COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

STUDY ON WASTE HEAT RECOVERY FROM EXHAUST GAS OF THE NATURALLY ASPIRATED SPARK IGNITION ENGINE

BY

SAFARUDIN GAZALI HERAWAN

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

JANUARY 2017

ABSTRACT

The number of motor vehicles continues to grow globally and therefore increases reliance on the petroleum and increases the release of carbon dioxide into atmosphere which contributes to global warming. To overcome this trend, new vehicle technologies are introduced to achieve better fuel economy without increasing harmful emissions. For internal combustion engine (ICE) in most typical gasoline fuelled vehicles, it was estimated that 21% of the fuel energy is wasted through the exhaust at the most common load and speed range. The waste heat from exhaust gases represents a significant amount of heat energy, which has conventionally been used for combined heating and power applications. In this study, the waste heat recovery mechanism (WHRM) is developed for a naturally aspirated spark ignition engine. The performance of a naturally aspirated spark ignition engine equipped with the WHRM is explored, in terms of the engine performance and the generated power from WHRM. The experimental works were conducted by using an experimental vehicle, which implemented the WHRM on two mechanisms: gas turbine and steam turbine mechanisms. First, the experimental vehicle run on-road test without WHRM to explore the engine performance and the amount of heat energy from exhaust waste heat as a reference condition. Then, the experimental vehicle run on-road test with gas turbine mechanism steam turbine mechanism of WHRM. The major contributions of this study includes in conducting the experimental work of novel waste heat recovery mechanism, and implementing on the experimental vehicle (naturally aspirated spark ignition engine) with on-road test, which can reveal the performance of engine and waste heat recovery mechanism on the real condition. Heat energy from exhaust waste was found in range of 500 W up to 23 kW that obviously worthy to recover this heat energy. For WHRM, It is found that the gas turbine mechanism of waste heat recovery can reach up to 110 W, and occurs in short period of time around 1 to 4 second. Meanwhile the steam turbine mechanism can reach up to 29 W, but occurs in longer period of time, for example in 10 s. It also found that the gas turbine mechanism causes the power of engine to slightly drop, while the steam turbine mechanism of waste heat recovery does not affect the performance of engine. A new model for heat energy from exhaust waste heat and power generated from WHRM are proposed here to explain the possible enhancement, by using the engine speed, throttle angle, exhaust temperature, ambient temperature, and air flow rate as the data input in multiple regression method and Artificial Neural Network (ANN). For heat energy and both gas turbine and steam turbine mechanisms, the model of heat energy and generated power are found to be more in good agreement with experimental data using ANN with comparison to multiple regression method.

ملخص البحث

لا يزال تعداد السيارات في النمو على الصعيد العالمي، وبالتالي يزيد الاعتماد على النفط وبذلك يزيد من إطلاق غاز ثاني أكسيد الكربون في الغلاف الجوي الذي يسهم في ظاهرة الاحتباس الحراري. وللتغلب على هذه المشكلة، يتم إدخال تقنيات جديدة لتحقيق اقتصاد أفضل في استهلاك الوقود دون زيادة الانبعاثات الضارة بالبيئة. بالنسبة لمحرك الاحتراق الداخلي (ICE) في أكثر المركبات المزودة بالوقود، فإن التقديرات تشير إلى أن 11% من طاقة الوقود تُهدر من خلال العادم في مدى السرعة الأكثر شيوعاً. ولكنّ الحرارة المنبعثة من غازات العادم تمثل مقداراً كبيراً من الطاقة الحرارية، والتي يمكن إ ستخدا مها في تلبيه إحتياجات الطاقه داخل المركبه. في هذه الدراسة، تم تطوير آلية استرداد الحرارة (WHRM) للمحرك الانفجاري الطبيعي وَاستكشاف فعاليَّة المحرك المجهَّز من حيث أداء المحرك والطاقة المولدة من WHRM. وأجريت التجارب باستخدام سيارة تجريبية والتي نفذت WHRM على أليتين: أليَّة توربينات الغاز والتوريبينات البخارية. جرى أولاً اختبار السيارة التجريبية على الطريق دون استخدام WHRM لتقييم أداء المحرك وكمية الطاقة الحرارية والحرارة المهدرة من العادم. بعد ذلك ، تمّ اختبار السيارة التجريبية على الطريق مع توربينات الغاز والتوربينات البخارية مع WHRM. إنَّ المساهمة الرئيسية لهذه الدراسة تتضمن إجراء التجارب لأليَّة استرداد الحرارة، وتنفيذها على السيارة التجريبية (بمحرك انفجاري) مع اختبارها على الطريق، حيث يمكن الكشف عن أداء المحرك وآليَّة استرداد الحرارة في الواقع. تم حساب الطاقة الحرارية من نفايات العادم بين 500 واط إلى إلى 23 كيلو واط والتي تستحق بوضوح استردادها. أما بالنسبة لـ WHRM فقد وُجد أنَّ آلية توربينات الغاز لاسترداد الحرارة المهدرة يمكن أن تصل إلى 110 واط، في فترة قصيرة من الزمن تتراوح بين الثانية إلى أربع ثوان. وفي الوقت نفسه يمكن لآلية التوربينات البخارية أن تصل إلى 29 والم، ولكن في فترة أطول من الزمن، على سبيل المثال خلال عشر ثوان. كما وُجد أن آلية توربينات الغاز تسبب في انخفاض قوة المحرك قليلاً، في حين أن آلية التوربينات البخارية لم تؤثر على أداء المحرك. وعليه فقد تم اقتراح نموذج جديد للطاقة الحرارية من العادم لشرح امكانية التحسين، باستخدام سرعة المحرك، وزاوية دواسة الوقود ودرجة حرارة العادم، ودرجة الحرارة المحيطة، ومعدل تدفق الهواء كبيانات إدخال في الشبكات العصبية الاصطناعية (ANN). وكانت نتائج هذا النموذج في اتفاق جيد مع البيانات التجريبية.

APPROVAL PAGE

The thesis of Safarudin Gazali Herawan has been approved by the following:

Ahmad Faris bin Ismail Supervisor

Mohamed Nurul Alam Hawlader Internal Examiner

> Masjuki Hj Hassan External Examiner

Mohammad Nazri B. Mohd Jaafar External Examiner

> Wahabuddin Ra'ees Chairman

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Safarudin Gazali Herawan

Signature Date

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

STUDY ON WASTE HEAT RECOVERY FROM EXHAUST GAS OF THE NATURALLY ASPIRATED SPARK IGNITION ENGINE

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2016 Safarudi Gazali Herawan and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Safarudin Gazali Herawan

Signature

Date

ACKNOWLEDGEMENTS

Firstly, it is my utmost pleasure to dedicate this work to my dear parents and my family (Eva Kaniawati: my wife, Ahmad Razaq Gazali, Ibrahim Noor Gazali and Abdul Aziz Gazali: my children) who granted me the gift of their unwavering belief in my ability to accomplish this goal: thank you for your support and patience.

I wish to express my appreciation and thanks to those who provided their time, effort and support for this project. To the members of my dissertation committee, thank you for sticking with me.

Finally, a special thanks to Professor Dr. Ahmad Faris bin Ismail for his continuous support, encouragement and leadership, and for that, I will be forever grateful.

TABLE OF CONTENTS

Abstract	. ii
Abstract in Arabic	iii
Approval Page	iv
Declaration	V
Copyright Page	vi
Acknowledgements	vi
List of Tables	X
List of Figures	vi
List of Symbols	vvii
List of abbreviations	viv
	••• AIA
CHAPTER 1. INTRODUCTION	1
1 1 Background of Study	1
1.1 Dackground of Study	1
1.2 Providenti Statenient.	4
1.5 Research Objectives	0
1.4 Research Objectives	9
1.5 Research Methodology	9
1.6 Scopes and Limitations	12
1.7 Thesis Organization	12
CHADTED 2. I ITEDATIDE DEVIEW	14
2.1 The Estimated Heat Energy from The Exhaust Con	14
2.1 The Estimated Heat Energy from The Exhaust Gas	13
2.2 waste Heat Recovery Technologies	19
2.3 Gas Turbine Mechanism in Waste Heat Recovery	
2.3.1 The Principle of Gas Turbine Mechanism in Waste Heat	
Recovery	21
2.3.2 Turbocharging.	22
2.3.3 Turbo-compound	28
2.3.4 Constrains and Limitations.	33
2.4 Steam Turbine Mechanism in Waste Heat Recovery	34
2.4.1 The Principle of Steam Turbine Mechanism in Waste Heat	
Recovery	34
2.4.2 Working Fluids on Rankine Cycle Waste Heat Recovery	35
2.4.3 System Design of Rankine Cycle Waste Heat Recovery	45
2.4.4 Expander or Turbine of Rankine Cycle Waste Heat Recovery	47
2.4.5 Waste Heat Source from Other than Internal Combustion	
Engine for ORC	49
2.4.6 Review, Combined, and Comparison of Rankine Cycle Waste	
Heat Recovery.	
2.4.7 Constrains and Limitations	.53
2.5 Conclusion	53
CHAPTER 3: RESEARCH METHODOLOGY	55
3.1 Experimental Set Up on The Experimental Vehicle	56
3.1.1 Sensors and Instrumentations	56

3.1.2 On-road Tests	60
3.2 Gas Turbine Mechanism in Waste Heat Recovery	66
3.3 Steam Turbine Mechanism in Waste Heat Recovery	70
3.4 Artificial Neural Network for Prediction of Output Power of Waste	
Heat Recovery	78
3.4.1 Selection of Variables	79
3.4.2 Preliminary Statistical Analysis	79
3.4.3 Artificial Neural Network Model	81
3.5 Conclusion	91
CHAPTER 4: RESULTS AND DISCUSSIONS	92
4.1 Heat Energy from Exhaust Waste Heat	92
4.2 Gas Turbine Mechanism of Waste Heat Recovery	103
4.2.1 Performance of Experimental Vehicle with Gas Turbine	
Mechanism of Waste Heat Recovery	107
4.2.2 Prediction of Power Generated from Gas Turbine Mechanism	
of Waste Heat Recovery	109
4.3 Steam Turbine Mechanism of Waste Heat Recovery	119
4.3.1 Temperature Profile on The Exhaust Pipe	119
4.3.2 Determination of Length of Helical Coil Heat Exchanger in	
The Exhaust Pipe of Experimental Vehicle	120
4.3.3 The Relationship of Parameters to Steam Turbine Speed in	
The Experimental Vehicle	124
4.3.4 The Effect of Feed Water Flow Rate on The Steam Turbine	
Speed in The Experimental Vehicle	127
4.3.5 Performance of Experimental Vehicle with Steam Turbine	
Mechanism of Waste Heat Recovery	129
4.3.6 Prediction of Power Generated from Steam Turbine	
Mechanism of Waste Heat Recovery	131
4.4 Conclusion	142
CHAPTER 5: CONCLUSIONA AND RECOMMENDATIONS	143
5.1 Conclusions	143
5.2 Main Contributions	144
5.3 Recommendations	145
REFERENCES	147
LIST OF PUBLICATIONS	157
APPENDIX A	158
APPENDIX B	167
APPENDIX C	177

LIST OF TABLES

Table 2.1 Vehicle test conditions (Domingues, et al., 2013)	16
Table 2.2 Identified parameters of the expander model (Lemort et al., 2009)	48
Table 3.1 Specification of the test engine	56
Table 3.2 Details of the instrumentation used in the experimental vehicle	58
Table 3.3 Conversions of units for USB-1208FS	60
Table 3.4 Details of the instrumentation used in the experimental vehicle for gas turbine mechanism in waste heat recovery	70
Table 3.5 Details of the instrumentation used in the experimental vehicle for steam turbine mechanism in waste heat recovery	77
Table 4.1 Regression summary for heat energy (dependent parameter) with 5 independent parameters	97
Table 4.2 Regression summary for heat energy (dependent parameter) with 4 independent parameters (excluded ambient temperature)	97
Table 4.3 The range of time during power generated	106
Table 4.4 Regression summary for power generated (dependent parameter) with 6 independent parameters	110
Table 4.5 Regression summary for power generated (dependent parameter) with 5 independent parameters	110
Table 4.6 Parameters of helical coil heat exchanger in the experimental setup	120
Table 4.7 Calculation from experimental setup for helical coil heat exchanger	121
Table 4.8 Parameter for temperature profile calculation	121
Table 4.9 The range of time during power generated form steam turbine mechanism	134
Table 4.10 Regression summary for power generated (dependentparameter) with 5 independent parameters	135

LIST OF FIGURES

equivalent) (OECD/IEA, 2012)	3
Figure 1.2 Oil demand and price in 1980 – 2035 (mb/d = million barrels per day) (OECD/IEA, 2012)	4
Figure 1.3 World crude oil production by physiographical location and region in the New Policies Scenario (OECD/IEA, 2012)	4
Figure 1.4 (a) 1973 and 2011 shares of world oil consumption and (b) Total final oil	6
Figure 1.5 Representation of energy efficiency by end-user transport sector in The World Energy Model as considered in The Efficient World Scenario	7
Figure 1.6 Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) (OECD/IEA, 2012)	7
Figure 1.7 Research process flow chart	11
Figure 2.1 Energy fraction of HICE for various engine speed (Yamada & Mohamad, 2010)	17
Figure 2.2 Exhaust waste heat with various engine speed (Yamada & Mohamad, 2010)	17
Figure 2.3 Energy distributions for CI and SI engines at low and high load conditions (Shabashevich et al., 2015)	18
Figure 2.4 Map of Exhaust energy, Engine torque and Engine speed (Yang et al., 2014)	19
Figure 2.5 Comparison of the turbine flow capacity and power as computed by the model and that obtained from CFD (Galindo et al., 2013)	24
Figure 2.6 Architecture of hybrid diesel engine (Yang et al., 2013)	26
Figure 2.7 Electrical turbo-compoud system diagram (Algrain, 2005)	29
Figure 2.8 Compressor and turbine power in engine (Katsanos et al., 2013)	29
Figure 2.9 Hybrid turbo-compound powertrain layout (Dellachà et al., 2014)	31

Figure 2.10 Positions of the low pressure turbine (LPT) as compared with the baseline engine (Mamat et al., 2012)	32
Figure 2.11 Simple ideal Rankine cycle (Vundela Siva, Subash Chndra, Sudhir Kumar, & Narayanlal, 2010)	35
Figure 2.12 Schematic of a typical Rankine cycle in waste heat recovery system from internal combustion engine exhaust gas (Domingues et al., 2013)	35
Figure 2.13 Double regenerative ORC (left side) and single regenerative ORC (right side) (Peris et al., 2013)	38
Figure 2.14 Thermal characteristic of three types of working fluids; wet (left); dry (centre); isentropic (right) (Xie & Yang, 2013)	40
Figure 2.15 The optimized CO ₂ transcritical cycle on T-s diagram (Baik et al., 2011)	40
Figure 2.16 Power plant layout of the three configurations (Serrano et al., 2012)	43
Figure 2.17 WHR assembly in the under body of BMW 5 series (Horst et al., 2014)	44
Figure 2.18 Configuration diagram of dual loop ORC system (Shu et al., 2014)	46
Figure 2.19 Block diagram of self-turning generalize minimum variance controller (Khaljani et al., 2015)	50
Figure 2.20 Diagram of waste heat recovery system on the exhaust pipe of a diesel engine (Shu et al., 2012)	52
Figure 3.1 An experimental vehicle of Toyota 1.6 L	55
Figure 3.2 Diagram of instrumentation installed in the experimental vehicle	58
Figure 3.3 User interface of USB-1208FS using instaCal and TracerDAQ	59
Figure 3.4 User interface of Extech Pitot tube Anemometer	59
Figure 3.5 User interface of 4-channel Thermocouple logger	59
Figure 3.6 On-road test at Autocity, Melaka	61
Figure 3.7 On-road test track for normal driving setting	62
Figure 3.8 On-road test track for full throttle driving setting	62
Figure 3.9 Full throttle reminder device	63

Figure 3.10 Circuit of Full throttle reminder device	63
Figure 3.11 Program for Arduino microcontroller for Full throttle reminder device	64
Figure 3.12 How the full throttle reminder works	65
Figure 3.13 Modified Demo simulink program	66
Figure 3.14 Transformation of gas turbine mechanism in waste heat recovery	68
Figure 3.15 Schematic layout of the experimental setup of the Gas turbine mechanism in waste heat recovery	69
Figure 3.16 User interface of USB Multimeter; Voltage (left) and Current (right)	70
Figure 3.17 Schematic of thermocouples location along the exhaust pipe	71
Figure 3.18 Thermocouple point location on the experimental vehicle	71
Figure 3.19 Helical coil heat exchanger	74
Figure 3.20 Experimental setup for helical coil heat exchanger	74
Figure 3.21Geometric of helical coil heat exchanger	75
Figure 3.22 Schematic layout of the experimental setup of the steam turbine mechanism in waste heat recovery	77
Figure 3.23 Schematic of a single neuron system	83
Figure 3.24 Schematic of parametric and non-parametric models	87
Figure 3.25 Schematic diagram of a fully connected MLP neural network and in two dimensional input data	88
Figure 3.26 Schematic diagram of a fully connected RBF neural network and in two dimensional input data	89
Figure 4.1 The measured data from experimental vehicle	93
Figure 4.2 Heat energy from exhaust gas of experimental vehicle on engine speed, air flow rate, throttle angle, and exhaust temperature	95
Figure 4.3 Heat energy from theoretical and from multiple regression analysis	98

Figure 4.4 Th he	he correlation between output of heat energy with predicted eat energy on data training (top left), data test (top right), data alidation (bottom left), and data overall (bottom right)	99
Figure 4.5 Th er ra	ne architecture of ANN for prediction of heat energy from ngine speed, throttle angle, exhaust temperature, and air flow ate	100
Figure 4.6 He	eat energy from theoretical and from prediction ANN analysis n data training	102
Figure 4.7 He	eat energy from theoretical and from prediction ANN analysis n data test (left) and data validation (right)	102
Figure 4.8 Th m	ne measured data from the experimental vehicle of gas turbine nechanism of waste heat recovery	104
Figure 4.9 Po	ower generated from gas turbine mechanism of waste heat ecovery	105
Figure 4.10 P tu	Power of the experimental vehicle with and without gas arbine mechanism	108
Figure 4.11 T	Forque of the experimental vehicle with and without gas arbine mechanism	108
Figure 4.12 P m	Power generated from gas turbine mechanism and from nultiple regression analysis	111
Figure 4.13 In	mportance parameters to power produced as dependent arameter	112
Figure 4.14 P th	Performance of data training, data test, and data validation in nree, four, five, six input parameters	113
Figure 4.15 T pr (t	The correlation between output of power generated with redicted power generated on data training (top left), data test top right), data validation (bottom left), and data overall pottom right)	114
Figure 4.16 T	The architecture of MLP 6-5-1 of ANN for prediction of ower generated from power turbine speed, engine speed, prottle angle, air flow rate, voltage load, and power load	115
Figure 4.17 P	Power generated from experimental results and from rediction ANN analysis on data training	117
Figure 4.18 P pr (r	Power generated from experimental results and from rediction ANN analysis on data test (left) and data validation right)	118

Figure 4.19	Temperature profile on the exhaust pipe of experimental vehicle	119
Figure 4.20	Length of helical coil exchanger based on heat energy, mean value and temperature location	123
Figure 4.21	The measured data from experimental vehicle in term of engine speed and steam turbine speed	125
Figure 4.22	2 The measured data from experimental vehicle in term of throttle angle and steam turbine speed	125
Figure 4.23	The measured data from experimental vehicle in term of vehicle speed and steam turbine speed	126
Figure 4.24	The measured data from experimental vehicle in term of exhaust temperature and steam turbine speed	126
Figure 4.25	Steam turbine speed against exhaust temperature at 40 ml/min	128
Figure 4.26	Steam turbine speed against exhaust temperature at 60 ml/min	128
Figure 4.27	Steam turbine speed against exhaust temperature at 80 ml/min	129
Figure 4.28	Power of the experimental vehicle with and without steam turbine mechanism	130
Figure 4.29	Torque of the experimental vehicle with and without steam turbine mechanism	131
Figure 4.30	The measured data from the experimental vehicle of steam turbine mechanism of waste heat recovery	132
Figure 4.31	Power generated from steam turbine mechanism of waste heat recovery	133
Figure 4.32	Power generated from steam turbine mechanism and from multiple regression analysis	136
Figure 4.33	Importance parameters to power generated as dependent parameter	137
Figure 4.34	The correlation between output of power generated with predicted power generated on data training (top left), data test (top right), data validation (bottom left), and data overall (bottom right) on the steam turbine mechanism	138
Figure 4.35	The architecture of MLP 5-4-1 of ANN for prediction of power generated from steam turbine speed, engine speed, throttle angle, vehicle speed, and exhaust temperature	139

Figure 4.36	Power generated from experimental results and from	
	prediction ANN analysis on data training of steam turbine	
	mechanism	141
Figure 4.37	Power generated from experimental results and from prediction ANN analysis on data test (left) and data validation	
	(right) of steam turbine mechanism	141

LIST OF SYMBOLS

C_{pg}	Specific heat of air (J/kg.°C)
d_c	Diameter of copper tube (mm)
h _{w,in}	Inlet water enthalpy (J/kg)
h _{w,out}	Exit water enthalpy (J/kg)
L	Length of copper tube (cm)
L _{coil}	Length of helical coil heat exchanger (cm)
\dot{m}_g	Exhaust gases mass flow rate (kg/s)
\dot{m}_w	Mass flow rate of water (kg/s)
Ν	Engine speed (rpm)
N _c	Number of turns of helical coil
N _{ST}	Steam turbine speed (rpm)
N_T	Power turbine speed (rpm)
P_L	Power load (W)
p	Pitch between turned coil (mm)
\dot{Q}_{exh}	Energy of waste heat from the exhaust system (W)
Q_w	Waste heat energy (W)
r	Curvature radius of helical coil (mm)
r_{xy}	Pearson r value
S_x	Standard deviation for <i>x</i>
S_{xy}	Covariance
Sy	Standard deviation for <i>y</i>
T _{amb}	Ambient temperature (°C)

T _{exh}	Exhaust temperature (°C)
T_g	Exhaust gases temperature (°C)
$T_{g,in}$	Exhaust gases temperature before the waste heat recovery device ($^{\circ}C$)
t_{lpha}	Throttle angle (°)
Uo	Overall heat transfer coefficient
\dot{V}	Volume flow rate of air (m ³ /min)
V_L	Voltage load (V)
Va	Air flow rate (m ³ /min)
V_{v}	Vehicle speed (km/h)
W_{gt}	Power generated (W)

LIST OF ABBREVIATIONS

PLDV	Passenger Light-duty Vehicle
LCV	Light Commercial Vehicle
HEV	Hybrid Electric Vehicle
EV	Electric Vehicle
Δ/C	Air conditioning
RCCI	Reactivity Controlled Compression Ignition
HICE	Hydrogen Internal Combustion Engine
CI	Compression Ignition
SI	Snark Ignition
IC	Internal Combustion
BSFC	Brake Specific Fuel Consumption
HPVGT	High Pressure Variable Geometry Turbine
ANN	Artificial Neural Network
ICE	Internal Combustion Engine
TEG	Thermalelectric Generator
CFD	Computational Fluid Dynamic
ORC	Organic Rankine Cycle
MAPE	Mean Absolute Percentage Error
HCCI	Homogeneous Charge Compression Ignition
EGR	Exhaust Gas Circulation
VCT	Variable Camshaft Timing
DME	Dimethyl Ether
VVA	Variable Valve Actuation
VGT	Variable Geometry Turbine
ISA	Integrated Starter-Altenator
NMPC	Nonlinier Model Predictive
HP	High Pressure
LP	Low Pressure
HD	Heavy-duty
AR	Area Ratio
EER	Exhaust Energy Recovery
WHRM	Waste Heat Recovery Mechanism
NEDC	New European Driving Cycle
WHR	Waste Heat Recovery
HT	High-temperature
LT	Low-temperature
I/O	Input Output
MLP	Multilayer Perceptron Network
RBF	Radial Basis Function
SOS	Sum of Squares
BFGS	Broyden-Fletcher-Goldfarb-Shanno
LMTD	Log mean temperature difference between inlet and exit of exhaust gas
	temperature and water temperature

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND OF STUDY

In recent years, environmental and energy issues have created major interests to the public and scientists in the awareness of demand, price, and supply. From the socioeconomic perspective, the increasing level of energy consumption is directly proportional to economic development and the total number of population in the world, which contribute to the increasing energy demand. In the global energy system, the fossil fuel, which consists of oil, natural gas, and coal, is the highest global energy system resources, which is 81% from the total resources and oil is the greatest resource from the fossil fuel cluster (Figure 1.1). Therefore, energy demand still relies on fossil fuel resources.

Figure 1.2 describes the oil demand, price and projection up until 2035, and Figure 1.3 shows the production of crude oil and its projection until 2035. Oil demand is always beyond its supply in the current situation and projection. This leads to increased oil price from time to time, even in the projection. The projection of oil demand and price are subjected to three scenarios. (1) The New Policies Scenario: A scenario in the World Energy Outlook that takes into account broad policy commitments and plans announced by countries, including national pledges to reduce greenhouse-gas emissions and plans to phase out fossil-energy subsidies, even if the measures to implement these commitments have yet to be identified or announced. (2) The 450 Scenario: A scenario presented in the World Energy Outlook that sets out an energy pathway consistent with the goal of limiting the global increase in temperature by 2°C by limiting the concentration of greenhouse gases in the atmosphere to around 450 parts per million of CO_2 . (3) The Current Policies Scenario: A scenario in the World Energy Outlook 2010 that assumes no change in policies, which is basically 'business as usual'.

In the Current Policies Scenario, the demand and price of oil will constantly increase, however the production of oil will slightly decrease. For the new policies scenario and 450 scenario, they have set some rules and regulations to be followed by the nations to overcome the current policies scenario by enforcing clear environment and saving the resources (OECD/IEA, 2012).

Figure 1.1 Global Energy System, 2010 (in million tonnes of oil equivalent) (OECD/IEA, 2012)

Figure 1.2 Oil demand and price in 1980 – 2035 (mb/d = million barrels per day) (OECD/IEA, 2012)

Figure 1.3 World crude oil production by physiographical location and region in the New Policies Scenario (OECD/IEA, 2012)

1.2 PROBLEM STATEMENT

By looking at the global energy system (Figure 1.1), the transport sector uses a huge part of transformation of fossil fuels. In Figure 1.4, it is clearly shown that the transport sector has grown up from 1973 just 45.5% of world oil consumption to 2011 with 62.3% of world oil consumption. This trend indicates that some actions must be taken to balance between energy demand and supply.

The demand and consumption of energy mostly come from the transport sector. Any actions that apply on this sector can contribute greatly to the world energy. Perhaps, some organizations already establish some rules and regulations with regards to this matter. For instance, the six key pillars in the policy framework assumed in the transport sector in the 450 Scenario (OECD/IEA, 2012), which are:

- International sectoral agreements in the passenger light-duty vehicles (PLDV) sector and aviation (both domestic and international) as of 2013, which provide CO₂ emission limits for new cars and aircraft in all countries.
- Full technology spill-over from PLDVs to light commercial vehicles (LCVs).
- Improve efficiency of medium- and heavy-duty vehicles by 20% in
 2035 relative to the New Policies Scenario.
- 4. Alternative fuel support policies.
- 5. National policies and measures in other segments of the transport sector.

This framework can become a reality when the entire nations in the world participate in order to achieve a better world for the future generation. The Efficient World Scenario is a blueprint to realize economically viable potential for energy efficiency by setting out the policies that governments need to enact to lower market barriers, thereby minimizing transaction costs and enabling necessary energy efficiency investment. This scenario covers efficiency in industry sector, transport sector, and buildings sector. The roles are to ascertain the efficiencies of the best technologies and practices available now, and to know how these are likely to evolve