COPYRIGHT[©]INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ACTIVE DISTURBANCE REJECTION CONTROL FOR ACTIVE SUSPENSION SYSTEM

BY

FARIED BIN HASBULLAH

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

JULY 2016

ABSTRACT

A vehicle suspension system is the main component in a ground vehicle that functions to achieve good ride comfort by isolating vibration of the road from the passenger. Active suspension system has the capability to continuously adjust itself, hence has a better design trade-offs compared to a conventional suspension system. Active disturbance rejection control (ADRC) is a relatively new control method and has not been thoroughly investigated in the area of ride comfort and advanced automotive suspension. In this thesis, ADRC with and without input decoupling transformation (IDT) is proposed to improve the ride quality performance of a vehicle with active suspension system according to several performance criteria: minimizing vehicle body accelerations, suspension working space, and road holding. Three vehicle models: quarter-car, half-car, and full-car model were used in this thesis. The models used in the analysis were limited to discrete models which break down the vehicle model into lumped systems. Through experimental simulation studies, the ability of the proposed controllers to cope with varying process is investigated. The optimized controllers are then compared to an ideal skyhook control to benchmark the performance. Results show that ADRC-IDT was able to produce comparable performance to a typical ADRC control structure, but with less number of control parameters. Both controllers were able to significantly reduce vehicle body acceleration while maintaining other responses. Furthermore, On the whole, it is shown that the performance of the optimized ADRC and ADRC-IDT is close to the performance of an ideal skyhook control especially for the sprung mass vertical acceleration which is the main indicator of vehicle ride comfort.

خلاصة البحث

نظام التعليق هو المكون الرئيس في السيارة والذي يعمل على تحقيق راحة الجلوس الركاب من خلال عزل الاهتزاز الناشيء عن الطريق. نظام التعليق النشط لديه قدرة على الضبط الذاتي باستمرار، ولذلك له تصميم أفضل من الأنظمة شبه النشطة والسلبية. "Active Disturbance Rejection Control (ADRC)" هو طريقة شبه النشطة والسلبية. "Active Disturbance Rejection Control (ADRC)" هو طريقة النداسة يقدم ولي تما التحقق من فعاليتها بالكامل راحة الجلوس ونظم التعليق المقدم في السيارات. تقترح هذه الدراسة "Active Disturbance ransformation" مع "Active Disturbance ransformation" و "ADRC" مع "Input Decoupling Transformation" مع "Input Decoupling Transformation" مع "Input Decoupling Transformation" مع معددة منها :التقليل الدراسة "ADRC" و "ADRC" مع "معادية المتعليق النشط وفقا لمعايراداء متعددة منها :التقليل من تسارع جسم المركبة وانحراف التعليق والإطارات. استخدمت ثلاثة نماذج من المركبات: نموذج ربع السيارة ونصف من تسارع جسم المركبة وانحراف التعليق والإطارات. استخدمت ثلاثة ماذج من المركبات: نموذج ربع السيارة ونصف من تسارع جسم المركبة وانحراف التعليق والإطارات. استخدمت ثلاثة غاذج من المركبات: نموذج ربع السيارة ونصف السيارة ونمون عد تسارع جسم المركبة وانحراف التعليق والإطارات. استخدمت ثلاثة متماذ وحدات التحكم المقترحة للتعامل مع حالات مع تسارع جسم المركبة وانحراف التعليق والإطارات. وحدات التحكم الأمثل (باستخدام الخوارزمة الجينية) لعنصر السيارة ونموذ وحدات التحكم الأمثل (باستخدام الخوارزمة الجينية) لعنصر السيارة ونموذ وحدات التحكم الأمثل ل (باستخدام الخوارزمة الجينية) لعنصر التحليم "مالم "تحالم" مع عدد أقل لبارامترات التحكم. كل من بارامترات التحكم مالقدرا على منات أداء مرامي الحرايق وربا من وعلاوة على ذلك، فإنه يظهر أن الأداء للنظامين التحام، وعلى مان مارم المان المارمين المارمين المارمين العام المارمين على خفض مالمار والسام المودي لجلي مارمي الحادة وحدات التحكم. كل من بارامترات التحكم الأداء الخام مارم الحاد، والنامين التحام الخوارزمة الماني والمام المار والمان الحمو، على مارم والمان الحام مع ماركية ماذى مالمارمين مالمان والمارم الحادة مني مالمان والما يلمانين مالمانين مالماني المامين مالمام المامي مارم مالماني والمام والمام والماميي مام مالمم مارم مالمامي

APPROVAL PAGE

The thesis of Faried Bin Hasbullah has been approved by the following:

Waleed Fekry Faris Supervisor

Mohammad Abdel Rahman Co-supervisor

> Fadly Jashi Darsivan Co-supervisor

Rini Akmeliawati Internal Examiner

Hishamuddin Jamaluddin External Examiner

Mohd. Jailani Mohd. Nor External Examiner

El-fatih A. Abdelsalam Chairperson

DECLARATION

I hereby declare that this thesis is the result of my own investigation, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Faried Bin Hasbullah

Signature.....

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

ACTIVE DISTURBANCE REJECTION CONTROL FOR ACTIVE SUSPENSION SYSTEM

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2016 Faried Bin Hasbullah and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Faried Bin Hasbullah

Signature

Date

Dedicated to my parents, Hasbullah Bin Ali and Sa'diah Binti Ngador for laying the strong foundation of what I turned out to be in life.

ACKNOWLEDGEMENTS

First and foremost, gratitude and appreciation are for Allah, the Most Merciful and Most Compassionate for granting me a precious opportunity to complete this thesis and granted me health and strength in completing this thesis.

I owe the greatest debt of gratitude to my beloved parents and family. It would surely be impossible for me to complete this work without their love, support and prayers.

I would like to gratefully thank my supervisor, Prof. Dr. Waleed Fekry Faris for this scholarly guidance and effort in assisting me in this work. Truly this work shall not be completed without his continuous encouragement and support.

I would also like to thank my co-supervisors, Dr. Mohammad Abdelrahman and Dr. Fadly Jashi Darsivan for their motivation and guidance in keeping me going with the work and always making themselves available for any assistance.

Not to forget my colleagues at the Vehicle Dynamics Lab of the Kulliyyah of Engineering, IIUM. Also, to all academic and non-academic staff for their assistance during the period of my study.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval page	iv
Declaration	v
Copyright	vi
Dedication	. vii
Acknowledgements	viii
Table of Contents	ix
List of Tables	xii
List of Figures	xiii
List of Abbreviations	xxi
List of Symbols	xxii
	AAII
CHAPTER ONF: INTRODUCTION	1
1 1 Background	1
1.2 Problem Statement	1
1.3 Research Philosophy	J 4
1.4 Research Objectives	
1.5 Research Methodology	5
1.6 Scope of research	5
1.0 Scope of research	0
)
CHAPTER TWO. I ITERATURE DEVIEW	11
2.1 Introduction	11
2.2 Ride Modeling of Vehicle Response to Excitations	
2.2 Nide Wodering of Venicle Response to Excitations	13
2.5 Suspension Systems	15
2.4 Control of active suspension system	10
2.4.1 Control of active suspension system	10
2.4.2 Active suspension control with input decoupling transformation.	1)
2.4.3 Active disturbance rejection control (ADRC)	22
2.4.5.1 Works on Active Disturbance Rejection Control	25
	55
CHADTED THDEE, DEDEADMANCE CDITEDIA AND DISTUDDANC	Г
MODELS	Е 36
3 1 Introduction	
3.2 Performance criteria	30
2.2.1 Fraguency domain analysis	
2.2.2 Time domain analysis	
2.2. Chapter Summers	30
5.5 Chapter Summary	43
CHARTER FOUR. DIRE MORELING CONTROL AND ANALYSIS	ς.
CHAFIER FOUR: KIDE MODELING, CONTROL AND ANALYSIS	5: //
UAKIEK-UAK.	45
4.1 Introduction	45
4.2 IWO-DUF Quarter-car Model	45

4.3	Design of Active Disturbance rejection Control (ADRC) for Quarter- Model 49	car
	4.3.1 Linear extended state observer	50
	4.3.2 Disturbance rejection scheme	51
	4.3.3 Feedback controller and parameters tuning	52
4.4	Simulation Results	54
	4.4.1 Frequency-domain response	54
	4.4.2 Time-domain response	55
	4.4.2.1 Response to speed hump	55
	4.4.2.2 Response to double bumps input	58
	4.4.2.3 Response to random input	60
	4.4.3 Effect of actuator saturation on the quarter-car model	63
	4.4.4 Sensitivity to sprung mass variations on the quarter-car model	65
	4.4.5 Effect of nonlinearity on the quarter-car model	66
4.5	Chapter Summary	69
CHAPTE	R FIVE: RIDE MODELING, CONTROL AND ANALYSIS: HAI	.F-
CAK 5 1	Introduction	/ U 70
5.1	4-DOF half-car Ride model	70
5.2	Linearized vehicle model	70
5.4	Controller design for Half-Car Model	75
0.1	5.4.1 Design of ADRC for Half-Car Model	
	5.4.2 ADRC with Input Decoupling Transformation (ADRC-IDT)	77
5.5	Simulation and Results	79
	5.5.1 Frequency-domain response	79
	5.5.2 Time-domain response	82
	5.5.2.1 Response to speed hump	82
	5.5.2.2 Response to double bumps input	84
	5.5.2.3 Response to random input	87
	5.5.3 Effect of actuator saturation on the half-car model	90
	5.5.4 Sensitivity to sprung mass variations on the half-car model	91
	5.5.5 Effect of nonlinearity on the half-car model	94
5.6	Chapter Summary	97
СНАРТЕ	R SIX: RIDE MODELING CONTROL AND ANALYSIS: FU	I-
CAR		
6.1	Introduction	98
6.2	7-DOF Full-car Ride model	98
6.3	Linearized vehicle model	105
6.4	Controller Design for Full-Car Model	108
	6.4.1 Design of ADRC for Full-Car Model	108
	6.4.2 ADRC with Input Decoupling Transformation (ADRC-IDT) for	r
	Full-car model	109
6.5	Simulation of the systems	110
	6.5.1 Full-car frequency-domain response	110
	6.5.1.1 Full-car frequency response to heave input	110
	6.5.2 Full-car time-domain response	114
	6.5.2.1 Response to speed hump input	114

	6.5.2.2 Ful	l-car response to double	bumps in	nput	118
	6.5.2.3 Res	sponse to random input.	-	-	122
6.4	5.3 Effect of a	ctuator saturation on the	full-car	model	125
6.4	5.4 Sensitivity	to sprung mass variation	ns on the	full-car model	128
6.4	5.5 Effect of n	onlinearity on the full-ca	ar model		130
6.6 Ch	apter Summar	y			133
CHAPTER	SEVEN:	OPTIMIZATION	OF	CONTROLL	ER'S
PARAMETE	RS		•••••	••••••	135
7.1 Int	roduction				135
7.2 Ge	netic Algorith	m			135
7.3 Op	timization pro	blem formulation			136
7.4 Or	timization Re	sult			138
7.5 Ch	apter Summar	у			144
CHAPTER E	IGHT: CON	CLUSION AND RECO)MMEN	DATION	145
8.1 Co	nclusion				145
8.2 Ma	ain contributio	n			146
8.3 Re	commmendati	on for Future Work			147
REFERENC	ES		•••••		148
LIST OF PU	BLICATION	S	•••••	•••••	155

LIST OF TABLES

Table No.		Page No.
3.1	Specifications of speed hump	39
3.2	Classification of road roughness by ISO	42
4.1	Model parameters for the vehicle (Kaleemullah et al., 2012)	47
4.2	ADRC parameters for quarter-car model	53
5.1	State variables and inputs description for the half-car vehicle	71
5.2	Model parameters for the half-car vehicle	72
5.3	ADRC parameters for half-car	77
5.4	ADRC-IDT parameters for half car	78
6.1	Model parameters for the full-car vehicle (Ihsan, 2011)	104
6.2	7-DOF full-car variables and inputs description	105
6.3	ADRC control parameters for the full-car model	108
6.4	ADRC-IDT control parameters for full-car model	110
7.1	Initial and optimized ADRC control parameters	138
7.2	Initial and optimized ADRC-IDT control parameters	139

LIST OF FIGURES

<u>Figure No.</u>		Page No.
1.1	Flow diagram of research methodology	8
2.1	A simplified model of a vehicle with passive suspension system	14
2.2	A simplified model of a vehicle with semi-active suspension system	15
2.3	A simplified model of a vehicle with semi-active suspension system	16
2.4	The proposed closed-loop system Campos et al. (1999)	19
2.5	Active feedback control system Ikenaga et al. (2000)	20
2.6	Controller structure of the proposed disturbance rejection control of LAV Hudha et al. (2008)	22
2.7	ADRC schematic diagram for electro-hydraulic servo system (Shi, Liu, & Shi, 2011a)	24
2.8	The decentralized ADRC design block diagram (Kordasz et al., 2012)	25
2.9	The decentralized ADRC design block diagram (Przybyła et al., 2012)	26
2.10	Active Disturbance Rejection Controller for a PMSM speed regulator Chao et al., (2013)	27
2.11	Tracking performance of ADRC for omnidirectional mobile robot (Sira-Ramírez et al., 2013)	28
2.12	Magnetically levitated control system (Li et al., 2013)	29
2.13	Structure of the proposed ADRC/LQR for aircraft landing attitude control	30
3.1	Heave, pitch, and roll inputs for half-car (top) and full-car (bottom) models	38
3.2	ITE speed hump profile $(1'' = 0.0254m)$	39
3.3	Double bumps disturbance input	40

3.4	Simulink block to generate road profile.	42
3.5	Generated random road profile.	43
4.1	2-DOF quarter-car model	46
4.2	Response of vehicle body displacement presented by Kumar and Vijayarangan (2006b) (top) and the reproduced response (bottom)	48
4.3	Response of suspension travel presented by Kumar and Vijayarangan (2006b) (top) and the reproduced result (bottom)	49
4.4	ADRC control structure	51
4.5	Frequency response for quarter-car model – ms acceleration	54
4.6	Frequency response for quarter-car model – suspension deflection	55
4.7	Frequency response for quarter-car model – tire deflection	55
4.8	Response to hump input, PTP and settling time for quarter-car model – ms acceleration	56
4.9	Response to hump input, PTP and settling time for quarter-car model – suspension deflection	57
4.10	Response to hump input, PTP and settling time for front quarter-car model – tire deflection	57
4.11	Control effort for quarter-car (hump input) – Responses (left) and maximum value (right)	57
4.12	Response to double bumps input (top), PTP and settling time (bottom) for quarter-car model – ms acceleration	59
4.13	Response to double bumps input, PTP and settling time for quarter-car model – suspension deflection	59
4.14	Response to double bumps input, PTP and settling time for quarter-car model – tire deflection	60
4.15	Control effort for quarter-car (double bumps input) – Responses (left) and peak value (right)	60
4.16	Response to random input (top) and RMS values (bottom) for quarter-car model – ms acceleration	61
4.17	Response to random input (left) and RMS values (right) for quarter-car model – suspension deflection.	61

4.18	Response to random input (left) and RMS values (right) for quarter-car model – tire deflection.	62
4.19	RMS force for quarter-car (random input)	62
4.20	Effect of actuator saturation on sprung mass acceleration for quarter-car model – ADRC (left) and LQR (right)	63
4.21	Effect of actuator saturation on suspension deflection for quarter-car model – ADRC (left) and LQR (right)	64
4.22	Effect of actuator saturation on tire deflection for quarter-car model – ADRC (left) and LQR (right)	64
4.23	Effect of actuator saturation on control effort for quarter-car model – ADRC (left) and LQR (right)	64
4.24	Effect of sprung mass variation on sprung mass acceleration for quarter-car model – ADRC (left) and LQR (right)	65
4.25	Effect of sprung mass variation on suspension deflection for quarter-car model – ADRC (left) and LQR (right)	66
4.26	Effect of sprung mass variation on tire deflection for quarter- car model – ADRC (left) and LQR (right)	66
4.27	Linear and nonlinear spring (left) and damper (right) forces	67
4.28	Sprung mass acceleration response for quarter-car model with nonlinear spring and damper	68
4.29	Suspension deflection response for quarter-car model with nonlinear spring and damper	68
4.30	Tire deflection response for quarter-car model with nonlinear spring and damper	69
5.1	Two-axle 4-DOF half-car model	71
5.2	Vertical body acceleration (linear vs nonlinear model)	76
5.3	Pitch body acceleration (linear vs nonlinear model)	76
5.4	The ADRC control structure for half-car active suspension system	77
5.5	The proposed ADRC-IDT structure	79
5.6	Frequency response for half-car model- ms vertical acceleration	80

5.7	Frequency response for half-car model- ms pitch acceleration	80
5.8	Frequency response for half-car model- suspension deflection	81
5.9	Frequency response for half-car model- tire deflection	81
5.10	Response to hump input for half-car model - ms vertical acceleration	82
5.11	Response to hump input for half-car model - ms pitch acceleration	83
5.12	Response to hump input for half-car model - suspension deflection	83
5.13	Response to hump input for half-car model - tire deflection	84
5.14	Peak force (left) and RMS force (right) for speed hump input	84
5.15	Response to double bumps input for half-car model - ms vertical acceleration	85
5.16	Response to double bumps input for half-car model - ms pitch acceleration	85
5.17	Response to double bumps input for half-car model – suspension deflection	86
5.18	Response to double bumps input for half-car model - tire deflection	86
5.19	Peak force (left) and RMS force (right) for double bumps input	87
5.20	Response to random input for half-car model - ms vertical acceleration	87
5.21	Response to random input for half-car model - ms pitch acceleration	88
5.22	Response to random input for half-car model - suspension deflection	88
5.23	Response to random input for half-car model - tire deflection	89
5.24	Peak force (left) and RMS force (right) for speed random input	89
5.25	Effect of actuator saturation on vertical (top) and pitch (bottom) body acceleration for half-car model – ADRC (left) and ADRC-IDT (right)	90
5.26	Effect of actuator saturation on front suspension (top) and tire (bottom) deflection for half -car model – ADRC (left) and	91

ADRC-IDT (right)

5.27	Effect of actuator saturation on control effort for half -car model ADRC (left) and ADRC-IDT (right)	91
5.28	Effect of sprung mass variation on vertical body acceleration for ADRC (left) and ADRC-IDT (right) for half -car model	92
5.29	Effect of sprung mass variation on pitch body acceleration for ADRC (left) and ADRC-IDT (right) for half -car model	93
5.30	Effect of sprung mass variation on suspension (top) and tire (bottom) deflection for ADRC (left) and ADRC-IDT (right) for half -car model	93
5.31	Effect of sprung mass variation on control effort for ADRC (left) and ADRC-IDT (right) for half -car model	94
5.32	ms vertical (top) and pitch (bottom) acceleration response for half-car model with nonlinear spring and damper	95
5.33	ms pitch acceleration response for half-car model with nonlinear spring and damper	95
5.34	Suspension deflection response for half-car model with nonlinear spring and damper	95
5.35	Tire deflection response for half-car model with nonlinear spring and damper	96
5.36	Control effort for half-car model with nonlinear spring and damper - ADRC (left) and ADRC-IDT (right)	96
6.1	7-DOF full-car model	99
6.2	Vertical body acceleration of the linear and nonlinear full-car model	107
6.3	Pitch body acceleration of the linear and nonlinear full-car model	107
6.4	Roll body acceleration of the linear and nonlinear full-car model	107
6.5	The ADRC control structure for full-car active suspension system	108
6.6	The proposed ADRC-IDT structure for full-car model	110
6.7	Frequency response for full-car model with respect to heave (top), pitch (middle) and roll (bottom) inputs - ms vertical (left)	111

pitch (right) accelerations

6.8	Frequency response for full-car model - ms roll acceleration	112
6.9	Frequency response for full-car model – suspension (left) and tire (right) deflection	113
6.10	Response to speed hump input for full-car model - ms vertical acceleration	115
6.11	Response to speed hump input for full-car model - ms pitch acceleration	115
6.12	Response to speed hump input for full-car model - ms roll acceleration	116
6.13	Response to speed hump input for full-car model - suspension deflection	116
6.14	PTP and settling time for front-left (top left), rear-left (bottom left), rear-right (bottom right), and front-right (top right) suspension deflection (hump input)	117
6.15	Response to speed hump input for full-car model - tire deflection	117
6.16	PTP and settling time for front-left (top left), rear-left (bottom left), rear-right (bottom right), and front-right (top right) tire deflection	118
6.17	Peak force (left) and average RMS force for speed hump input	118
6.18	Response to double bumps input for full-car model - ms vertical acceleration	120
6.19	Response to double bumps input for full-car model - ms pitch acceleration	120
6.20	Response to double bumps input for full-car model - ms roll acceleration	120
6.21	Response to double bumps input, PTP, and settling time for full-car model - suspension deflection	121
6.22	Response to double bumps input, PTP, and settling time for full-car model - tire deflection	121
6.23	Peak force (left) and average RMS force for double bumps input	122
6.24	Response to random input (left) and RMS value (right) for full	123

car model – vertical acceleration

6.25	Response to random input (left) and RMS value (right) for full car model – pitch accelerations	123
6.26	Response to random input (left) and RMS value (right) for full car model – roll acceleration	123
6.27	Response to random input for full car model – suspension (top) and tire (bottom) deflections	124
6.28	RMS suspension deflection - full-car model	124
6.29	RMS tire deflections – full-car model	125
6.30	Peak force (left) and average RMS force for random input	125
6.31	Effect of actuator saturation on vertical body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	126
6.32	Effect of actuator saturation on pitch body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	126
6.33	Effect of actuator saturation on roll body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	127
6.34	Effect of actuator saturation on suspension deflection for ADRC (left) and ADRC-IDT (right) for full-car model	127
6.35	Effect of actuator saturation on tire deflection for ADRC (left) and ADRC-IDT (right) for full-car model	127
6.36	Effect of actuator saturation on control effort for ADRC (left) and ADRC-IDT (right) for full-car model	128
6.37	Effect of sprung mass variation on vertical body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	129
6.38	Effect of sprung mass variation on pitch body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	129
6.39	Effect of sprung mass variation on roll body acceleration for ADRC (left) and ADRC-IDT (right) for full-car model	129
6.40	Effect of sprung mass variation on suspension deflection for ADRC (left) and ADRC-IDT (right) for full-car model	130
6.41	Effect of sprung mass variation on tire deflection for ADRC (left) and ADRC-IDT (right) for full-car model	130
6.42	Effect of nonlinearity on vertical body acceleration for ADRC	131

and ADRC-IDT for full-car model

6.43	Effect of nonlinearity on pitch body acceleration for ADRC and ADRC-IDT for full-car model	131
6.44	Effect of nonlinearity on roll body acceleration for ADRC and ADRC-IDT for full-car model	132
6.45	Effect of nonlinearity on suspension deflection for ADRC and ADRC-IDT for full-car model	132
6.46	Effect of nonlinearity on tire deflection for ADRC and ADRC-IDT for full-car model	132
7.1	Flowchart for genetic algorithm	136
7.2	Response to hump input for full-car model - ms vertical acceleration	140
7.3	Response to double bumps input for full-car model - ms pitch acceleration	140
7.4	Response to double bumps input for full-car model - ms roll acceleration	141
7.5	Response to double bumps input for full-car model - suspension deflection	142
7.6	PTP for front-left (top left), rear-left (bottom left), rear-right (bottom right), and front-right (top right) suspension deflection	142
7.7	Response to double bumps input for full-car model - tire deflection	143

LIST OF ABBREVIATIONS

ADRC	Active Disturbance Rejection Control
ADRC-IDT	Active Disturbance Rejection Control with Input Decoupling Transformation
DOF	Degree-of-freedom
ESO	Extended State Observer
GA	Genetic algorithm
IDT	Input Decoupling Transformation
LQR	Linear quadratic regulator
PID	Proportional- integral-derivative
PD	Proportional- derivative
РТР	Peak-to-peak
RMS	Root-mean-square
SAS	Stability Augmentation Systems

LIST OF SYMBOLS

F_s	Spring force
F_d	Damping force
F_a	Actuator force
$m_{_{u}}$	Sprung mass
m _s	Unsprung mass
t _s	Settling time
t	Time
\mathcal{O}_n	Natural frequency
x(t)	Displacement
α	Relative ratio
θ	Pitch angle
ϕ	Roll angle
v	Vehicle velocity
τ	Time delay between front and rear axles
X_S	Sprung mass displacement
x_u	Unsprung mass displacement
x_r	Road disturbance
w(t)	White noise signal
$S_{g}(\Omega_{0})$	Road roughness

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND

Ride comfort is one of the primary criteria in evaluating the performance of a ground vehicle. When a vehicle travels across a rough surface, the disturbance, or the vibration from the surface impacts ride comfort in a negative way. A vehicle suspension is the main part of vehicle to achieve good ride comfort by isolating the vibration caused by travelling over road disturbances from the passengers. At the same time, a vehicle suspension also functions to support vehicle weight as well as to keep good vehicle handling and contact between the tire and the road. The design of a conventional or passive suspension system has always been focused in obtaining a good compromise between these objectives. However, physical limitations prevent passive suspension from achieving the best performance for all goals. A "soft" suspension setting, for instance, facilitates a comfortable ride at the expense of increased tire motions and suspension working space as the tire has to travel further before it stops. Conversely, good road handling characteristics and smaller tire motion is an attribute of "hard" suspension setting.

Active suspension system has the capability to continuously adjust itself, hence has a better design trade-off compared to a conventional suspension system. The desired additional force in active suspension system is usually employed by pneumatic, hydraulic or electromagnetic actuators which are secured in parallel with a spring and a damper. The force generated by each actuator is controlled by the controller based on the motions of the vehicle which is received from various sensors located at different points of the vehicle.

1

Various control strategies have been implemented on active suspension systems such as LQR (BenLahcene et al., 2014), H-infinity control (van der Sande et al., 2013), PID (Changizi & Rouhani, 2011), and fuzzy control (Cao, Li, & Liu, 2010). Results of these studies show that active suspension systems have the potential to improve ride comfort of a vehicle considerably. However, the model of the system is usually chosen to be linear through various assumptions and approximations. The approximation may become undesirable at certain level which may cause poor control performance, particularly if the control strategy employed is a model-based that is too dependent on the accuracy of the system's analytical description (Madonski & Herman, 2011).

Although it has been in work since the late 80's, active disturbance rejection control (ADRC) was first introduced in English literature in 2001 (Gao et al., 2001; Han, 2009) and has since become an attractive control alternative for its easy applicability and good robustness against process variations (Herbst, 2013). The basis of ADRC concludes that if the external and internal disturbances of a system can be estimated in real time, then they can be cancelled out without having to know the precise model of these disturbances. Current ADRC application includes longitudinal attitude control for aircraft landing (Zhang et al., 2013), permanent magnetic synchronous motor control (Chao, Wu-bin, & Bing, 2013), vibration suppression in two-inertia systems (Zhao & Gao, 2013), flexible-joint manipulator (Kordasz et al., 2012), and tracking of electro-hydraulic servo system for active suspension system (Shi et al., 2011a). To the author's best knowledge, ADRC for improving ride comfort of a vehicle with active suspension system has not been proposed in the current literature.