it is not significant enough to provide to the most preferable air velocity values of 1.0 m/s for thermal comfort at every position of each unit in a row of LCDSTH. However, it does improve the performance of the mean internal air velocity in comparison with the existing double storey terrace house that has the design of narrow frontage and deep plan.

- (LCDSTH) LCDSTH

LCDSTH

•

.

.

_

LCDSTH

.

.

FLOVENT

.

LCDSTH

.

FLOVENT

.

•

m/s1•0

.

.LCDSTH

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Built and Environment.

Abdul Razak Sapian Supervisor

I certify that I have read this study and that in my opinion it is conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Built and Environment.

Puteri Shireen Jahn Kassim Internal Examiner

This thesis was submitted to the Department of Architecture and is accepted as a fulfilment of the requirements for the degree of Master of Science in Built and Environment.

Maisarah Ali Deputy Dean (Postgraduate & Research) Kulliyyah of Architecture and Environmental Design

This thesis was submitted to the Kulliyyah of Architecture and Built Environment and is accepted as a fulfilment of the requirements for the degree of Master of Science in Built and Environment.

Mansor Ibrahim

Dean, Kulliyyah of Architecture and Environmental Design

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Nurulashikin Md Taib @ Md Talib

Signature Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2007 by Nurulashikin Binti Md Taib @ Md Talib. All rights reserved.

THE IMPACT OF WIDER FRONTAGE DESIGN OF LOW-COST DOUBLE STOREY TERRACE HOUSE (LCDSTH) TO AIRFLOW AND NATURAL VENTILATION IN MALAYSIA

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Nurulashikin Binti Md Taib @ Md Talib.

Signature

Date

My greatest appreciation to dearest husband, Muhayan & son, Atif Irfan for their encouragement, love, & will in sharing the joy of learning

ACKNOWLEDGEMENTS

Alhamdulillah, with Allah Almighty guidance and mercy, this study could be accomplished. The study was financed by IRPA research grant in providing the needed software in this study and by a scholarship grant from the Ministry of Science, Technology and Innovation Malaysia (MOSTI).

I would like to express my gratitude to my supervisors, Asst. Prof. Dr. Abdul Razak Sapian and Asst. Prof Dr. Noor Hanita Abdul Majid for showing the direction of this study. They had provided close patronage, encouragement, resources, comments and friendship needed in achieving this study.

I would also like to show my appreciation to my examiners, Associate Professor Dr. Abdul Majid Ismail from Universiti Sains Malaysia and Asst. Prof. Dr. Puteri Shireen Jahn Kassim for their comments and assistance in improving my thesis.

Thanks to Professor Dr. Najib Ibrahim and friends from UTM Skudai especially to Mdm. Halimah Yahya, Malsiah Hamid, Dr. Aminatuzuhairiah Abdullah, Raja Nafida Shahminan and Gurupiah Mursib for giving their support at the initial stage. I would also like to express my appreciation to Associate Professor Abdul Aziz Shuaib and wife for their assistance and valuable advice.

The study could not, however, have been made possible without the help and support given by outside parties. Officers from Dewan Bandaraya Kuala Lumpur (DBKL) and National Housing Department (NHD) whom had provided the necessary information. A special thank to Jufri from Majlis Perbandaran Ampang Jaya (MPAJ) for providing the required material.

Thanks to all my friends especially Anisa, Emilda, Shahriar and Zulkeflee whom also have been inspiring, motivating and were striving to complete their master theses in the same year. I also wish to thank the KAED academic and support staff for their valuable support and friendship throughout the study period in IIUM.

Last but not least, I am most thankful to my husband, my son, Atif Irfan, parents, mother in-law, brothers and sisters for their understanding, encouragement and moral support needed throughout the completion of my studies.

CONTENTS

Abstract ii	
Abstract in Arabic iii	i
Approval Page iv	/
Declaration Page v	
Copyright Page vi	i
Dedication	ii
Acknowledgements vi	iii
List of Tables xi	iii
List of Figures	V
List of Abbreviations xx	xi
List of Symbols xx	xiii
CHAPTER 1: INTRODUCTION	
1.1 Introduction 1	
1.2 Background 2	
1.2.1 The Importance of Natural Ventilation in Housing	
1.3 Research Objectives 4	
1.4 Research Questions 5	
1.5 Research Scope	
1.6 Research Methodology 7	
1.7 Thesis Organization 8	
1.8 Research Significance	
1.9 Research Gap and Concept 10	0
1.10 Research Hypothesis	0
1.11 Thesis Outline	2
	4
CHAPTER 2: NATURAL VENTILATION	4
2.1 Introduction 1^2	4
2.2 Basic Concept of Natural Ventilation	4
2.2.1 Functions of Natural Ventilation	8
2.3 Thermal Comfort	8
2.3.1 Factors Affecting Thermal Comfort	9
2.3.2 Air Movement in Relation with Human Thermal Comfort 19	9
2.3.2.1 Comfort Zones in Malaysia	0
2.3.3 Air Movement Required for Thermal Comfort 2.	l
2.3.3.1 Air Movement in Kuala Lumpur	6
2.4 Mechanism of Natural Cross-Ventilation	7
2.4.1 Induced Wind in Cross-Ventilation	8
2.4.2 Air Movement around Building	9
2.5 Summary	3

CHAPTER	3: TERRACE HOUSES IN MALAYSIA	34
3.1	Introduction	34
3.2	Terrace House	34
	3.2.1 Low-Cost Double Storey Terrace House (LCDSTH)	37
	3.2.2 LCDSTH Basic Configuration	37
3.3	Review of Related Researches on Houses in Malaysia	39
3.4	Review of Related Research on Natural Ventilation	41
3.5	Factors That Induce Cross-Ventilation in LCDSTH	43
	3.5.1 External Element	43
	3.5.1.1 Building Projection	43
	3.5.1.2 Building Type	44
	3.5.1.3 Building Spacing	45
	3.5.2 Building Details	49
	3.5.2.1 Window	50
	3.5.3 Internal Layout	54
	3.5.3.1 Space Division	54
2.6	3.5.3.2 Space Dimension	55
3.6	Summary	56
		50
CHAPTER	4: METHODOLOGY	58
4.1		58
4.2	A 2.1 Full Scale on Field State Engening ant	60
	4.2.1 Full Scale of Fleid Study Experiment	60
	4.2.2 Wind Tunnel Experiment	01 61
	4.2.3 Computational Fluid Dynamic (CFD)	61
	4.2.3.1 CFD Limitation	02
	4.2.3.2 Benefits of CFD in Althow Studies Compare to Wind Tunnel and Field Experiment	62
12	Wind Tunnel and Fleid Experiment	03 64
4.5	4.2.1 Navier Stales Equation	64
	4.3.1 Navier Stoke Equation	64
	4.3.2 The Fulburence (K-E) Model	66
	4.3.4 Iterative Solution Procedure	67
11	Review on Software	68
т.т	A A 1 FLOVENT version 5.1	60
	4.4.2 Validating FLOVENT version 5.1	70
4 5	Methods of Applying CFD in this Study	72
4.6	Inventory of LCDSTH in Kuala Lumpur	72
1.0	4 6 1 Background	73
	462 Study Area	76
	463 Results of the Inventory	78
	4.6.4 Findings	78
	4.6.4.1 Terrain Roughness	79
	4.6.4.2 Roof Type and Back Lane	79
	4.6.4.3 External Projection, Car Porch and Backvard	79
	4.6.4.4 Types of Openings	80
	4.6.4.5 Built-up Area	80
	4.6.4.6 Internal Layout Plan	81
4.7	Summary	82

CHAPTE	R 5: C	FD SIMULATION	83
5.1	Intro	luction	. 83
5.2	The S	Scaled Models	83
	5.2.1	The Existing Model of LCDSTH with Narrow Frontage	
		And Deep Plan (EM)	. 85
	5.2.2	The Proposed Model of LCDSTH with Wider Frontage	
		and Shorter Depth Plan (PM)	88
	5.2.3	The Openings	91
5.3	CFD	Setting-up	. 94
	5.3.1	Simulation Procedure	94
		5.3.1.1 The Monitor Positions	94
		5.3.1.2 The Solution Domain of Tests Models	. 99
		5.3.1.3 The Grid System	. 102
	5.3.2	Simulation Condition	. 110
		5.3.2.1 The Site Condition	. 110
		5.3.2.2 Wind Speed	. 111
		5.3.2.3 Wind Profile and Atmospheric Boundary Layer	
		(ABL) Generator	. 111
		5.3.2.4 The Correction Calculation	. 112
		5.3.2.5 Optimal Simulation Variables	113
	5.3.3	Pilot Testing	. 114
		5.3.3.1 Result and Finding of Pilot Study	116
	~	5.3.3.2 Final Simulation Condition Adopted	116
5.4	Sumn	nary	. 118
			110
CHAPTER	K 6: K	ESULIS, ANALYSIS AND FINDING	. 119
0.1	The T	Juction	. 119
0.2	and Γ	Voor Dien (EM)	110
		Perceptrian (EM)	. 119
	0.2.1	6.2.1.1 Discussion on the Distribution of	120
		the Mean Internal Air Velocity	122
	677	Results and Analysis for 45° Wind Direction	126
	0.2.2	6.2.2.1 Discussion on the Distribution of	120
		the Mean Internal Air Velocity	127
	623	Summary of the Existing Model of I CDSTH with	. 12/
	0.2.5	Narrow Frontage and Deen Plan (FM)	129
63	The	Proposed Model of I CDSTH with Wider Frontage and	. 12)
0.5	Shor	ter Denth Plan (PM)	131
64	The	Proposed Model of I CDSTH with Different Building Height	. 151
0.1	in an	Aligned Position (PM-A)	131
	6 4 1	Results and Analysis for 0° Wind Direction	131
	0.1.1	6 4 1 1 Discussion on the Distribution of the	191
		Mean Internal Air Velocity	133
	642	Results and Analysis for 45° Wind Direction	136
		6.4.2.1 Discussion on the Distribution of the	
		Mean Internal Air Velocity	138
		5	

6.4	4.3 Summary for the Proposed Model of LCDSTH with	
	Different Building Height in an Aligned Position (PMA)	139
6.5 Tł	e Proposed Model of LCDSTH with Different Building Height	
in	a Staggered and Checker Board Pattern Position (PM-B)	141
6.:	5.1 Results and Analysis for 0° Wind Direction	141
	6.5.1.1 Discussion on the Distribution of the	
	Mean Internal Air Velocity	143
6.:	5.2 Results and Analysis for 45° Wind Direction	145
	6 5 2 1 Discussion on the Distribution of the	
	Mean Internal Air Velocity	147
6.:	5.3 Summary for the Proposed Model of LCDSTH	
	with Different Building Height in a Staggered	
	and Checker Board Pattern Position (PM-B)	149
6.6 Fii	ndings and Conclusion	150
6.0	5.1 Findings of EM at 0° and 45° Wind Direction	150
6.	5.2 Findings of PM-A at 0° and 45° Wind Direction	152
6.0	5.3 Findings of PM-B at 0° and 45° Wind Direction	153
6.0	5.4 The Comparative Analysis and Conclusions	155
6.7 Su	Immary	159
	,	
CHAPTER 7:	CONCLUSION	160
7.1 In	troduction	160
7.2 Tł	esis Summary	160
7.3 Tł	esis Conclusion	163
7.4 Li	mitations of Thesis	165
7.5 Re	ecommendation for Future Research	165
BIBLIOGRA	РНҮ	167
APPENDIX A	A: CIS 1:1998	174
APPENDIX E	B: FLOVENT version 5.1	181
APPENDIX C	2: Validation Report	189
APPENDIX I	D: Inventory	197
APPENDIX E	E: Summary of Opening Sizes and the Average Percentage of	
	the Opening Ratio and Effective Opening Ratio of the	
	LCDSTH Investigated	241
APPENDIX F	Pilot Study	242
APPENDIX (G: Simulated Data of Internal Air Velocity	246
APPENDIX H	I: Seminar Paper presented by the author	256

LIST OF TABLES

Figur	e No.	Page
<u>No.</u>		
2.1	The probable impact of different air velocity	24
2.2	The annual percentage (%) of wind speeds and directions (1975 - 2004)	26
4.1	Kuala Lumpur Planning Area and the Growth Status Zones	76
4.2	The 10 areas which are in the 10 km radius from Kuala Lumpur City Centre	77
5.1	Summary of Mean Surface Wind Speed (Monthly) for 36 years (1969-2004)	111
5.2	ABL characteristic of different terrain roughness at Subang and Kuala Lumpur	112
5.3	Summary of mean Air Temperature (Monthly) for 38 years (1968-2005)	114
5.4	The variables that were identified in getting good agreement in the validation study	117
6.1	Air velocity distribution of EM at 0° wind direction	121
6.2	Air velocity distribution of EM at 45° wind direction	127
6.3	Summary of the Mean Internal Air Velocity Performance and the Percentage of Deviation from 1.0 m/s preferable air velocity for EM at 0° and 45° Wind Directions	130
6.4	Air velocity distribution at PM-A at 0° wind direction	133
6.5	Air velocity distribution at PM-A at 45° wind direction	137
6.6	Summary of the Mean Internal Air Velocity Performance and the Percentage of Deviation from 1.0 m/s preferable air velocity for PM-A at 0° and 45° Wind Directions	140
6.7	Air velocity distribution at PM-B at 0° wind direction	142
6.8	Air velocity distribution at PM-B at 45° wind direction	146

<u>No.</u>

6.9	Summary of the Mean Internal Air Velocity Performance and the Percentage of Deviation from 1.0 m/s preferable air velocity for PM-B at 0° and 45° Wind Directions	149
6.10	Summary of the Mean Internal Air Velocity Performance and the Percentage of Deviation from 1.0 m/s preferable air velocity for EM, PM-A and PM-B at 0° Wind Direction	156
6.11	Summary of the Mean Internal Air Velocity Performance and the Percentage of Deviation from 1.0 m/s preferable air velocity for EM, PM-A and PM-B at 45° Wind Directions	156

Page

LIST OF FIGURES

Figure	<u>No</u> .	Page No.
1.1	The overall thesis organization	9
1.2	The difference between the existing and the proposed plan to pressure distribution and thus, the airflow in the building	11
1.3	The arrangement of terrace house in a staggered and checker board pattern by manipulating the building height	12
2.1	Single-sided ventilation ($W_{max} = 2.5 \text{ H}$)	15
2.2	Cross-ventilation ($W_{max} = 5H$)	16
2.3	Stack effect	17
2.4	Proposed comfort zone by Md Rajeh (1989)	20
2.5	Proposed comfort zone by Abdul Malek (1992)	21
2.6	Proposed comfort zone by Adnan (1997)	21
2.7	Shows Olgyay's Bioclimatic Chart	22
2.8	All the investigations shown by the graph is showing the importance of air movement to thermal comfort	23
2.9	Szokolay attempt to reanalyse from ten sources A – O	25
2.10	The mechanism of cross-ventilation by air pressure difference	27
2.11	The positive vortex at high pressure of the windward wall and negative vortex at lower pressure at leeward wall	28
2.12	The relationship between air pressure and air velocity around the bluff body in two dimensional diagram showing the shear layer and wake region	29
2.13	1/3 air velocity flows to the top of building and 2/3 air velocity flows to the sides or to downward	30
2.14	The effect air flow at two buildings with lower height in front of the other taller one	31

Figure No.		Page No.
2.15	The reverse air flow beyond the taller building	32
2.16	The gap between two buildings create Venturi Effect	32
3.1	A row of low-cost double storey terrace house at Taman Koperasi Polis 1	35
3.2	A typical front elevation and side elevation of a unit of low-cost double storey terrace house in Kuala Lumpur	36
3.3	A typical rear elevation of a unit of low-cost double storey terrace house in Kuala Lumpur	36
3.4	A typical type of opening and sun shading of a unit of low-cost double storey terrace house in Kuala Lumpur	37
3.5	Example of the 2-bedroom type of LCDSTH gained from the inventor	y 38
3.6	Example of the 3-bedrooms type of LCDSTH	39
3.7	Architectural elements that affect natural cross-ventilation in LCDSTR	H 43
3.8	Various air movement patterns affected by horizontal projection and the affect of vertical projection with various depths	44
3.9	Alternative design elements to captured air flows into a room	44
3.10	The shading area occur beyond building	45
3.11	The effect of length to eddy area at row building	46
3.12	The effect of orientation to eddy area at row building	47
3.13	The effect of height to eddy area at row building	47
3.14	Buildings in a row create calm air area at the pocket between building	s 48
3.15	Linearly arranged buildings protect or block subsequent buildings from potential air flows	48
3.16	Staggered arrangement enhances the potential of air flow around each building	49
3.17	The effects of inlet and outlet in cross-ventilated space in relation to perpendicular wind	50

Page No.

3.18	The effects of inlet and outlet in cross-ventilated space in relation to oblique wind	51
3.19	The effective opening size formula for natural cross-ventilation	52
3.20	The effect of opening position in building	52
3.21	The effect of control in opening	53
3.22	Air flow patterns through fixed and adjustable louvers glass window in sections view	53
3.23	Partitions could restructure wind pressure and modify the inertia of air movement	55
3.24	The influences of the length and depth of a space to the air flow pattern	56
4.1	Summary of the overall methodology used to predict the mean internal air velocity in LCDSTH	59
4.2	The summary of the Computational Fluid Dynamic (CFD) process	68
4.3	The location of types of residential in Kuala Lumpur area	74
4.4	The DBKL Planning Area Division	75
4.5	The basic form of one unit of LCDSTH	79
4.6	A block or row of LCDSTH with 10 units	79
4.7	The common basic form of the existing LCDSTH obtained from the inventory study showing the front elevation, side elevation and rear elevation	81
4.8	The common basic form of the existing LCDSTH obtained from the inventory study showing the ground and first floor plan	82
5.1	The summary of the building configuration to be tested	84
5.2	A row of EM which consists of ten (10) units	86
5.3	The elevations of EM in the simulation experiments	86
5.4	The common basic form of the floor plans obtained from the inventory and simplified floor plans purposely for simulation experiment	87
5.5	The model of 3 rows of EM that are used in the simulation experiment	87

Page No.

5.6	A row of PM-A and PM-B which consists of five (5) units of houses	89
5.7	The elevations of PM-A and PM-B in the simulation experiment	89
5.8	The proposed floor plans of PM-A and PM-B and the simplified floor plans of PM-A and PM-B purposely for simulation experiment	90
5.9	The model of 3 rows of PM-A in the simulation experiment	90
5.10	The model of 3 rows of PM-B in the simulation experiment	91
5.11	The openings at the elevations of EM	92
5.12	The openings at the elevations of PM-A and PM-B	93
5.13	The position of the monitor points at a unit of EM	94
5.14	The position of the monitor points at a unit PM-A and PM-B	95
5.15	The position of monitor points in the overall model of EM	96
5.16	The position of monitor points in the overall model of PM-A	97
5.17	The position of monitor points in the overall model of PM-B	98
5.18	The Overall Simulation modeling setting-up for EM at 0° wind direction	99
5.19	The Overall Simulation modeling setting-up for EM at 45° wind direction	100
5.20	The Overall Simulation modeling setting-up for PM-A at 0° wind direction	100
5.21	The Overall Simulation modeling setting-up for PM-A at 45° wind direction	101
5.22	The Overall Simulation modeling setting-up for PM-B at 0° wind direction	101
5.23	The Overall Simulation modeling setting-up for PM-B at 45° wind direction	102
5.24	The Grid at X-direction for EM	103
5.25	The Grid at Y-direction for EM	104

Figure No.		Page No.
5.26	The Grid at Z-direction for EM	104/ 105
5.27	The Grid at X-direction for PM-A	106
5.28	The Grid at X-direction for PM-B	107
5.29	The Grid at Y-direction for PM-A and PM-B	108
5.30	The Grid at Z-direction for PM-A and PM-B	108/ 109
5.31	Wind Rose Summary (1975 - 2003)	110
5.32	The position of monitor points at a row of test modeling consists of 5 units	115
5.33	The position of monitor points at elevations and sections	115
5.34	The overall solution domain of the testing model in the pilot study	116
6.1	Wind profile represented by vector plot for EM at 0° wind direction	120
6.2	EM represented by contour plot for 0° wind direction	121
6.3	The distribution of the mean internal air velocity of EM for 0° wind direction	122
6.4	The ground floor plan of M5 and its air velocity pattern	124
6.5	The air velocity distribution at M3 of row 2	125
6.6	Wind profile represented by vector plot for EM at 45° wind direction	126
6.7	EM represented by contour plot for 45° wind direction	127
6.8	The distribution of the mean internal air velocity of EM for 45° wind direction	128
6.9	The air velocity distribution at the corner of Row 1 and Row 2	129
6.10	Wind profile represented by vector plot for PM-A at 0° wind direction	132
6.11	PM-A represented by contour plot for 0° wind direction	132

Page No.

6.12	The distribution of the mean internal air velocity of PM-A for 0° wind direction	133
6.13	The air velocity distribution at M1 of Row 1 and at M1 of Row 2	134
6.14	Venturi effect occur between M2 and M3 and between M4 and M5	135
6.15	Wind profile represented by vector plot for PM-A at 45° wind direction	136
6.16	PM-A represented by contour plot for 45° wind direction	137
6.17	The distribution of the mean internal air velocity of PM-A for 45° wind direction	138
6.18	The air velocity distribution at first floor level	139
6.19	Wind profile represented by vector plot for PM-B at 0° wind direction	141
6.20	PM-B represented by contour plot for 0° wind direction	142
6.21	The distribution of the mean internal air velocity of PM-B for 0° wind direction	143
6.22	Wind profile represented by vector plot for PM-B at 45° wind direction	145
6.23	PM-B represented by contour plot for 45° wind direction	146
6.24	The distribution of the mean internal air velocity of PM-B for 45° wind direction	147
6.25	Air velocity distribution at first floor level	147

LIST OF ABBREVIATIONS

ABL	Atmospheric Boundary Layer
ASCE	American Society of Civil Engineers
ASHRAE	The American Society of heating, Refrigerator & Air conditioning
	Engineers
Atm	Atmosphere
BFC	Body Fitted Coordinates
B1	Bedroom 1
B2	Bedroom 2
B3	Bedroom 3
CFD	Computational Fluid Dynamic
CIDB	Construction Industry Development Board
CIS 1	Construction Industry Standard no. 1
СРА	Central Planning Area
DBKL	Dewan Bandaraya Kuala Lumpur
DKLSP 2020	Draft Kuala Lumpur Structure Plan 2020
EM	The existing model of LCDSTH with narrow frontage and deep plan
FEM	Finite Element Method
FVM	Finite Volume Method
GIS	Geographical information System
K	Kitchen
КРКТ	Kementerian Perumahan dan Kerajaan Tempatan
LCDSTH	Low Cost Double Storey Terrace House

LD	Living-Dining
LES	Large Eddy Simulation
LW	Leeward
M1	Model 1
M2	Model 2
M3	Model 3
M4	Model 4
M5	Model 5
NHD	National House Development
PMV	Predicted Mean Vote
PA	Planning Areas
PM	The proposed model of LCDSTH with wider frontage and shorter
	depth plan
PM-A	The proposed model of LCDSTH with different building height in an
	aligned position
PM-B	The proposed model of LCDSTH with different building height in a
	staggered and checker board pattern position
SIMPLE	Semi-Implicit Method of Pressure-Linked Equation
UBBL	Uniform Building by-Law
WW	Windward