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ABSTRACT

The present work describes a study on one variation of air-to-air heat exchanger using
a novel hydrophilic membrane, i.e. synthesized from MCM-41 inorganic material, to
transfer moisture and heat across the membrane. MCM-41 is a mesoporous molecular
sieve material. The MCM-41 membrane is synthesized from sol-gel technique at
room temperature and developed using deep coating technique with matrix support of
polyester mesh. The synthesized MCM-41 material possessed the following
properties. BJH pore size of 2.8 nm, wall thickness of 1.12 nm, BET surface area of
1102 m?.g?, pore volume of 0.97 cm3.g™? and permeability of 3.622x10% m?. A two-
chamber, concurrent (parallel) flow heat exchanger core is constructed from poly
(methyl methacrylate) with the MCM-41 membrane placed in between the chambers.
The channel possessed an opening size of 5 mm x 5 mm with total length of 225 mm.
The air heat exchanger is intended to operate using outdoor air supply. Thus, two
cooling conditions of outdoor air supply are studied; (i) dry air supply as in the case
of normal bright day, and (ii) moist air supply as in the case on rainy day. The heat
load in the experiment is a hot dry air flow (85 °C and 3%RH). The cooling flow is
normal, ambient cooling air fixed at 26 °C and 50%RH. Under the humid or moist
air cooling condition, the heat exchanger coefficient is higher i.e. 238.26 W/m?°C as
compared to 186.45 W/m?°C obtained under the dry air cooling condition. The
improvement in the heat exchanger coefficient is attributed to the increment of the
total specific heat capacity in cool flow due to the presence of water droplets in
humid cooling flow. Using the finite volume method, the heat exchanger is modeled
as three volumes of fluid i.e. the heat load volume, the cooling volume and separated
by the MCM-41 membrane volume. All the three volumes are defined as the same
fluid but with the membrane volume subjected to porous medium type. Further, the
moist cool flow volume is treated as a 3-phase flow volume i.e. air, water vapor and
water droplets. The results of the CFD simulation are in very good agreement with
the experimental data. The membrane air exchanger model is then further developed
to simulate the form of cross-flow heat exchanger. Finally, LBM is used to model the
MCM-41 membrane at mesoscale. The model could be used to estimate the
permeability of the membrane separator and also to simulate the stream flow profile
of fluid upon entering the hive structure of MCM-41.
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW
Humidity is commonly associated with indoor comfort since air humidity influences
the release of heat from human body. For example, humid air in hot weather prevents
cooling evaporation of sweat, while not enough humidity in hot air evaporates the
moisture from human mucous membranes, skin and hair (Cooper, 2002). Apart from
comfort, humidity control is one of the important aspects in thermal management for
a variety of applications. Among others, humid air, combine with dust, can cause
short circuit to electronic equipments, and too dry-air evaporates moisture from
material, in which over period of time damages the surface coating.

Humid air is considered as a binary gas mixture of dry air and water vapor.
The amount of water vapor in the air is known as humidity. Humidity can be
described as one of the three ways i.e. absolute humidity (AH), relative humidity
(RH) and specific humidity (SH). Absolute humidity is the weight of water vapor per
unit volume of air steam mixture. Relative humidity is the ratio of actual vapor
pressure to saturated vapor pressure of the same temperature. 100% RH means that
the air is totally saturated with water vapor and cannot hold any more. Specific
humidity is the mass ratio of water vapor to dry air. The study of humid air is known
as hygrometry or psychrometry and the device used to measure humidity is called a
psychrometer or hygrometer.

Two important processes in humidity are evaporation and condensation, which

are both related to latent heat. Latent heat is absorbed during evaporation and released



during condensation. As such, managing humidity is one of the key parameters in
designing heat exchanger. The consideration is ranging from the effect of
condensation in heat exchanger system to study of membrane-based enthalpy
exchanger (Jung, 2002; Niu and Zhang, 2001).

A heat exchanger is a device that is used to transfer thermal energy (enthalpy)
between two or more fluids, between a solid surface and a fluid, or between solid
particulates and a fluid, at different temperatures and in thermal contact, with usually
no external heat and work interactions. Typical applications of heat exchanger involve
heating or cooling of a fluid stream and evaporation or condensation of single or
multiple component fluid streams. Objective of heat exchanger may be to recover or
regject heat, or sterilize, pasteurize, fractionate, distill, concentrate, crystallize, or
control a process fluid.

An air-to-air heat exchanger is a heat exchanger in which the energy transfer
occurs between airstreams i.e. the heat exchanger is positioned between the supply
and exhaust air streams of an air-controlling unit. One of the applications of air-to-air
heat exchanger is in electronic enclosure. The introduction of electronics into the
outdoor enclosure unit has imposed major challenges on its design since the enclosure
unit must now provide an environment in which the system can survive. The main
constraints shall be managing the temperature and humidity as they are reported as
the contributing factors of electronics failure (BCC Research, 2011). The internal heat
generation due to the solar loading can be substantial depending upon the size of the
enclosure and its orientation towards the sun. While humidity is good for heat transfer
because water particles absorb heat faster than air, water particles mixed with dust

will trap heat and eventually causing overheating of the electronic components.



Besides, water particles mixed with dust is a potential cause of short circuit between
the electronic components.

In 1992, researchers of Mobil Research and Development Corporation
published the synthesis of a group of mesoporous materials known as M41S. This
class of material consists of MCM-48 that possesses a three-dimensional, cubic-
ordered tortuous pore structure, MCM-41, which has a one-dimensional, hexagonally-
ordered pore structure, and MCM-50, which is characterized by its unstable lamellar
structure. The acronym MCM stands for Mobil Composition of Matter.

The characteristic of hexagonally ordered MCM-41 pore structure material is
uniform nano-channels with large surface area and pore volume density (i.e. about
1000 m?/g and 1 cm®/g respectively) (Kresge, et al, 1992). These properties are of
considerable interest in the development of membrane materials for air exchangers as

shall be elaborated in the succeeding sections.

1.2 PROBLEM STATEMENT
Air exchanger transfers thermal energy of the indoor air to incoming fresh air, hence
allowing the moisture and pollutants to be vented out but retaining the heat. While the
ventilation cycles dilute or remove the indoor pollutants and moisture, the remaining
issue is how to retain the heated or cooled air. The present work describes a study on
one variation of air-to-air heat exchanger using a novel hydrophilic membrane, i.e.
synthesized from MCM-41 inorganic material, to transfer moisture and heat across
the membrane.

MCM-41 is a mesoporous molecular sieve material that has potential to be
applied to membrane based air-to-air heat exchangers. Current membrane air-to-air

heat exchanger is based on polymeric or other mesh structure materialsi.e. screen and



paper. In outdoor environment application, where the weather vary from sunny to
rainy, the choice of these materials allows water droplets to get into the inside of the
heat exchanger. Adding MCM-41 material to the support structure membrane is the
interesting aspect because of MCM-41 uniform nano channels structure, with
hydrophilic characteristic, permits heat and moisture to be transferred across the
membrane surface causing a decrease in temperature and humidity. The use of MCM-
41 material also intended to address the application of air-to-air membrane in outdoor

environment, in the aspect to prevent water droplet transportation.

1.3 RESEARCH OBJECTIVES
The objectives of this research project can be summarized as mentioned:

1. To synthesize and characterize the hexagonally ordered, mesoporous
MCM-41 membrane on a supporting matrix for use in air-to-air heat
exchanger.

2. To characterize the performance of the MCM-41 air-to-air heat exchanger
utilizing MCM-41 membrane in dry (3 % RH) and moist cooling
conditions (98 % RH).

3. To simulate the temperature profiles of MCM-41 air-to-air heat exchanger
using Computational Fluid Dynamics (CFD) simulation for both parallel
flow and cross flow configurations.

4. To develop MCM-41 hexagonal pore model for the mass transport
phenomena in membrane air-to-air heat exchanger using Lattice Boltzmann

Method (LBM).



1.4 RESEARCH METHODOLOGY
The present research could be briefly described through the following steps:

1. MCM-41 membrane preparation.

MCM-41 is prepared from a parent solution consisting cetyltrimethyl
ammonium bromide (CTAB), tetraethylorthosilicate (TEOS), hydrochloric
acid (HCl), distilled water (H20) and ethanol (CoHsOH). Polyester is
selected as the matrix of the membrane. MCM-41 material is coated on the
polyester substrate using the dip-coating method. The dip coating method

is chosen to obtain athin MCM-41 coating on the substrate.

2. Membrane analysis and characterization.

The structural formation of MCM-41 material is verified using X-ray
diffraction (Cu Ka radiation, Lab X6000, Shimadzu). Its surface
morphology micrograph is observed with Scanning Electron Microscope
(JED-2100, JEOL Co. Ltd.) while the surface roughness of the membrane
is observed using Atomic Force Microscope (AFM, JEOL Co. Ltd.). The
BET surface area, pore volume and pore size distribution are obtained from
the physisorption measurement conducted at 44 K (Autosorb-1, Quanta-

chrome).

3. Heat exchanger design.

The air-to-air heat exchanger design consists of two chambers separated by
a single layer MCM-41 membrane. Thermocouple and flow meter are
installed in both sides of chambers at several positions. A hot stream is
passed through the bottom chamber while a cool air flow is passed through

top chamber.

4. Heat exchanger evaluation and simulation.



Based on the performance of the MCM-41 membrane air-to-air heat
exchanger obtained, its efficacy is then elucidated based on Computational
Fluid Dynamics modeling using finite volume and also Lattice Boltzmann

methods.

1.5 SCOPE OF RESEARCH

This work investigates the efficacy of an air-to-air membrane heat exchanger using a
novel membrane material i.e. MCM-41 mesoporous silicates, to transfer both
moisture and heat across the parallel flow streams through the membrane matrix.
MCM-41 material structure consists of hexagonally ordered nano channels, uniformly
around 2 nm in pore size. The air-to-air MCM-41 membrane heat exchanger is
designed as a parallel flow type with narrow chamber’s height. Force convection
occurs at the length of the membrane that separated the chambers. The steady state
energy balance and model are investigated based on this flow arrangement. Three
dimensional model of heat exchanger with parallel flow is built for Computational

Fluid Dynamic analysis using finite volume and L attice Boltzmann methods.

1.6 THESISORGANIZATION

This thesis consists of five chapters. Chapter one provides an overview of the
research. The literature review is presented in Chapter Two; with the main aspects
include MCM-41 membrane, air-to-air heat exchangers, and Computational Fluid
Dynamics and Lattice Boltzmann Method of modeling. Chapter Three presents the
details of experimental procedures and characterization techniques which include the
MCM-41 material preparation and characterizations, and air exchanger design,

characterizations and simulation. The experimental and modeling results are



discussed in Chapter Four. Chapter Five concludes the thesis and presents several

recommendations for future research.





