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ABSTRACT

In the automotive industry some components and subassemblies which were initially
made of steel are now being replaced with alloys and composites which have a higher
strength to weight ratio. Therefore, today’s vehicles are lighter, stronger and thus have
small fuel consumption. However, mounting a more powerful engine to a lighter
vehicle could cause vibration induced by the dynamics of the engine and thus
affecting the comfort of the passenger. One way to overcome this predicament is to
modify the mounting of the engine by introducing an active engine mounting (AEM)
system which consists of passive rubber mount and a linear force actuator. At the
correct frequency the linear force actuator would trigger a force which has a
magnitude approximately equal to the engine’s disturbance force but opposite in
direction. With this the force transmitted to the chassis of the vehicle would then be
minimized and increases passenger’s comfort. In controlling the system, especially the
force actuator, numerous controllers have been introduced which include but not
limited to H, controller, hybrid of feedback and feedforward, filtered X-LMS
controller, optimal controller based on Haar wavelet and other classical feedback and
feedforwad controllers. Determining the controller parameters could be a major and
difficult task to perform since these parameters are based on the mathematical model
of the engine-chassis system which also includes the mathematical model of the
engine disturbance. In this thesis an intelligent controller namely the neural network
controller has been introduced to reduce controller parameters identification. The
system considered in this research includes two degree and multi degree of freedom
systems. The dynamics of a nonlinear actuator was also included. Two types of neural
network controller that has been used in this research namely the nonlinear auto
regressive moving average (NARMA-L2) and the extended minimal resource
allocating network (EMRAN). The performance of the neural network based
controllers was then compared with classical controller such as PID for two degree of
freedom system and a Linear Quadratic Regulator (LQR) controller for the multi
degree of freedom system. The ability of the EMRAN to be trained online makes it
advantageous for a non-model based controller. The EMRAN neural network has the
ability to add and prune hidden layer neurons and for the purpose of efficiency and
additional advantage was the adoption of the “winner-takes-all” algorithm. Results
show that the EMRAN controller perform much better as compared to PID and LQR
controllers for the purpose of active vibration isolation based on the reduction of the
force transmitted to the chassis of the vehicle.
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CHAPTER 1
INTRODUCTION

3.1 OVERVIEW
Vehicle weight reduction has been a major topic in the automotive industry since it

leads to better fuel consumption and better efficiency. Furthermore, with the current
environment situation more and more car manufacturers are looking for alternative
hydrocarbon fuels to reduce pollution. However, it is known that alternative power
trains such as hybrid engines produce less power compared to the traditional internal
combustion engines. Looking at the aspect of power to weight ratio alternative power
trains could somehow have an equal performance if not better than internal
combustion engine provided the weight of the vehicle can be reduced up to an
acceptable level.

However, with this trend of lighter vehicle and more powerful engine has led to
an undesirable effect to the comfort of the passenger. This undesirable effect has
increased the level of noise, vibration and harshness (NVH) to the vehicle especially
at the idling frequency of the engine. Since the engine disturbance is directly
transmitted through the engine mounts therefore a lot of effort has been focused in
improving engine mount technology (Yu et al., 2001). Engine mounting is one of the
essential components in the automobile to basically support the weight of the engine.
However, despite its simple design the engine mountings have other complex

functions.



1.1.1 Passive Engine Mounts

It was reported by Yu et al. (2001) that the passive engine mountings have three
purposes. The main purpose is to support the weight of the engine, the second purpose
IS to isolate the vibration induced by the engine to the chassis and lastly to prevent the
engine from bouncing off the chassis would be the third purpose. It was reported by
Swanson (1993) and Yang (2001) that engine induced disturbance occurred at
frequency between 20 Hz to 200 Hz. This disturbance is mostly caused by the
dynamics of the engine components such as pistons, connecting rods and crank shaft
as well as the firing pulse (Swanson, 1993; Geisberger, 2000; Krysinski and Malburet,
2007). At this frequency range level for an ideal engine mount to isolate the
disturbance effectively the stiffness and damping ratio would be required to be as
small as possible. However, at the lower frequency level i.e. below 20 Hz engine is
subjected to bounce due to road excitation. To prevent any damages, the stiffness and
damping ratio of the engine mount are required to be as large as possible to minimize
the relative displacement between the engine and the chassis. This has led to
contradictory desirable characteristics of the passive engine mount at both lower

frequency and higher frequency levels respectively.

1.1.2 Semi active engine mount

Semi active engine mounting system consists of smart fluids such as
electrorheological (ER) fluid or magnetorheological (MR) fluid. The fluids function as
adaptive damper that can change their dynamic damping characteristic by applying
electric field for ER fluid and by applying magnetic field for MR fluid. Semi active
engine mounting systems are normally implemented in a open-loop control

architecture. However, these systems are sensitive to the changes in system



parameters which make them less robust and they are mostly implemented at the
lower frequency range. For the improvement at the higher frequency range a fully

active system is implemented.

1.1.3 Active engine mount

To improve the trade-off characteristic of the passive engine mount one alternative is
to introduce an active engine mounting system. Active engine mounting system
consists of passive mounts such as rubber or hydraulic, an external force actuator and
a control system. Different types of force actuators such as electromagnetic,
servohydraulic, electrostrictive and magnetostrictive materials could be incorporated
into the system. With regards to the control system feedforward or feedback type are
commonly used. Although there a lot of controllers which have been created or
designed for this purpose, most of the controllers found in the literature are either
classical or modern controllers.

Due to the complexity of the system an advance controller such as the neural
network has been designed and implemented rather than the classical or modern
control, which do not work well for nonlinear system. Furthermore, classical or
modern control requires an accurate model to identify the desired controller
parameters which is more often than not time consuming and complex. With the
ability to be trained on line it was expected that the neural controller would be more

robust compared to the classical controller.



3.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE
Cars are becoming an integral part of our daily lives where in most areas they are the

major mode of transportation. Engine as the heart of any vehicles but at the same time,
engines are acting as a vibration exciter and the need to eliminate or minimize this

vibration is essential in which active engine mounts are the solution to this problem.

The vibration sources in automotive are many and one of the major sources is
the engine. To have a more comfortable vehicle, these vibrations need to be reduced

or ideally eliminated. In this work the reduction of vibration is done through the

implementation of the active engine mounting system.

3.3 RESEARCH PHILOSOPHY
With the trend of the numerous applications of intelligent control the philosophy of

this research was to identify the possibility of the neural network controller as
disturbance rejection in the automotive application namely the active engine mounting
system. With its capability to be trained without having a prior mathematical model of
the system neural network controllers make a good candidate as robust and practical
control architecture. Furthermore, neural network controllers are relatively new
especially in the automotive industries which provide broad implementation

possibilities.

3.4 RESEARCH OBJECTIVES
The objectives of this research are to:-

1. Develop mathematical models for engine mounting system.



2. To benchmark the neural network based controller results against classical PID

controllers for a SDOF and TDOF models.

3. To investigate the performance of LQR and neural network based controllers
to actively isolate the vibration induced by the engine to the chassis for a

MDOF model.

4. To compare the results obtained between NARMA-L2 and EMRAN

controllers for the purpose of engine vibration isolation.

5. To investigate the robustness of the neural network based controllers.

3.5 SCOPE
This research is mainly focusing on the simulation of the active engine mounting

system. Two types of neural network controllers are implemented in the simulation of
the engine vibration system which are the Nonlinear Autoregressive Moving Average
L2 (NARMA-L2) and the Extended Minimal Resource Allocating Network
(EMRAN). NARMA-L2 has been identified by Narendra (1996), Narendra and
Mukhopadhyay (1997) and it has the capability of being trained offline and be used as
a controller to reject disturbances, while the EMRAN can be trained online, thus

making EMRAN a more robust intelligent controller.

The simulation results of both controllers are then compared with classical PID

controller and a Linear Quadratic Regulator controller.





