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ABSTRACT

Extensive grain growth in ferritic stainless steel welds causes severe loss of ductility
and other properties which limits the usage of this low cost stainless steel in many
structural applications. While a low energy input and faster heat dissipation conditions
have been suggested for grain growth control, the range of the process parameters that
falls within these conditions is not well identified. Therefore, it has not been possible
to optimize the microstructure and properties of ferritic stainless steel welds. In this
work, the microstructural features of AISI 430 ferritic stainless steel welds produced
using TIG torch melting at different process parameters were studied and developed a
relationship between process parameters and mechanical properties. Furthermore, two
new schemes were employed to refine grain structures and their influences on
chromium carbide precipitation in the weld are discussed. The investigation was
conducted in three phases. In the initial phase, the low energy input conditions were
identified for welding the 1.5 mm thick AISI 430 ferritic stainless steel used in this
work. Arc currents in the range of 70-110 A and welding speeds in the range of 2.5 -
3.5 mm/s were identified as safe welding conditions for this material. Within these
process parameters, the ductility of the weld was up to 45% of the base metal which is
higher than the values reported in the literature. In the second phase, the new schemes
to refine grain structures by the incorporation of elemental metal powders into the
melt pool and cryogenic cooling of the weld were studied. These new schemes for
refining the weld microstructure offered dual benefits of grain refinement and
constriction in weld dimensions. The constriction in weld geometry is found to be
very significant and it is beyond the range reported in any of the existing grain
refinement strategies. However, the addition of metal powder provided greater
benefits in terms of grain refinement and constriction in weld geometry, but it
precipitated hard intermetallic particles in the microstructure resulting in low ductility.
The precipitation of such hard particles was absent in the cryogenic cooling technique.
The mechanical properties of welds are influenced by both the grain size and the
phases present in the microstructure. In the final phase, chromium carbide
precipitation in the welds under different grain refinement conditions was evaluated
and found that the precipitation of carbide could be prevented when the weld was
processed with an energy input less than 500 J/mm. The addition of metal powder
such as a mixture of aluminum and titanium or cryogenic cooling did not facilitate
carbide precipitation; however, the addition of aluminum powder into the melt pool
facilitated carbide precipitation and increased sensitization in the welds. The present
investigation achieved over 80% improvement in weld ductility via cryogenic cooling
without affecting the sensitization resistance of the steel. This level of ductility is
significantly higher than the maximum of 65% achieved with existing grain
refinement techniques in fusion welding and is only comparable to those of the
friction stir welding which generates ductility of over 90% of the base metal in AlSI
430 ferritic stainless steel welds. Furthermore, the work developed an innovative
parameter, the grain refinement index, for the evaluation of the degree of grain
refinement for a given treatment condition relative to the base metal, not to the weld
metal, which is the common practice in existing grain refinement techniques.
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