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ABSTRACT

The number of motor vehicles continues to grow globally and therefore increases
reliance on the petroleum and increases the release of carbon dioxide into atmosphere
which contributes to global warming. To overcome this trend, new vehicle
technologies are introduced to achieve better fuel economy without increasing harmful
emissions. For internal combustion engine (ICE) in most typical gasoline fuelled
vehicles, it was estimated that 21% of the fuel energy is wasted through the exhaust at
the most common load and speed range. The waste heat from exhaust gases
represents a significant amount of heat energy, which has conventionally been used
for combined heating and power applications. In this study, the waste heat recovery
mechanism (WHRM) is developed for a naturally aspirated spark ignition engine.
The performance of a naturally aspirated spark ignition engine equipped with the
WHRM is explored, in terms of the engine performance and the generated power from
WHRM. The experimental works were conducted by using an experimental vehicle,
which implemented the WHRM on two mechanisms: gas turbine and steam turbine
mechanisms. First, the experimental vehicle run on-road test without WHRM to
explore the engine performance and the amount of heat energy from exhaust waste
heat as a reference condition. Then, the experimental vehicle run on-road test with gas
turbine mechanism steam turbine mechanism of WHRM. The major contributions of
this study includes in conducting the experimental work of novel waste heat recovery
mechanism, and implementing on the experimental vehicle (naturally aspirated spark
ignition engine) with on-road test, which can reveal the performance of engine and
waste heat recovery mechanism on the real condition. Heat energy from exhaust
waste was found in range of 500 W up to 23 kW that obviously worthy to recover this
heat energy. For WHRM, It is found that the gas turbine mechanism of waste heat
recovery can reach up to 110 W, and occurs in short period of time around 1 to 4
second. Meanwhile the steam turbine mechanism can reach up to 29 W, but occurs in
longer period of time, for example in 10 s. It also found that the gas turbine
mechanism causes the power of engine to slightly drop, while the steam turbine
mechanism of waste heat recovery does not affect the performance of engine. A new
model for heat energy from exhaust waste heat and power generated from WHRM are
proposed here to explain the possible enhancement, by using the engine speed, throttle
angle, exhaust temperature, ambient temperature, and air flow rate as the data input in
multiple regression method and Artificial Neural Network (ANN). For heat energy
and both gas turbine and steam turbine mechanisms, the model of heat energy and
generated power are found to be more in good agreement with experimental data
using ANN with comparison to multiple regression method.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

In recent years, environmental and energy issues have created major interests to the
public and scientists in the awareness of demand, price, and supply. From the socio-
economic perspective, the increasing level of energy consumption is directly
proportional to economic development and the total number of population in the
world, which contribute to the increasing energy demand. In the global energy
system, the fossil fuel, which consists of oil, natural gas, and coal, is the highest global
energy system resources, which is 81% from the total resources and oil is the greatest
resource from the fossil fuel cluster (Figure 1.1). Therefore, energy demand still relies
on fossil fuel resources.

Figure 1.2 describes the oil demand, price and projection up until 2035, and
Figure 1.3 shows the production of crude oil and its projection until 2035. Oil demand
is always beyond its supply in the current situation and projection. This leads to
increased oil price from time to time, even in the projection. The projection of oil
demand and price are subjected to three scenarios. (1) The New Policies Scenario: A
scenario in the World Energy Outlook that takes into account broad policy
commitments and plans announced by countries, including national pledges to reduce
greenhouse-gas emissions and plans to phase out fossil-energy subsidies, even if the
measures to implement these commitments have yet to be identified or announced. (2)
The 450 Scenario: A scenario presented in the World Energy Outlook that sets out an
energy pathway consistent with the goal of limiting the global increase in temperature

by 2°C by limiting the concentration of greenhouse gases in the atmosphere to around



450 parts per million of CO,. (3) The Current Policies Scenario: A scenario in the
World Energy Outlook 2010 that assumes no change in policies, which is basically
‘business as usual’.

In the Current Policies Scenario, the demand and price of oil will constantly
increase, however the production of oil will slightly decrease. For the new policies
scenario and 450 scenario, they have set some rules and regulations to be followed by
the nations to overcome the current policies scenario by enforcing clear environment

and saving the resources (OECD/IEA, 2012).
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Figure 1.3 World crude oil production by physiographical location and region in the
New Policies Scenario (OECD/IEA, 2012)

1.2 PROBLEM STATEMENT

By looking at the global energy system (Figure 1.1), the transport sector uses a huge
part of transformation of fossil fuels. In Figure 1.4, it is clearly shown that the
transport sector has grown up from 1973 just 45.5% of world oil consumption to 2011
with 62.3% of world oil consumption. This trend indicates that some actions must be

taken to balance between energy demand and supply.



The demand and consumption of energy mostly come from the transport
sector. Any actions that apply on this sector can contribute greatly to the world
energy. Perhaps, some organizations already establish some rules and regulations
with regards to this matter. For instance, the six key pillars in the policy framework
assumed in the transport sector in the 450 Scenario (OECD/IEA, 2012), which are:

1. International sectoral agreements in the passenger light-duty vehicles

(PLDV) sector and aviation (both domestic and international) as of
2013, which provide CO, emission limits for new cars and aircraft in

all countries.

2. Full technology spill-over from PLDVs to light commercial vehicles
(LCVs).
3. Improve efficiency of medium- and heavy-duty vehicles by 20% in

2035 relative to the New Policies Scenario.

4. Alternative fuel support policies.
5. National policies and measures in other segments of the transport
sector.

This framework can become a reality when the entire nations in the world
participate in order to achieve a better world for the future generation. The Efficient
World Scenario is a blueprint to realize economically viable potential for energy
efficiency by setting out the policies that governments need to enact to lower market
barriers, thereby minimizing transaction costs and enabling necessary energy
efficiency investment. This scenario covers efficiency in industry sector, transport
sector, and buildings sector. The roles are to ascertain the efficiencies of the best

technologies and practices available now, and to know how these are likely to evolve





