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ABSTRACT 

The number of motor vehicles continues to grow globally and therefore increases 
reliance on the petroleum and increases the release of carbon dioxide into atmosphere 
which contributes to global warming. To overcome this trend, new vehicle 
technologies are introduced to achieve better fuel economy without increasing harmful 
emissions.  For internal combustion engine (ICE) in most typical gasoline fuelled 
vehicles, it was estimated that 21% of the fuel energy is wasted through the exhaust at 
the most common load and speed range.  The waste heat from exhaust gases 
represents a significant amount of heat energy, which has conventionally been used 
for combined heating and power applications. In this study, the waste heat recovery 
mechanism (WHRM) is developed for a naturally aspirated spark ignition engine.  
The performance of a naturally aspirated spark ignition engine equipped with the 
WHRM is explored, in terms of the engine performance and the generated power from 
WHRM. The experimental works were conducted by using an experimental vehicle, 
which implemented the WHRM on two mechanisms: gas turbine and steam turbine 
mechanisms.  First, the experimental vehicle run on-road test without WHRM to 
explore the engine performance and the amount of heat energy from exhaust waste 
heat as a reference condition. Then, the experimental vehicle run on-road test with gas 
turbine mechanism steam turbine mechanism of WHRM. The major contributions of 
this study includes in conducting the experimental work of novel waste heat recovery 
mechanism, and implementing on the experimental vehicle (naturally aspirated spark 
ignition engine) with on-road test, which can reveal the performance of engine and 
waste heat recovery mechanism on the real condition.  Heat energy from exhaust 
waste was found in range of 500 W up to 23 kW that obviously worthy to recover this 
heat energy. For WHRM, It is found that the gas turbine mechanism of waste heat 
recovery can reach up to 110 W, and occurs in short period of time around 1 to 4 
second. Meanwhile the steam turbine mechanism can reach up to 29 W, but occurs in 
longer period of time, for example in 10 s.  It also found that the gas turbine 
mechanism causes the power of engine to slightly drop, while the steam turbine 
mechanism of waste heat recovery does not affect the performance of engine.  A new 
model for heat energy from exhaust waste heat and power generated from WHRM are 
proposed here to explain the possible enhancement, by using the engine speed, throttle 
angle, exhaust temperature, ambient temperature, and air flow rate as the data input in 
multiple regression method and Artificial Neural Network (ANN). For heat energy 
and both gas turbine and steam turbine mechanisms, the model of heat energy and 
generated power are found to be more in good agreement with experimental data 
using ANN with comparison to multiple regression method. 
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 ملخص البحث

لا یزال تعداد السیارات في النمو على الصعید العالمي، وبالتالي یزید الاعتماد على النفط وبذلك 
یزید من إطلاق غاز ثاني أكسید الكربون في الغلاف الجوي الذي یسھم في ظاھرة الاحتباس 

ات جدیدة لتحقیق اقتصاد أفضل في استھلاك ، یتم إدخال تقنیالمشكلة هللتغلب على ھذوالحراري. 
) في أكثر ICEلمحرك الاحتراق الداخلي (بالنسبة الوقود دون زیادة الانبعاثات الضارة بالبیئة. 

من طاقة الوقود تھُدر من خلال  21% المركبات المزودة بالوقود، فإن التقدیرات تشیر إلى أن
لحرارة المنبعثة من غازات العادم تمثل مقداراً العادم في مدى السرعة الأكثر شیوعاً. ولكنّ ا

. في یمكن إ ستخدا مھا في تلبیھ إحتیاجات الطاقھ داخل المركبھكبیراً من الطاقة الحراریة، والتي 
) للمحرك الانفجاري الطبیعي WHRMھذه الدراسة، تم تطویر آلیة استرداد الحرارة (
. WHRMالمحرك والطاقة المولدة من  وَاستكشاف فعالیةّ المحرك المجھزّ من حیث أداء

على آلیتین: آلیةّ توربینات  WHRMوأجریت التجارب باستخدام سیارة تجریبیة والتي نفذت 
الغاز والتوربینات البخاریة. جرى أولاً اختبار السیارة التجریبیة على الطریق دون استخدام 

WHRM بعد ذلك ، تمّ لمھدرة من العادما لتقییم أداء المحرك وكمیة الطاقة الحراریة والحرارة .
. WHRMاختبار السیارة التجریبیة على الطریق مع توربینات الغاز والتوربینات البخاریة مع 

إنّ المساھمة الرئیسیة لھذه الدراسة تتضمن إجراء التجارب لآلیةّ استرداد الحرارة، وتنفیذھا على 
ى الطریق، حیث یمكن الكشف عن أداء السیارة التجریبیة (بمحرك انفجاري) مع اختبارھا عل

 500المحرك وآلیةّ استرداد الحرارة في الواقع. تم حساب الطاقة الحراریة من نفایات العادم بین 
فقد وُجد  WHRMــ كیلو واط والتي تستحق بوضوح استردادھا. أما بالنسبة ل 23واط إلى إلى 

في فترة قصیرة واط،  110مكن أن تصل إلى أنّ آلیة توربینات الغاز لاسترداد الحرارة المھدرة ی
من الزمن تتراوح بین الثانیة إلى أربع ثوانٍ. وفي الوقت نفسھ یمكن لآلیة التوربینات البخاریة أن 

واط، ولكن في فترة أطول من الزمن، على سبیل المثال خلال عشر ثوانٍ. كما وُجد  29تصل إلى 
ة المحرك قلیلاً، في حین أن آلیة التوربینات أن آلیة توربینات الغاز تسبب في انخفاض قو

العادم  جدید للطاقة الحراریة مناقتراح نموذج  لى أداء المحرك. وعلیھ فقد تملم تؤثر ع بخاریةال
لشرح امكانیة التحسین، باستخدام سرعة المحرك، وزاویة دواسة الوقود ودرجة حرارة العادم، 

اء كبیانات إدخال في الشبكات العصبیة الاصطناعیة ودرجة الحرارة المحیطة، ومعدل تدفق الھو
)ANN .(في اتفاق جید مع البیانات التجریبیة. وكانت نتائج ھذا النموذج 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

In recent years, environmental and energy issues have created major interests to the 

public and scientists in the awareness of demand, price, and supply. From the socio-

economic perspective, the increasing level of energy consumption is directly 

proportional to economic development and the total number of population in the 

world, which contribute to the increasing energy demand.  In the global energy 

system, the fossil fuel, which consists of oil, natural gas, and coal, is the highest global 

energy system resources, which is 81% from the total resources and oil is the greatest 

resource from the fossil fuel cluster (Figure 1.1).  Therefore, energy demand still relies 

on fossil fuel resources. 

Figure 1.2 describes the oil demand, price and projection up until 2035, and 

Figure 1.3 shows the production of crude oil and its projection until 2035. Oil demand 

is always beyond its supply in the current situation and projection.  This leads to 

increased oil price from time to time, even in the projection.  The projection of oil 

demand and price are subjected to three scenarios. (1) The New Policies Scenario: A 

scenario in the World Energy Outlook that takes into account broad policy 

commitments and plans announced by countries, including national pledges to reduce 

greenhouse-gas emissions and plans to phase out fossil-energy subsidies, even if the 

measures to implement these commitments have yet to be identified or announced. (2) 

The 450 Scenario: A scenario presented in the World Energy Outlook that sets out an 

energy pathway consistent with the goal of limiting the global increase in temperature 

by 2°C by limiting the concentration of greenhouse gases in the atmosphere to around 



 

2 

450 parts per million of CO2. (3) The Current Policies Scenario: A scenario in the 

World Energy Outlook 2010 that assumes no change in policies, which is basically 

‘business as usual’. 

In the Current Policies Scenario, the demand and price of oil will constantly 

increase, however the production of oil will slightly decrease.  For the new policies 

scenario and 450 scenario, they have set some rules and regulations to be followed by 

the nations to overcome the current policies scenario by enforcing clear environment 

and saving the resources (OECD/IEA, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

            

 
             

Figure 1.1 Global Energy System, 2010 (in million tonnes of oil equivalent) (OECD/IEA, 2012) 
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Figure 1.2 Oil demand and price in 1980 – 2035 (mb/d = million barrels per day) 
(OECD/IEA, 2012) 

 

 

 

 

 

 

 

 

Figure 1.3 World crude oil production by physiographical location and region in the 
New Policies Scenario (OECD/IEA, 2012) 

 
 
 
1.2 PROBLEM STATEMENT 

By looking at the global energy system (Figure 1.1), the transport sector uses a huge 

part of transformation of fossil fuels.  In Figure 1.4, it is clearly shown that the 

transport sector has grown up from 1973 just 45.5% of world oil consumption to 2011 

with 62.3% of world oil consumption.  This trend indicates that some actions must be 

taken to balance between energy demand and supply.   
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The demand and consumption of energy mostly come from the transport 

sector.  Any actions that apply on this sector can contribute greatly to the world 

energy.  Perhaps, some organizations already establish some rules and regulations 

with regards to this matter.  For instance, the six key pillars in the policy framework 

assumed in the transport sector in the 450 Scenario (OECD/IEA, 2012), which are:  

1. International sectoral agreements in the passenger light-duty vehicles 

(PLDV) sector and aviation (both domestic and international) as of 

2013, which provide CO2 emission limits for new cars and aircraft in 

all countries.  

2. Full technology spill-over from PLDVs to light commercial vehicles 

(LCVs). 

3. Improve efficiency of medium- and heavy-duty vehicles by 20% in 

2035 relative to the New Policies Scenario.  

4. Alternative fuel support policies.  

5. National policies and measures in other segments of the transport 

sector.  

This framework can become a reality when the entire nations in the world 

participate in order to achieve a better world for the future generation. The Efficient 

World Scenario is a blueprint to realize economically viable potential for energy 

efficiency by setting out the policies that governments need to enact to lower market 

barriers, thereby minimizing transaction costs and enabling necessary energy 

efficiency investment.  This scenario covers efficiency in industry sector, transport 

sector, and buildings sector.  The roles are to ascertain the efficiencies of the best 

technologies and practices available now, and to know how these are likely to evolve 




