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ABSTRACT

Duplex stainless steel (DSS) is widely used in petrochemical, waste incineration and gas
turbine industries. However, DSS suffers from poor hardness and wear resistance that limits
the applicability of the DSS for wider applications. Surface modification is required to
improve the surface characteristics of DSS surface. The main objective of this study is to
develop hard surface on DSS using TIG torch and nitriding processes. In TIG torch, the
process was performed using different parameters such as silicon carbide (SiC) particle size
of 20 pum - 100 pm, current of 80 - 100 A, voltage of 20 - 40 V, transverse speed of 1 -2
mm/s and argon flow rate of 15 -25 L/min. For nitriding, the experiments was conducted at
different temperature of 400 °C — 550 °C, holding time of 4 - 16 hours and gas mixture ratio
of 0.2 - 0.5 NH3/N,. The surface modified DSS was characterized using optical microscopy,
scanning electron microscopy and x-ray diffraction. The hardness measurement was carried
out using Vickers hardness tester based on ASTM E384, while wear behavior was assessed
using ball-on-disc tribometer according to ASTM D6079. A design of experiment based on
Taguchi method has been adopted to optimize the TIG torch and nitriding process
parameters. The results show that hard surface DSS was successfully developed using TIG
torch and nitriding processes. Characterization of the TIG melted layer DSS reveals the
existence of new phases containing a dendritic structure, while nitrided layer DSS
demonstrated the presence of expanded austenite. The surface hardness was achieved
approximately 85 % higher than the DSS substrate with hardness value of 1700 Hv for TIG
torch melting and 1598 Hv for nitriding. The wear rate of TIG melted and nitrided surface
DSS was reduced by 70 % and 85 % compared to DSS substrate with value of 2.1 x 10™
mm*Nm and 1.06 x 10* mm?%*Nm, respectively. Furthermore, the friction coefficient
obtained 0.27 for TIG melted layer and 0.36 for nitrided layer DSS representing 50 % and 63
% better than DSS substrate, respectively. It was revealed that the worn surface showed very
mild abrasive wear compared to substrate which demonstrated very severe wear with
ploughing marks. The optimum TIG torch and nitriding process parameters have been
identified using the Taguchi method. The optimum process parameters for TIG torch on
surface hardness and friction coefficient were; current of 80 A, voltage of 20 V, transverse
speed of 1.5 mm/s and argon flow rate of 25 L/min. Meanwhile, for wear rate, the optimum
parameters were; 80 A, 30 V, 1.5 mm/s and 25 L/min. For nitriding, the optimum process
parameters for hardness and friction coefficient were; temperature of 550°C, holding time of
16 hours and gas mixture ratio of 0.3 NH3/N,, while for wear rate; 550°C, 16 hours and 0.4
NH3/N,. Current was the most influencing parameter for the improvement of TIG torch
melting, whereas, temperature and holding time for nitriding process. It was revealed that
both processes are comparable and capable to produce hard surface layer on DSS with higher
hardness and wear resistance properties which can be used for tribological and high
temperature applications.
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CHAPTER ONE

INTRODUCTION

1.1 RESEARCH BACKGROUND

Duplex stainless steel (DSS) consists of ferrite and austenite phases having good
corrosion resistance, higher strength and ease of fabrication. The alloying elements are
chromium, molybdenum, tungsten and nitrogen content that made this material resist to
chloride pitting and crevice corrosion. DSS is extensively used in petrochemical, waste
incineration, gas turbine industries, heavy constructions vehicle for hydraulic pump
piston and transmission gear, cargo tanks for ships and trucks, air duct incineration for
power generation and petro-chemical processing industry for pressure vessel, tanks
piping and heat exchangers.

Although DSS is widely used in various applications including AISI Duplex-
2205, the drawback of this material are hardness and wear problem which restricted the
usage in most tribological applications. Due to this, in the past few years, a number of
researchers have attempted to improve this limitation using tungsten inert gas (T1G) torch
welding (Zou et al., 2014), laser cladding (Ghusoon et al., 2017), carburizing (Ahmad &
Jauhari, 2012), plasma nitriding (Nagatsuka et al., 2010) and hybrid treatment of
carburizing and nitriding (Adenan et al., 2014a). Most of the findings exhibited an
improvement on the surface properties of this material. However, reports on surface
modification of duplex stainless steels such as AISI Duplex-2205 treated by TIG torch
with powder preplacement and nitriding processes are not available in literatures.
Furthermore, most of the researches published in the literature were focused on the
melting using laser glazing and nitriding using plasma process which is reported to

increase wear and corrosion resistance significantly. However, these processes are



