COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ROBUST CONTROL DESIGN USING MODERN CONSTRAINED OPTIMIZATION TECHNIQUES

BY

MAHMUD IWAN SOLIHIN

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in Engineering

> Kulliyyah of Engineering International Islamic University Malaysia

> > AUGUST 2012

ABSTRACT

Robust control design is commonly a difficult task that requires complicated mathematical formulation and heuristic parameters tuning. In addition, if often results in a high order controller. Motivated by the need to reduce complexity, a robust state feedback control design using modern constrained optimization algorithms is proposed in this thesis. Combining the advantages of robust control theory and computational intelligence makes the task more straightforward and automatic. Basically, a robust control design requires a set of goals to be achieved such as good transient response, zero steady state error for a constant input and most importantly, robustness to parameter uncertainty. A single-objective constrained optimization technique is used in the proposed method to handle these requirements. Searching for a set of robust controller gains that maximizes the stability radius of the closed-loop system is the objective. The constraint of the optimization is the region for the closedloop poles that represents the desired time-domain control performance. In the beginning, the study is focused to find the suitable modern optimization tool(s) among the commonly used optimization tools such as Genetic Algorithm, Particle Swarm Optimization and Differential Evolution. The study further investigates the optimization features, such as constraint handling, stopping criterion and choice of optimization parameters. The result shows that Differential Evolution (with mutation factor=0.5 and crossover constant=0.9) outperforms Clerc's Particle Swarm Optimization and Genetic Algorithm in constrained optimization problems. At the end of the study, the proposed robust control design using Particle Swarm Optimization and Differential Evolution are applied to pendulum-like systems, such as gantry crane, flexible joint and inverted pendulum. A set of laboratory experiments are carried out to evaluate the performance of the designed controller. LQR-based controller and H_{∞} loop-shaping controller are also designed for comparison with the proposed controller. The advantage of the proposed controller design is the automated tuning process for the controller parameters as compared to the benchmark controllers. Another contribution of the thesis is the dynamics modeling of the pendulum-like systems where a generic model structure for the pendulum-like systems is developed. The generic model structure is obtained by linearization around equilibrium and simplification where the dynamics effect of vibration to actuator dynamics is neglected. As a result, the parameters of the pendulum-like systems model can be easily identified by decoupling of vibration model and actuator model in the experiment.

خلاصة البحث

تصميم السيطرة المتينة هو عمل صعب لأنه يطلب إفراط أعمل الرياضي و تقوم توليف الباراميتر تجربيا. يُدفع بالحاجة ليُخفِّف التعقيد يقترح في هذا البحث تصميم التحكم الغذية المرتدَّة المتينة بإستخدام الغورتم الحديثة لتحقيق الوضع الأمثل. الأجتماع بين فضائل النظرية السيطرة المتينة و الأستخبارات الإحتسابي يبسّط الأعمال. في جوهر الأمر تصميم السيطرة المتينة يحتاج إلى اداء مجموعة من الأهداف مثل الإستجابة الإنتقالية الصالحة و صفر غلظة حالة مستقرة لإدخال ثابت و أهمّ هدف هو المتانة إلى إرتياب البارامتر. ليحقق هذا المنطلب يُستعمل في الطريقة المقترحة التقنيات لتحقيق الوضع الأمثل المقيدة بمدف واحد. فلهذا تحقيق الوضع الأمثل هدف و قيد. هدفه البحث عن محموعة من نتائج جهاز التحكم المتينة التي تعلَّى ذراع إستقرار البرنامج المختوم الذاتي و قيّده ناحية الأعمدة المختوم الذاتي التي تصوّر تحكم الأداء المطلوب. في أول البحث يركّز الاهتمام في إجادة أصلح الأدة الحديثة من الأدوات الحديثات التي يعود إستعمالها لتحقيق الوضع الأمثل مثل الغارتم الوراثي وتحقيق الوضع الأمثل 'سرب الجزئ' و التطور التفاضلي. فضلا عن ذلك يحقق البحث معالم تحقيق الوضع الأمثل و هي تصرف القيد و نظام الإيقاف و إحتيار بارامتر تحقيق الوضع الأمثل. تعرض النتائج أن التطور التفاضلي (عامل التحويل= 0.5 و مقدار ثابت للتحويل = 0.9) هو أحسن من تحقيق الوضع الأمثل 'سرب الجزئ لكلرك و التطور التفاضلي في مشكلة تحقيق الوضع الأمثل المقيدة. في آخر البحث تصميم السيطرة المتينة المقترح بإستحدام تحقيق الوضع الأمثل 'سرب الجزئ' و التطور التفاضلي يُطبق في أنظمة تشبه الرقاص مثل مرفاع قنطرى متحرك و وصلة مرنة و رقاص منعكس. تقوم التجربات المعملية ليحلل أداء التحكم المتصم. فضيلة تصميم التحكم المقترح هو توليف البارامتر تلقائيا. و مساهمة هذا البحث الأخرى هي صيغة الأنظمة الديناميكية تشبه الرقاص أينما تطور تركيب الصيغة الشاملة لأنظمة تشبه الرقاص. تحصل تركيب الصيغة الشاملة بتخطيط التوازن و تبسيط أينما لهمل أثر ديناميكي عند ديناميات الأهتزاز إلى وحدة التشغيل . و النتيجة هي تحقق بارامتر الأنظمة القاص سهلا بطريق فك إقتران صيغة الأهتزاز و صيغة الوحدة التشغيل في التجربة.

APPROVAL PAGE

The thesis of Mahmud Iwan Solihin has been approved by the following:

Rini Akmeliawati Supervisor

Ari Legowo Co-Supervisor

Momoh-Jimoh E. Salami Internal Examiner

Nahrul Khair Alang Rashid Internal Examiner

> Mohd Nasir Taib External Examiner

Nasr El Din Ibrahim Ahmed Chairman

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Mahmud Iwan Solihin

Signature:....

Date:

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2012 by Mahmud Iwan Solihin. All rights reserved.

ROBUST CONTROL DESIGN USING MODERN CONSTRAINED OPTIMIZATION TECHNIQUES

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purpose.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by: Mahmud Iwan Solihin

Signature

Date

ACKNOWLEDGEMENTS

Praise be to Allah, the Lord of worlds, for His mercy and limitless help and guidance. May peace and blessings be upon Mohammed, the last of the messengers.

I would like to express my sincere gratitude to my supervisor, Dr. Rini Akmeliawati for her kind guidance and continuous encouragement to complete my thesis. I admire her knowledge and passion in research. I am grateful to my cosupervisor, Dr Ari Legowo for his assistance. I am also grateful to Prof. Momoh for his useful feedbacks and patience to review my thesis.

My lovely thanks are due to my wife Mersita for taking care of myself and our lovely son Qozy Abdulfattah Mahmud. My special gratitude is due to my parents for their endless encouragement, love and prayers.

My thanks are due to all my colleagues in IMSRU in Mechatronics Engineering IIUM, especially Bro Tijani for his useful discussions and Sis Winda for her assistance.

Finally, I am indebted to my first supervisor the late Prof Wahyudi (May Allah Forgive Him) who was important to the realization of my thesis for his inspiration and assistance in the beginning of my work.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval Page	iv
Declaration Page	v
Copyright Page	vi
Acknowledgements	vii
List of Tables	xii
List of Figures	XV
List of Abbreviations	xviii
List of Symbols	XX
-	

CHAPTE	R ONE: INTRODUCTION	1
1.1	Overview	1
1.2	Problem Statement and Its Significance	3
1.3	Research Philosophy	5
1.4	Research Objectives	6
1.5	Research Methodology	6
1.6	Research Scope	9
1.7	Thesis Outline	9

CHAPTE	R TWO: LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Brief Overview of Robust Control	11
	2.2.1 Uncertainty	13
	2.2.2 Frequency Domain Uncertainty Models	14
	2.2.3 Performance Specifications	16
2.3	H_{∞} Control Design	18
	2.3.1 Mixed Sensitivity H_{∞} Design Approach	20
	$2.3.2 H_{\infty}$ Loop Shaping Design Approach	21
	2.3.3 μ - Synthesis and D-K Iteration	23
	2.3.4 Linear Matrix Inequality (LMI) Approach to H_{∞} Control	24
2.4	Other Control Techniques	25
	2.4.1 Adaptive Control	25
	2.4.2 Sliding Mode Control	25
2.5	Modern Optimization and Applications in Robust Control	26
	2.5.1 Fundamentals of Optimization	27
	2.5.2 Modern Optimization Algorithms	29
	2.5.3 No Free Lunch Theorem	31
	2.5.4 Evolutionary Algorithm	32
	2.5.5 Genetic Algorithm (GA)	33
	2.5.6 Differential Evolution (DE)	34

	2.5.7 Particle Swarm Optimization (PSO)	36
	2.5.8 Constrained Optimization Using Modern Optimization Algorithm	ns
		39
	2.5.9 Applications of GA, DE and PSO in Robust Control Design	42
2.6	Control of Pendulum-like Systems	44
2.7	Summary	46

	OPTIMIZATION ALGORITHMS	4 ð
3.1	Introduction	48
3.2	Constrained Optimization Using GA, DE and PSO Approaches	49
	3.2.1 Stopping Criterion	49
	3.2.2 Constraint Handling	50
	3.2.3 Choice of Parameters for PSO, DE, and GA	51
	3.2.3.1 PSO Parameters	51
	3.2.3.2 DE Parameters	53
	3.2.3.3 GA Parameters	54
3.3	Example of Benchmark Functions	54
3.4	Optimization Results for Benchmark Functions	56
	3.4.1 Results for PSO-based Optimization	56
	3.4.2 Results for DE-based Optimization	58
	3.4.3 Results for GA-based Optimization	61
3.5	Summary	62
	•	

CHAPTER FOUR: MATHEMATICAL MODEL OF PENDULUM-LIKE

	SYSTEMS	63
4.1	Introduction	63
4.2	Systems Description	64
4.3	Dynamics Model of Pendulum	66
4.4	Dynamics Model of Pendulum-like Systems	67
	4.4.1 Gantry Crane	67
	4.4.2 Flexible Joint Manipulator	71
	4.4.3 Rotary Inverted Pendulum	74
4.5	Model Structure and Parameters Identification	76
	4.5.1 Parameter Identification of $G_1(s)$	77
	4.5.2 Physical Parameters of $G_2(s)$	78
4.6	State-space Representation and Parametric Uncertainty	79
4.7	Summary	80

CHAPTER FIVE: ROBUST CONTROLLER DESIGN USING PROPOSED

	TECHNIQUES	81
5.1	Introduction	81
5.2	State Feedback Control Design	81
5.3	Proposed Robust State Feedback Control Design	83
5.4	PSO-based Robust Controller Design	86
	5.4.1 Objective Function	87

	5.4.2 Constraint and Its Handling	88
	5.4.3 Stopping Criterion	90
5.5	DE-Based Robust Controller Design	93
5.6	Summary	94

CHAPTER SIX: APLICATION OF THE PROPOSED ROBUST CONTROLLER DESIGN FOR PENDULUM-LIKE

	SYSTEMS	96
6.1	Introduction	96
6.2	PSOFC Design for Anti-swing Gantry Crane Control	96
	6.2.1 Optimization Setup	98
	6.2.2 Optimization Result for PSOFC	100
	6.2.3 LQR-based Controller	101
	$6.2.4 H_{\infty}$ loop-shaping Controller	103
	6.2.5 Experimental Results	105
	6.2.6 Robustness Analysis	108
6.3	PSOFC for Control of Flexible Joint Manipulator	110
	6.3.1 Optimization Setup	112
	6.3.2 Optimization Result for PSOFC	112
	6.3.3 LQR-based Controller	113
	$6.3.4 H_{\infty}$ loop-shaping Controller	115
	6.3.5 Simulation Results	117
	6.3.6 Experimental Results	120
6.4	PSOFC for Rotary Inverted Pendulum Stabilization	123
	6.4.1 Optimization Result for PSOFC	125
	6.4.2 LQR-based Controller	127
	$6.4.3 H_{\infty}$ loop-shaping Controller	128
	6.4.4 Simulation Results	130
	6.4.5 Experimental Results	132
6.5	DEFC Design for Anti-swing Gantry Crane Control	134
	6.5.1 Optimization Results	135
	6.5.2 Experimental Results	139
6.6	DEFC for Control of Flexible Joint Manipulator	141
	6.6.1 Optimization and Simulation Results	141
	6.6.2 Experimental Results	145
6.7	DEFC for Rotary Inverted Pendulum Stabilization	147
	6.7.1 Optimization and Simulation Results	147
	6.7.2 Experimental Results	150
6.8	Effect of "Transient Margin" (ρ)	151
6.9	Summary	156

CHAPTE	R SEVEN: CONCLUSION AND RECOMMENDATION	157
7.1	Summary	157
7.2	Main Contributions	158
7.3	Recommendations	159

BIBLIOGRAPHY	160
PUBLICATIONS	169

APPENDIX I: Summary of the Reviewed Robust Control Design	171
APPENDIX II: Flowchart of Robust Controller Design Using PSO and DE	173
APPENDIX III: Simulation Results for FJM and RIP	175

LIST OF TABLES

Table No.		Page No.
2.1	Comparison of modern optimization algorithms	31
2.2	Velocity clamping mechanism	38
2.3	Bound handling mechanism	39
2.4	Control objectives of PLS	45
3.1	PSO-based optimization parameters	57
3.2	Comparison of the constraint handling methods for PSO-based	
	optimization	58
3.3	DE-based optimization parameters	59
3.4	Effect of F_m and C_r value for DE-based optimization (30 independent runs)	60
3.5	Effect of N_p for GA-based optimization (30 independent runs)	61
4.1	Physical parameters for PLS	64
4.2	Identified parameters for $G_1(s)$	78
4.3	Calculated parameters for $G_2(s)$	79
4.4	Varying parameters of pendulum-like systems	80
4.5	Variability of the parameters in the model	80
5.1	Constraint handling with DOCHM for robust control optimization	91
5.2	Robust controller design via constrained optimization	91
5.3	PSO-based algorithm for robust controller design	93
5.4	Robust controller design via constrained optimization using DE	95
5.5	Stopping criterion for DE-based optimization	95

5.6	DE-based algorithm for robust controller design	96
6.1	Nominal plant parameters and their variability (AGC)	100
6.2	PSO-based optimization parameters	101
6.3	Constraint parameters of PSOFC optimization for AGC	102
6.4	Statistics for 30 runs of PSOFC optimization (AGC)	102
6.5	PSOFC and LQRFC gains for AGC	104
6.6	Eigenvalues of AGC with different values of <i>R</i> in the LQRFC design	104
6.7	Positioning performance for AGC	108
6.8	Anti-swing performance for AGC	108
6.9	Nominal plant parameters and their variability (FJM)	114
6.10	Constraint parameters for optimization (FJM)	114
6.11	Statistics for PSOFC optimization (FJM)	115
6.12	PSOFC and LQRFC gains (FJM)	115
6.13	Performance comparison for FJM (simulation)	122
6.14	Conditions for plant uncertainty used in Table 6.15	124
6.15	Performance comparison for FJM (experiment)	125
6.16	Nominal plant parameters and their variability (RIP)	126
6.17	Constraint parameters of PSOFC optimization for RIP stabilization	127
6.18	Statistics for 30 runs of PSOFC optimization (RIP)	128
6.19	PSOFC and LQRFC gains for RIP stabilization	130
6.20	Performance comparison for RIP stabilization (simulation)	134
6.21	Parameters for DEFC optimization (AGC)	138
6.22	Statistics for DEFC optimization with different values of F_m & C_r (AGC)	138
6.23	DEFC and PSOFC gains for AGC	142
6.24	Parameters for DEFC optimization (FJM)	145

6.25	Optimization results for DEFC with different values of F_m and C_r (FJM)	145
6.26	DEFC and PSOFC gains (FJM)	146
6.27	Performance comparison for FJM control using PSOFC and DEFC (experi	ment) 149
6.28	Parameters for DEFC optimization (RIP)	150
6.29	Optimization results for DEFC with different values of F_m and C_r (RIP)	151
6.30	DEFC and PSOFC gains for RIP stabilizing controller	151
6.31	DEFC gains obtained with different value of ρ (AGC and FJM)	155
6.32	Eigenvalue of the nominal plant with DEFC (AGC and FJM)	156
I.1	Summary of the relevant robust controller design techniques using modern	
	optimizations	174

LIST OF FIGURES

Figure No.		Page No.
1.1	Flowchart of the research methodology	8
2.1	Additive uncertainty model	15
2.2	Multiplicative uncertainty model	15
2.3	Feedback system configuration	16
2.4	Desired loop gain	18
2.5	Block diagram of generalized plant model	19
2.6	H_{∞} loop shaping feedback control scheme	23
2.7	Algorithm classification	30
2.8	GA flowchart	34
3.1	Illustration of the feasible and infeasible region	51
4.1	Lab-scale gantry crane	65
4.2	Flexible joint manipulator	65
4.3	Rotary inverted pendulum	65
4.4	A downward pendulum	66
4.5	2-D gantry crane model	68
4.6	Simplified model of 2-D gantry crane	71
4.7	Top view diagram of rotary flexible joint module	72
4.8	Simplified model of rotary flexible joint	74
4.9	Schematic diagram of rotary inverted pendulum	75
4.10	Generalized model structure for PLS	77
4.11	Assumed speed response of actuator	78

5.1	State feedback controller with a feed-forward integral gain	83
5.2	Wedge region and eigenvalue distance in complex plane	89
5.3	Flowchart of PSO with specific stopping criterion	94
6.1	Simulated response of AGC (nominal plant) with different LQRFCs	105
6.2	Singular value plot of the open-loop (G), shaped plant (G_s) and shaped plan	nt
	with controller (KG_s) for AGC	107
6.3	Response to 0.7m position reference; $l=0.6m$, $m_1=1$ kg (AGC-experiment)	109
6.4	Structured singular value (μ) plots (upper bound) for AGC	111
6.5	Simulated response of FJM (nominal plant) with different LQRFCs	116
6.6	Singular value plot of the open-loop plant (G), shaped plant (G_s), and shape	ed
	plant with controller (KG_s) for FJM	119
6.7	20 random step responses for FJM control using PSOFC	120
6.8	20 random step responses for FJM control using LQRFC	120
6.9	20 random step responses for FJM control using HINF	121
6.10	Response to 90° step input (FJM – experiment, condition-1 in Table 6.14)	123
6.11	Response to 90° step input (FJM - experiment, condition-2 in Table 6.14)	124
6.12	Control scheme of self-erecting inverted pendulum	126
6.13	Distribution of closed-loop poles using PSOFC for 30 runs (RIP)	129
6.14	Simulated response of RIP (nominal plant) with different LQRFCs	130
6.15	Singular value plot of the open-loop plant, shaped plant and shaped plant wa	ith
	controller (RIP stabilization)	131
6.16	20 random step responses for RIP stabilization using PSOFC	133
6.17	Singular value plot for 20 random responses in Figure 6.16	133
6.18	Self-erecting RIP response	136
6.19	Distribution of eigenvalue for DEFC with $F_m = 0.5$ and $C_r = 0.9$ (AGC)	140

6.20	Distribution of eigenvalue for DEFC with $F_m = 0.9$ and $C_r = 0.9$ (AGC)	140
6.21	Distribution of eigenvalue for DEFC with $F_m = 0.9$ and $C_r = 0.5$ (AGC)	141
6.22	Distribution of eigenvalue for PSOFC for AGC control in section 6.2.2	141
6.23	Response to 0.1m command; $l=0.2m$, $m_1=1$ kg for AGC	143
6.24	Response to 0.7m command; $l=0.6m$, $m_1=1$ kg for AGC	144
6.25	20 random step responses for FJM control using DEFC	147
6.26	Singular value plot for 20 random responses in Figure 6.25	148
6.27	Step response of FJM control using DEFC and PSOFC (experiment)	149
6.28	Plot of 20 random step responses for RIP stabilization using DEFC	
	(simulation)	152
6.29	Singular value plot of 20 random step responses of Figure 6.28	153
6.30	Self-erecting RIP response using DEFC response (experiment)	154
6.31	AGC response using DEFC obtained with different value of ρ	157
6.32	FJM response using DEFC obtained with different value of ρ	158
I.1	PSO-based optimization for robust controller design	176
II.2	DE-based optimization for robust controller design	177
III.1	Singular value plot for the system with PSOFC (FJM)	178
III.2	Singular value plot for the system with LQRFC (FJM)	178
III.3	Singular value plot for the system with HINF controller (FJM)	179
III.4	20 random step responses for RIP stabilization using LQRFC	179
III.5	20 random step responses for RIP stabilization using HINF	180
III.6	Singular value plot for 20 random responses using LQRFC (RIP)	180
III.7	Singular value plot for 20 random responses using HINF (RIP)	167

LIST OF ABBREVIATIONS

AGC	Anti-swing gantry crane
ALPSO	Augmented Lagrangian PSO
CI	Computational Intelligence
DC	Direct Current
DE	Differential Evolution
DEFC	DE-based State Feedback Controller
DOCHM	Dynamic Objective Constraint Handling Method
EA	Evolutionary Algorithm
FA	Firefly Algorithm
FE	Number of Function Evaluations
FJM	Flexible Joint Manipulator
GA	Genetic Algorithm
HS	Harmony Search
LMI	Linear Matrix Inequality
LQG	Linear Quadratic Gaussian
LQR	Linear Quadratic Regulator
LQRFC	LQR-based Feedback Controller
MIMO	Multi-input Multi-Output
PID	Proportional-Integral-Derivatives
PLS	Pendulum-like Systems
РО	Percentage of Overshoot
PSO	Particle Swarm Optimization

- PSOFC PSO-based State Feedback Controller
- RIP Rotary Inverted Pendulum
- SA Simulated Annealing
- SISO Single-input and Single-output

LIST OF SYMBOLS

- Ê row scale matrix of perturbation structure for closed-loop system critical value of F_m for DE F_{crit} force input for gantry crane F_i mutation factor for DE F_m $G_d(s)$ disturbance transfer function $G_p(s)$ peturbed plant transfer function $G_{s}(s)$ shaped plant transfer function Ĥ column scale matrix of perturbation structure for closed-loop system moment of inertia of the arm for flexible joint Jarm equivalent moment of inertia at the motor output for flexible joint Jeg K_e electric constant for DC motor K_{stiff} stiffness constant for flexible joint
- K_t torque constant for DC motor

crossover constant for DE

 C_r

- L_a inductance of armature for DC motor
- N_P number of population (population size)
- N_{bit} number of bits for GA
- P_c crossover rate for GA
- P_m mutation rate for GA
- R_a resistance of armature for DC motor
- T_m motor output torque

V_{max} maximum velocity of p	article for PSO
---------------------------------	-----------------

- $W_1(s)$ weighting function for shaped plant
- $W_2(s)$ weighting function for shaped plant
- a_0 numerator constant for G_1
- a_2 numerator cosntant for G_2
- b_0 denominator constant for G_2
- b_1 denominator constant for G_1
- b_2 denominator constant for G_2
- b_{eq} equivalent friction coefficient
- c_1 constant for "cognition" part of PSO
- *c*₂ constant for "social" part of PSO
- f_1 benchmark function 1
- f_2 benchmark function 2
- f_3 benchmark function 3
- i_a armature current of DC motor
- j_{max} maximum number of iteration
- l_b lower bound of solutions
- m_1 payload mass for gantry crane
- m_2 cart mass for gantry crane
- r_a length of the arm for flexible joint
- r_c complex stability radius
- r_p combined radius of gear and pulley for gantry crane
- u_b upper bound of solutions
- σ_d standard deviation
- *b* friction coefficient

- \mathbb{C} set of complex numbers
- \mathcal{F} fractional transformation
- *h* horizontal position of trolley/cart of gantry crane
- \mathcal{L} Lagrangian equation
- \mathbb{R} set of real numbers
- *D* dimension of optimization problem
- *E* row scale matrix of perturbation structure
- *F* auxiliary function
- G(s) nominal plant transfer function
- *H* column scale matrix of perturbation structure
- *J* performance index function
- *K* controller gain vector
- *L* length of pendulum
- *Q* state weighting matrix of LQR
- *R* input weighting matrix of LQR
- S(s) sensitivity function
- T(s) complimentary sensitivity function
- *X* solution vector in optimization
- *b* friction coefficient
- *f* fitness/objective function
- g gravitational acceleration
- *j* index for iterations
- *l* length of payload cable for gantry crane
- *m* mass of pendulum
- *q* generalized notation for linear position or angular position

- *v* voltage input for motor
- *w* inertia weight of PSO
- *x* state variable vector for state space representation
- \mathcal{T} kinetic energy
- \mathcal{V} potential energy
- **F** feasible region in optimization
- **S** search space in optimization
- Δ perturbation model to linear system
- α angular position of rotating arm (inverted pendulum and fexible joint)
- γ tip angular position of flexible joint
- ε standard deviation threshold for stopping criterion in optimization
- ζ damping ratio
- η number of iteration for which stopping criterion applies in optimization
- θ swing angle (deflection angle)
- λ eigenvalue
- μ structured singular value
- ρ "transient margin"
- σ singular value
- φ angle in closed-loop poles region where $\varphi = \cos^{-1}(\zeta)$
- ψ wedge region for closed-loop poles
- ϵ stability margin
- ϑ robust performance level

CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

In classical control design techniques, difficulties arise when the plant dynamics are complex and poorly modeled, or when the performance specifications are particularly stringent (Green and Limebeer, 1995). Even if an optimal solution is eventually found, the process is likely to be time-consuming.

Hence, model error has been an important issue in linear control theory. Robust control theory has been used to deal with this particular issue besides robust stability and robust performance issues. A successfully designed controller should be also able to maintain stability and performance level in spite of uncertainties in system dynamics and/or disturbances to a certain degree.

Various robust controller design techniques have been proposed such as H_{∞} , μ synthesis, etc. The robustness issue was just prominently considered in early 1980s with the pioneering work on robust control theory (Zames, 1981; Zames and Francis, 1983). This robust control is now popularly known as H_{∞} robust control. This approach to date is commonly used with techniques such as H_{∞} loop shaping (McFarlane and Glover, 1990) and μ -synthesis/analysis. However, the theory behind the approach is not trivial. It is not straightforward to formulate a practical design problem into H_{∞} or μ design framework. In addition, standard robust control design can result in high order and complicated controller structure, which is difficult to implement in practice (Lin et al., 2009).