COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

MODELLING AND OPTIMIZATION OF NANO POWDER MIXED MICRO WEDM PROCESS USING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHM

BY

SAMS JARIN

A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

FEBRUARY 2018

ABSTRACT

Micro Wire Electro Discharge Machining (μ -WEDM) is a non-conventional machining process which is used for machining complex structural design and achieving net-shape machining. This machining method is mainly used for conductive materials. However, semiconductor materials like Silicon (Si) can not be effectively machined due to its high resistivity. For this requires some advanced technique to enhance the machining process and efficiency. One technique could be the conductive coating on the workpiece material and use of nano powder mixed dielectric fluid. So far not much research has been conducted to machine Si like materials by using nano powder mixed dielectric fluid. Moreover, there is no intelligent system available that can help the users to select optimal parameters to achieve specific machining goal. One aim at this study is to carry out nano powder assisted micro WEDM for temporarily coated Silicon samples to achieve improved surface finish with more machining efficiency. For this purpose, three different type of nano powders like Aluminium(Al), Silicon (Si) and Graphite (C) were used for machining highly doped Silicon workpiece material to observe the effect of nano powders on the machining process. Before machining the workpiece material (Si) was coated temporarily by a highly conductive material like gold (Au) metal to make the workpiece more conductive during the machining process. The research showed that by using nano powder mixed µ-WEDM process, Material Removal Rate (MRR) was improved by almost ~48% than traditional machining process. However, Spark Gap (SG) was also increased by ~28% for nano powder assisted WEDM as compared to dielectric EDM oil used machining. Further, Al powder mixed WEDM process have resulted higher MRR but less SG than any other powder. It was found that at specific condition (at 80V,13 pF, 0.2g/L powder concentration, 320 nm gold thickness) the Al nano powder mixed dielectric used machining can produce the lowest surface roughness as 26 nm. It was also observed that at lower powder concentration and specific parametric conditions C, Al can easily produce nano range surface roughness where Si powder produces comparatively worse surface roughness than other powders. Therefore, it can be concluded that average surface roughness (ASR) can be improved by maximum ~65% for nano powder assisted machining as compared to conventional WEDM. Another main purpose of this research is to establish an intelligent system that can suggest suitable parameters for nano powder assisted µ-WEDM operation (for Si machining) to achieve certain machining goal. The experimental datasets of this study are used carefully to create a successful predictive model using artificial neural network (ANN). On the basis of the established predictive model, some experiments have been further conducted to assess the validity of the model. Then ANN model has been further optimized by using genetic algorithm (GA) to get required input for optimum output results. Finally, the accuracy of the modelling has been calculated by measuring the error percentage which is less than 5-10% for the model. This infers the modelling efficiency up to 90%.

خلاصة البحث

التصنيع الآلي بالتفريغ الكهربائي وباستخدام السلك الميكروي (µ -WEDM) هو عملية غير تقليدية للتصنيع الآلي والتي تستخدم تصنيعاً ذو تصميم هيكلي معقد لتحقيق تصنيع آلي صافي الشكل. تستخدم هذه الطريقة بشكل أساسى للتصنيع الآلي في المواد الناقلة ومع ذلك فإن المواد النصف ناقلة كالسيليكون لا يمكن تصنيعها آلياً بشكل فعال بسبب مقاومتها العالية. لذلك فهي تحتاج بعض التقنيات المتطورة لتحسين عملية التصنيع الآلي و تحسين الفعالية. إحدى هذه التقنيات هي تأمين غطاء ناقل لمادة القطع المشغولة واستخدام سائل عازل ممزوج مع المسحوق النانوي. وحتى الآن لم يتم إجراء الكثير من البحوث لتصنيع المواد المشابهة للسيليكون (Si) باستخدام السائل العازل الممزوج مع المسحوق النانوي ، وفوق ذلك ، لا يتوفر نظام ذُكي يستطيع مساعدة المستخدمين لتحديد العوامل المتغيرة المثالية لتحقيق الهدف المخصص للتصنيع. أحد الأهداف الأساسية لهذه الدراسة هو إجراء التصنيع الآلى بالتفريغ الكهربائي وباستخدام السلك الميكروي وبمساعدة المسحوق النانوي على عينات السيليكون المطلى بشكل مؤقت لتحسين صقل الأسطح مع زيادة الفعالية ولتحقيق هذا الغرض ، تم استخدام ثلاثة أنواع مختلفة من المساحيق النانوية كالألمنيوم (AI) ، والسيليكون (Si) والجرافيت (C) لتصنيع مواد القطع المشغولة و المعالجة بشكل كبير بمادة السيليكون ولمراقبة تأثير تلك المساحيق النانوية على عملية التصنيع. تم تغليف مادة القطع (السيليكون) قبل التصنيع مؤقتاً بمادة عالية الناقلية كمعدن الذهب (Au) لجعل القطع أكثر ناقلية خلال عملية التصنيع. يعرض هذا البحث ذلك باستخدام التصنيع الآلي بالتفريغ الكهر بائي وباستخدام السلك الميكروي وبمزج المسحوق النانوي. تم تحسين معدل إز الة المادة MRR بمقدار تقريبي 48% مقارنة بطرق التصنيع التقليدية، ومع ذلك فإن SG) Spark Gap) زادت بحوالي 28٪ بوجود المسحوق النانوي بالمقارنة مع وجود الزيت العازل. بالإضافة إلى ذلك، عملية مزج مسحوق الألمنيوم في التصنيع الآلي بالتفريغ الكهربائي وباستخدام السلك أدت إلى أزيادة ال MRR ونقصان ال SG بالمقارنة مع المساحيق الأخرى. كما تم اثبات أن العازل الممزوج بمسحوق الألمنيوم النانوي في عملية التصنيع وفي شروط خاصة (BF ،80V، تركيز المسحوق 0.2g/L ، سماكة الذهب nm (320 nm) يؤدي إلى انقاص خشونة السطح ل nm 26 nm . كما وجد أن المسحوق ذو التركيز الأقل وذو الشروط الخاصة لقيم العوامل المتغيرة كالجر افيت و الألمنيوم يمكن أن ينتج بسهولة معدل خشونة سطح بمجال نانوي. في حين أن مسحوق الـ Si ينتج معدل خشونة سطح أسوأ مقارنة بالمساحيق الأخرى. وفي الخلاصة يمكن إستنتاج أن متوسط خشونة السطح يمكن تحسينها بحد أقصى يصل إلى 65% تقريباً باستخدام المسحوق النانوي المساعد في عملية التصنيع مقارنة بالطرق التقليدية. والهدف الرئيسي الآخر من هذا البحث هو انشاء نظام ذكي يستطيع اقتراح عوامل متغيرة لعملية µ-WEDM المدعومة بالمسحوق النانوي (التصنيع الألي للسيليكون) من أجل تحقيق الهدف المحدد للتصنيع. تم استخدام بيانات التجارب في هذه الدر اسة بدقة لإيجاد نموذج تنبؤي ناجح باستخدام الشبكة العصبية الاصطناعية (ANN) . بالاعتماد على هذا النموذج التنبؤي المنشأ ، أجريت بعض التجارب الإضافية لتقييم صلاحية هذا النموذج. بعد ذلك تمّت أمثلة نموذج الشبكة العصبية الإصطناعية بإستخدام الخوارزمية الجينية (GA) لتأمين المدخلات المطلوبة للحصول على نتائج مخرجات مثالية. وفي النهاية، تم حساب دقة النمذجة عن طريق قياس نسبة الخطأ والتي كانت أقل من (5-10)% للنموذج. و هذا يدل على أن كفاءة النموذج يمكن أن تصل الى 90%.

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechatronics Engineering).

Tanveer Saleh Supervisor

Asan Gani Abdul Mutahlif Co-Supervisor

Mohammad Yeakub Ali Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Mechatronics Engineering).

Amir Akramin Bin Shafie Internal Examiner

Mohd Hamdi Bin Abd Shukor External Examiner

This thesis was submitted to the Department of Mechatronics Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering).

> Syamsul Bahrin Abdul Hamid Head, Department of Mechatronics Engineering

This thesis was submitted to the Kulliyyah of Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Mechatronics Engineering).

Erry Yulian T. Adesta Dean, Kulliyyah of Engineering

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently Submitted as a whole for any other degrees at IIUM or other institutions.

Sams Jarin

Signature.....

Date.....

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

MODELLING AND OPTIMIZATION OF NANO POWDER MIXED MICRO WEDM PROCESS USING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHM

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2018 and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Sams Jarin

Signature

Date

ACKNOWLEDGEMENTS

First of all, Alhumdulillah and all praise to "ALLAH" S.W.T, the Most Beneficial and Most Merciful, to give me the ability and knowledge to accomplish my research work successfully. Then, I would like to thank my supervisor Dr.Tanveer Saleh for his dedicated guidance, suggestion, motivation and valuable support which has directed me the way to develop my research skills and knowledge as well. I also like to thank my co-supervisors Dr. Asan Gani Abdul Muthalif and Dr. Mohammad Yeakub Ali for their endless encouragement and support to my research work. I would like to extend my gratitude to others as well, who have helped me in using research instruments for my experiments as the technicians of the Engineering Laboratories in IIUM.

I am also grateful to Mechatronics Engineering Department, Kulliyyah of engineering for giving me the research facilities and Ministry of Higher Education of Malaysia for their financial support to continue my research work.

I would like to give special thanks to my beloved husband Md. Masud Rana for his intensive guidance and support for my study. Finally, I would like to mention my parents who always keep me in their prayers to almighty "ALLAH" for every single bit of my success.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval page	iv
Declaration page	v
Copyright page	vi
Acknowledgements	vii
List of tables	xi
List of figures	. xiii
List of symbols	. xix
List of abbreviations	. xxi
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1
1.2 Problem statement and its significance	3
1.3 Research objectives	4
1.4 Research methodology	4
1.5 Research scope	9
1.6 Thesis organization	9
CHAPTER TWO: LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Electric discharge machining of Silicon	12
2.3 Application of Conductive coating in EDM	19
2.4 Powder mixed electric discharge machining	22
2.5 Application of ANN and GA for EDM/WEDM	30
2.4 Summary.	35
CHAPTER THREE: RESEARCH METHODOLOGY	36
3.1 Introduction	36
3.2 Experimentation and characterization	36
3.2.1 Machining process parameters and their levels	37
3.2.2 Preparation of Si wafer	39
3.2.3 Gold coating process of Si wafer	
3.2.4 Experimental set-up for WEDM process	
3.2.5 Post machining cleaning process of the sample	
3.2.5.1 Wet etching process of machined Si for EDXing	48
3.2.6 Characterization steps	50
3.2.6 1 Field emission scanning electron microscony analysis	50
3 2 6 2 Alicona infinite focus machine	
3 2 6 3 Olympus infinite focus machine	
3.2.6.4 Energy dispersive x-ray Spectroscopy analysis	52
3.2.0.4 Energy dispersive x-ray spectroscopy analysis	57
3.3 Model development and optimization techniques	55
3.3.1 Artificial Neural Network (ANN) model development	50

3.3.2 Model parameters selection process	58
3.3.3 Neural architecture	58
3.3.4 Collection of Data (machining parameters) for modelling	59
3.3.5 Model performance evaluation and validation process	60
3.3.6 Genetic Algorithm for optimizing the ANN model	61
3.4 Summary	62
CHAPTER FOUR: RESULTS AND DISCUSSIONS	63
4.1 Introduction	63
4.2 Experimental investigation and characterization	64
4.2.1 Influence of Nano powders on µ-WEDM of gold coated Si	64
4.2.1.1 Study of Material removal rate	64
4.2.1.2 Study of spark gap	67
4.2.1.3 Study of average surface roughness	69
4.2.1.4 Study of unevenness factor and machining stability	74
4.2.2 Influence of discharge energies on μ -WEDM of gold coated Si	77
4.2.2.1 Study of Material removal rate	78
4.2.2.2 Study of Spark gap	82
4.2.2.3 Study of Average surface roughness	86
4.2.2.4 Study of unevenness factor and machining stability	90
4.3 Summary	93
	1 04
CHAPTER FIVE: EXPERIMENTAL MODELING AND OPTIMIZATION 5.1 Introduction	1 94
5.2 Development and Evaluation of the ANN GA model	94
5.2 Development and Evaluation of the ANN-OA model	93
5.2.1 Farameters settings	90
5.2.2 Neural alchitecture of MLF	97
5.2.2.2 Number of hidden layers and nodes	97
5.2.2.2 Number of magneters selection for the model	90
5.2.2.4 Levenberg Marguardt Training Algorithm	99
5.2.3 Derformance Evaluation techniques of the ANN modeling	103
5.2.5 1 Chormance Evaluation techniques of the ANN modeling	103
5.2.4 ANN modeling for SG response	10/
5.2.4.2 ANN modeling validation process for SG response	109
5.2.4.3 ANN modeling for MRR response	112
5.2.4.4 ANN modeling validation process for MRR response	114
5.2.4.5 ANN-GA modeling for ASR response	117
5.2.4.6 ANN modeling validation process for ASR response	120
5 2 5 Ontimization by Genetic Algorithm	122
5.2.6 Structure of Genetic Algorithm	122
5.2.6 Structure of Generic Theorem	124
5.2.6.2 Parameter selection for GA	125
5.2.7 Implementation of GA Optimization for NPM u-WEDM	127
5.2.7.1 GA optimization for the SG	127
5.2.7.2 GA optimization for the MRR	. 129
5.2.7.3 GA optimization for the ASR	130
5.3 Summary	131
•	

CHAPTER SIX: CONCLUSION AND RECOMMENDATION	
6.1 Conclusion	133
6.2 Recommendation	
REFERENCES	
PUBLICATIONS	
APPENDIX A: CNC G-CODING AND MATLAB CODING	146
APPENDIX B: TABLES OF MACHINING RESULTS	157
APPENDIX C: FIGURES	163
APPENDIX D: OTHERS	170

LIST OF TABLES

3.1	Definition of Input and Output parameters	37
3.2	Properties of the Si Workpiece materials.	38
3.3	Process Parameters and their levels	39
3.4	Properties of Aluminum, Silicon and Graphite Nano Powder.	40
5.1	The used Different number of hidden nodes for the first layer of the model.	99
5.2	The different ratio of the used dataset to test for a particular model.	100
5.3	The effect of different number of hidden neurons on the network model.	106
5.4	Validation testing of the ANN model for SG output of C nano powder.	109
5.5	Validation testing of the ANN model for MRR output of Al nano powder.	115
5.6	Validation testing of the ANN model for ASR output of Al nano powder.	120
5.7	Optimum process parameters (De-normalized values) for SG.	129
5.8	Optimum process parameters (De-normalized values) for MRR.	130
5.9	Optimum process parameters (De-normalized values) for ASR.	131
B.1	μ -WEDM Results For 0.2g C suspended dielectric used machining	157
B.2	µ-WEDM Results For 0.2g Al suspended dielectric used machining	157
B.3	µ-WEDM Results For 0.2g Si suspended dielectric used machining	158
B.4	µ-WEDM Results For 1.0g C suspended dielectric used machining	158
B.5	µ-WEDM Results For 1.0g Al suspended dielectric used machining	159
B.6	µ-WEDM Results For 1.0g Si suspended dielectric used machining	159
B.7	µ-WEDM Results For 2g C suspended dielectric used machining	159

B.8	µ-WEDM Results For 2g Al suspended dielectric used machining	160
B.9	µ-WEDM Results For 2g Si suspended dielectric used machining	160
B.10	µ-WEDM Results For pure dielectric oil used machining	160
B.11	Datasets of normalized input and output values used in training for the modeling.	161

LIST OF FIGURES

Figure 1	<u>No.</u>	<u>Page No.</u>
1.1	Indicates concept about the micro-WEDM of gold coated Si in nano powder mixed dielectric oil.	5
1.2	The general structure of the ANN-GA model for the system	7
1.3	The flow chart of the complete research working procedures to fulfill the research objectives	8
2.1	Shows the experimental set-up of the p-Type Silicon wafer.	13
2.2	Represents rotor elastic force motor	14
2.3	Shows the process flow of axisymmetric hemispherical features fabrication.	16
2.4	Illustrates the EDM process of SiC using foil blade electrode.	17
2.5	(a) Demonstrates the EDM experimental set-up to texture multi- crystalline Silicon. (b) shows the comparison of textured and non- textured samples.	18
2.6	Shows the experimental set-up of die-sinking micro electro discharge machining of p-type silicon.	18
2.7	Represents the silicon electrodes with dimension of 250 μ m by 250 μ m and 5 mm height.	19
2.8	Shows schematic diagram of sliced Al deposited pure Germanium at right side and its SEM image at left side.	20
2.9	Shows SEM image of μ -actuator (left) and of μ -digital reflector produced at machining condition of 95 V and 1nF.	21
2.10	The MRR mechanism for the working fluid (a) without powder and (b) with powders during the normal discharge.	. 27
2.11	Schematic representation of mechanism of machining in NPMEDM	28
2.12	Shows the effect of pulse current along with nano powder concentration on MRR and TWR	29

3.1	The SEM images of three different nano powders.	40
3.2	Shows polished doped Si wafer	41
3.3	The images of polished doped and gold coated doped Si wafer	42
3.4	JFC Auto Fine Coater	42
3.5	DT -110 hybrid µ-EDM machine.	44
3.6	(a) & (b) show the actual μ -WEDM setup and the concept of experimental mechanism, respectively.	44
3.7	(a)The μ -WEDM set up for without powder experiments and (b) the HR-202 digital scaling machine.	46
3.8	Branson 3510 Ultrasonic cleaner.	47
3.9	Shows the surface of experimented Si wafer by WEDM after gold coating and etching.	48
3.10	The EDX analysis of Al powder mixed dielectric oil used machined slots at 85 V and 0.1nF for 10 min Au coated Si.	49
3.11	Shows the FESEM Machine for observing the surface topography of the Au coated Si wafers after machining (JEOL JSM-5600).	51
3.12	The Alicona infinite focus machine for 3D surface measurement.	52
3.13	(a) The measurement of ASR by Alicona and (b) the overall 3D topography of machined slot.	52
3.14	Optical Olympus Infinite focus machine.	53
3.15	(a) The schematic and (b) real figure of the calculation for each volume by Olympus infinite focus machine.	54
3.16	(a) shows the JEOL JSM 5600 Scanning electron Microscope machine and (b) shows the Liquid Nitrogen container for EDS analysis.	55
3.17	The schematic diagram of ANN.	57
3.18	The general topology of MLP neural network architecture.	59
3.19	The schematic flow chart of GA for optimal selection of machining conditions.	61

gold coating. 4.2 The graph of SG analysis at 80 V and 13 pF for 160nm and 320nm 68 gold coating. 4.3 The graph of ASR analysis at 80 V and 13 pF for 160nm and 71 320nm gold coating. (a-d) represent the 3D Surface topography of machined slots of 72 4.4 320nm Au coated Si at 80V,13pF for 1g/L Al, C, Si and no powder mixed dielectric oil. 4.5 (a-c) represent the variation of 3D Surface topography of 160nm 72 Au coated Si and (d-f) represent the 3D Surface topography of 320nm Au coated Si machined slots at 80V,13pF for three different concentrations of Si powder mixed dielectric oil machining. 4.6 Study of the Unevenness factor of the machined slots by NPM µ-74 WEDM process for C, Al and Si nano powder and without powder machining at 80V, 13pF. 4.7 Study of the rate of the short circuit occurrences of the machined 76 slots by NPM µ-WEDM process for C, Al and Si nano powder and without powder machining at 80V, 13pF. 4.8 (a-f) represent the MRR at 85 V with different capacitances for 78 160nm and 320nm gold coating Si. 4.9 (a-f) represent the MRR at 100 V with different capacitances for 80 160nm and 320nm gold coating Si. 4.10 (a-f) represent the SG at 85 V with different capacitances for 84 160nm and 320nm gold coating Si. 4.11 (a-f) represent the SR at 85 V with different capacitances for 87 160nm and 320nm gold coating. 4.12 Study of the Unevenness factor of the machined slots for C, Al and 91 Si nano powder and without powder machining at 85V, with 0.1nF, 10nF and 400nF for 160nm and 320nm Au coating at three different powder concentrations. 4.13 Study of the short circuit occurrences rate for C, Al and Si nano 92 powder and without powder machining at 85V with 0.1nF for 160nm and 320nm Au coated machined slots in 0.2g/L powder concentration. 5.1 The images of artificial neuron cell. 95

The graph of MRR at 80 V, 13 pF (a) for 160nm and (b) for 320nm

65

4.1

5.2	The image of the general structure of a 4-n-1-1 MLP network model.	97
5.3	The process of updating the weights of a MLP network model.	98
5.4	The process of training the model using LMBP algorithm.	102
5.5	Variation of MSE and R^2 at different number of hidden neurons.	106
5.6	Variation of MSE and R^2 with different number of network model configuration.	106
5.7	(a) shows the regression analysis values for the model and (b) shows the training performance of the model.	107
5.8	Comparison of Experimental and ANN output for SG of C for modelling dataset	108
5.9	Comparison of experimental and ANN output for SG of C for the validation data set	110
5.10	Shows pair of input parameters impact on the spark gap.	111
5.11	Variation of MSE and R^2 at different number of hidden neurons.	112
5.12	Variation of MSE and R^2 with different number of network model configuration.	113
5.13	(a) shows the regression analysis values for the model and (b) shows the training performance of the model.	113
5.14	Comparison of Experimental and ANN output for MRR of Al for modeling dataset.	114
5.15	Comparison of experimental and ANN output for MRR of Al for the validation data sets.	115
5.16	Influence of input parameters on material removal rate.	117
5.17	Variation of MSE and R^2 at different number of hidden neurons.	118
5.18	Variation of MSE and R^2 with different number of network model configuration.	118
5.19	(a) shows the regression analysis values for the model and (b) shows the training performance of the model	119

5.20	Comparison of Experimental and ANN output for ASR of Al for modeling dataset	119
5.21	Comparison of experimental and ANN output for ASR of Al for the validation data set.	121
5.22	Influence of input parameters on average surface roughness.	122
5.23	The flow chart of the general structure of a GA optimization.	123
5.24	The best and mean value of the fitness function and the values of the corresponding input variables for SG of C.	128
5.25	The best and mean value of the fitness function and the values of the corresponding input variables.	130
5.26	The best and mean value of the fitness function and the values of the corresponding input variables for ASR of Al.	131
C.1	(a-h) represent the Surface topography of machined slots of 160nm and 320nm Au coated Si at 80 V, 13pF with 2g/L C, Al, Si and no powder mixed EDM oil.	163
C.2	(a-h) represent the Surface topography of 320nm Au coated Si at two different energies with 0.2g/L C, Al, Si and no powder mixed dielectric oil.	163
C.3	(a-h) represent the Surface topography of 160nm Au coated Si at two different energies with 0.2g/L C, Al, Si and no powder mixed dielectric oil.	164
C.4	(a-h) represent the Surface topography of 160nm Au coated machined Si at 85 V and 100V with 0.1nF for 0.2g/L C, Al, Si and no powder mixed dielectric oil.	164
C.5	(a-h) represent the FESEM images of 1g/L and 2g/L Al, C, Si and no powder used machining of 320nm Au coated Si at 80 V and 13pF.	165
C.6	(a-d) represent the FESEM images of 2g/L Al, C, Si and no powder used machining of 320nm Au coated Si at 100 V and 10nF.	165
C.7	(a-d) represent the FESEM images for 160nm and (e-h) for 320nm Au coated Si at 0.2g/L C used machining at different discharge energies.	166
C.8	(a-f) represent the MRR at 115 V with different capacitances for 160nm and 320nm gold coating Si.	166

- C.9 (a-f) represent the SG at 85 V with different capacitances for 167 160nm and 320nm gold coating Si.
- C.10 (a-f) represent the SG at 85 V with different capacitances for 167 160nm and 320nm gold coating Si.
- C.11 (a-f) represent the SR at 85 V with different capacitances for 168 160nm and 320nm gold coating Si.
- C.12 (a-f) represent the SR at 85 V with different capacitances for 168 160nm and 320nm gold coating Si.
- C.13 Study of the Unevenness factor of the machined slots for 0.2 g/L 169 C, Al and Si powder and without powder machining at 100V, with 0.1nF, 10nF and 400nF.
- C.14 Study of the Unevenness factor of the machined slots by for 0.2 169 g/L C, Al and Si powder and without powder machining at 115V, with 0.1nF, 10nF and 400nF.

LIST OF SYMBOLS

Al	Aluminum
Au	Gold
Ar	Argon
Al ₂ O ₃	Aluminum oxide
С	Carbon
Cr	Chromium
С	Capacitance
Cu	Copper
E	Energy
F	Farad
Ge	Germanium
α/cm^3	Gram per centimeter cube
g/em	eram per contineter caec
g/mL	Gram per millileter
g/mL g/L	Gram per millileter Gram per Liter
g/mL g/L I _p	Gram per millileter Gram per Liter Pulse current
g/mL g/L I _p min	Gram per millileter Gram per Liter Pulse current Minute
g/mL g/L I _p min μm	Gram per millileter Gram per Liter Pulse current Minute Micro-meter
g/mL g/L I _p min μm μJ	Gram per millileter Gram per Liter Pulse current Minute Micro-meter Micro Joule
g/mL g/L I _p min μm μJ μF	Gram per millileter Gram per Liter Pulse current Minute Micro-meter Micro Joule Micro-Farad
g/mL g/L I _p min µm µJ µF mm	Gram per millileter Gram per Liter Pulse current Minute Micro-meter Micro Joule Micro-Farad Millimeter
g/mL g/L Ip min µm µJ µF mm MoS ₂	 Gram per millileter Gram per Liter Pulse current Minute Micro-meter Micro Joule Micro-Farad Millimeter Molybdenum disulfide

mm ³ /min	Millimeter cube per minute
mm/s	Millimeter per second
Ν	Newton
nF	Nano-Farad
nm	Nano-meter
nJ	Nano joule
nos/min	Number of short circuit per minute
Pa	Pascal
pF	Pico-Farad
R _a	Average surface roughness
R _{max}	Maximum surface roughness
Si	Silicon
SiC	Silicon Carbide
Ton	Pulse on time
T_{off}	Pulse off time
Ti	Titanium
TiC	Titanium Carbide
V	Voltage
+ve	Positive charge
-ve	Negative charge
Ώ-cm	Ohm centimeter
"	Inches

LIST OF ABBREVIATIONS

ABC	Artificial bee colony
AJM	Abrasive Jet Machining
ASR	Average Surface roughness
ANN	Artificial Neural Network
ANN-GA	Artificial neural network-Genetic algorithm
BPN/BPNN	Back propagation neural network
CNC	Computer numerical control
СТ	Coating Thickness
CNT	Carbon nano tube
EDS	Electro discharge Spectroscopy
EDM	Electro discharge machining
EDX	Electro energy dispersive x-ray analysis
ECM	Electro-chemical Machining
EWR	Electrode wear rate
FESEM	Field Emission Scanning Electron Microscope
GA	Genetic Algorithm
i.e	(id est) that is
LMBP	Levenberg-Marquardt Back propagation algorithm
MEMS	Micro electro mechanical system
μ-EDM	Micro-electro discharge machining
μ-WEDM	Micro-wire electro discharge machining
μ-WEDG	Micro wire electro discharge grinding

MRR	Material removal rate
MSE	Mean square error
MLP	Multi-layer perceptron
NP	No powder
NPM	Nano powder mixed
NPMEDM	Nano powder mixed EDM
NPM μ-WEDM	Nano powder mixed μ -WEDM
PC	Powder concentration
PMEDM	Powder mixed EDM
RSM	Response surface methodology
RBFN	Radial basis function neural network
\mathbb{R}^2	Correlation coefficient
SEM	Scanning Electron Microscopy
SR	Surface Roughness
SG	Spark Gap
SD	Standard Deviation
TWR	Tool wear ratio
USM	Ultrasonic Machining
WEDM	Wire electro discharge machining

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND

In recent years, electrical discharge machining (EDM) and micro wire electrical discharge machining (μ -WEDM) have been considered as a potential machining technique to meet various industrial and diverse engineering requirements due to their excellent characteristics and advantages. The material eroding process of EDM and Micro WEDM are identical, however, their functional characteristics differ from each other. The μ -WEDM process is a well-established special type variant of conventional EDM process. In the μ -WEDM process, electrical discharges are generated between a flexible metallic wire and work-piece material to erode materials from the work-piece without causing direct contact between them (Ho, Newman, Rahimifard, & Allen, 2004).

This WEDM process is widely used to machine electrically conductive and semiconductive materials like Silicon(Si), Germanium (Ge) owing to its physical nature and feasibilities. The Silicon is the most common engineering material in MEMS-based fabrication and electronic industry. Having excellent physical properties, polished silicon mirrors has large demands in sensors and optical industries as well. Takino et al. first introduced WEDM technology (Takino et al., 2004, 2005) which could be an effective way for various contours to fabricate the complex 2D or 3D shaped Silicon mirrors. However, Silicon has some physical properties like high surface resistance than bulk body resistance which makes it difficult to machine by the µ-WEDM process. Therefore, machining of Silicon like materials is becoming very challenging and no more extensive works have been carried out in this prospect.

To overcome such challenges to machine Si like materials, many works have been carried out with different techniques to achieve the finest surface finish of Silicon workpiece with better machining stability. Reynaerts et al. (Reynaerts & Van Brussel, 1997) proposed the conductive polishing on the p-type Silicon as positive and electrode as negative and vice versa for n-type material in EDM operation to enhance the machining stability and accuracy. Song et al. (Song, Meeusen, Reynaerts, & Van Brussel, 2000) studied the consequences of μ -EDM on highly doped p-type Si wafer. Recently, Saleh et al. (Saleh, Rasheed, & Muthalif, 2015) experimented the influences of temporary Gold (Au) coating on Silicon wafer for micro-EDM and micro-WEDM treatment. It was found that at a very low discharge energy (~<451.25 nJ), the micro-WEDM of pure silicon was impossible without gold coating. Further, the machining stability by this temporary gold coating process was significantly improved.

The powder mixed EDM/WEDM is another approach to signify the machining stability and accuracy. In the last era, powder mixed EDM has drawn a lot of attention to the researchers because of its proficiencies to enhance process capabilities over traditional machining process (Kansal, Singh, & Kumar, 2007). It was found that powder assisted dielectric affects the spark gap along with the discharging process which influences the performance of the machining process significantly.

In recent years, Tan et al. (Tan, Yeo, & Tan, 2008) examined the effect of nano powder assisted machining by micro-EDM and found an improvement in the machined surface. In addition, Jahan et al. (M. Jahan, Anwar, Wong, & Rahman, 2009; M. P. Jahan, Rahman, & San Wong, 2011) showed that by using different concentrations of graphite nano powder mixed dielectric oil it could be possible to get surface roughness

2