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ABSTRACT

Robust control design is commonly a difficult task that requires complicated
mathematical formulation and heuristic parameters tuning. In addition, if often results
in a high order controller. Motivated by the need to reduce complexity, a robust state
feedback control design using modern constrained optimization algorithms is
proposed in this thesis. Combining the advantages of robust control theory and
computational intelligence makes the task more straightforward and automatic.
Basically, a robust control design requires a set of goals to be achieved such as good
transient response, zero steady state error for a constant input and most importantly,
robustness to parameter uncertainty. A single-objective constrained optimization
technique is used in the proposed method to handle these requirements. Searching for
a set of robust controller gains that maximizes the stability radius of the closed-loop
system is the objective. The constraint of the optimization is the region for the closed-
loop poles that represents the desired time-domain control performance. In the
beginning, the study is focused to find the suitable modern optimization tool(s) among
the commonly used optimization tools such as Genetic Algorithm, Particle Swarm
Optimization and Differential Evolution. The study further investigates the
optimization features, such as constraint handling, stopping criterion and choice of
optimization parameters. The result shows that Differential Evolution (with mutation
factor=0.5 and crossover constant=0.9) outperforms Clerc’s Particle Swarm
Optimization and Genetic Algorithm in constrained optimization problems. At the end
of the study, the proposed robust control design using Particle Swarm Optimization
and Differential Evolution are applied to pendulum-like systems, such as gantry crane,
flexible joint and inverted pendulum. A set of laboratory experiments are carried out
to evaluate the performance of the designed controller. LQR-based controller and
H, loop-shaping controller are also designed for comparison with the proposed
controller. The advantage of the proposed controller design is the automated tuning
process for the controller parameters as compared to the benchmark controllers.
Another contribution of the thesis is the dynamics modeling of the pendulum-like
systems where a generic model structure for the pendulum-like systems is developed.
The generic model structure is obtained by linearization around equilibrium and
simplification where the dynamics effect of vibration to actuator dynamics is
neglected. As a result, the parameters of the pendulum-like systems model can be
easily identified by decoupling of vibration model and actuator model in the
experiment.
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Number of Function Evaluations
Flexible Joint Manipulator
Genetic Algorithm

Harmony Search

Linear Matrix Inequality

Linear Quadratic Gaussian
Linear Quadratic Regulator
LQR-based Feedback Controller
Multi-input Multi-Output
Proportional-Integral-Derivatives
Pendulum-like Systems
Percentage of Overshoot

Particle Swarm Optimization
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PSOFC  PSO-based State Feedback Controller
RIP Rotary Inverted Pendulum
SA Simulated Annealing

SISO Single-input and Single-output
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LIST OF SYMBOLS

crossover constant for DE

row scale matrix of perturbation structure for closed-loop system
critical value of F,, for DE

force input for gantry crane

mutation factor for DE

disturbance transfer function

peturbed plant transfer function

shaped plant transfer function

column scale matrix of perturbation structure for closed-loop system
moment of inertia of the arm for flexible joint

equivalent moment of inertia at the motor output for flexible joint
electric constant for DC motor

stiffness constant for flexible joint

torque constant for DC motor

inductance of armature for DC motor

number of population (population size)

number of bits for GA

crossover rate for GA

mutation rate for GA

resistance of armature for DC motor

motor output torque
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Vinax ~maximum velocity of particle for PSO
W, (s) weighting function for shaped plant

W, (s) weighting function for shaped plant

ag numerator constant for G
a, numerator cosntant for G,
by denominator constant for G,
b, denominator constant for G4
b, denominator constant for G,

beq  equivalent friction coefficient

C1 constant for ”cognition’ part of PSO
Cy constant for ’social” part of PSO

fi benchmark function 1

fa benchmark function 2

fz benchmark function 3

ig armature current of DC motor

Jmax ~Maximum number of iteration
Iy lower bound of solutions
my payload mass for gantry crane

m,  cart mass for gantry crane

Ty length of the arm for flexible joint

T, complex stability radius

Ty combined radius of gear and pulley for gantry crane
Up upper bound of solutions

04 standard deviation

b friction coefficient
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5(s)
T(s)

set of complex numbers

fractional transformation

horizontal position of trolley/cart of gantry crane
Lagrangian equation

set of real numbers

dimension of optimization problem

row scale matrix of perturbation structure
auxiliary function

nominal plant transfer function

column scale matrix of perturbation structure
performance index function

controller gain vector

length of pendulum

state weighting matrix of LQR

input weighting matrix of LQR
sensitivity function

complimentary sensitivity function
solution vector in optimization

friction coefficient

fitness/objective function

gravitational acceleration

index for iterations

length of payload cable for gantry crane
mass of pendulum

generalized notation for linear position or angular position
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voltage input for motor

inertia weight of PSO

state variable vector for state space representation

kinetic energy

potential energy

feasible region in optimization

search space in optimization

perturbation model to linear system

angular position of rotating arm (inverted pendulum and fexible joint)
tip angular position of flexible joint

standard deviation threshold for stopping criterion in optimization
damping ratio

number of iteration for which stopping criterion applies in optimization
swing angle (deflection angle)

eigenvalue

structured singular value

“transient margin”

singular value

angle in closed-loop poles region where ¢ = cos™1({)

wedge region for closed-loop poles

stability margin

robust performance level
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

In classical control design techniques, difficulties arise when the plant dynamics are
complex and poorly modeled, or when the performance specifications are particularly
stringent (Green and Limebeer, 1995). Even if an optimal solution is eventually found,
the process is likely to be time-consuming.

Hence, model error has been an important issue in linear control theory. Robust
control theory has been used to deal with this particular issue besides robust stability
and robust performance issues. A successfully designed controller should be also able
to maintain stability and performance level in spite of uncertainties in system
dynamics and/or disturbances to a certain degree.

Various robust controller design techniques have been proposed such as Hy,, -
synthesis, etc. The robustness issue was just prominently considered in early 1980s
with the pioneering work on robust control theory (Zames, 1981; Zames and Francis,
1983). This robust control is now popularly known as H, robust control. This
approach to date is commonly used with techniques such as H, loop shaping
(McFarlane and Glover, 1990) and u-synthesis/analysis. However, the theory behind
the approach is not trivial. It is not straightforward to formulate a practical design
problem into H, or u design framework. In addition, standard robust control design
can result in high order and complicated controller structure, which is difficult to

implement in practice (Lin et al., 2009).





