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ABSTRACT

A vehicle suspension system is the main component in a ground vehicle that functions
to achieve good ride comfort by isolating vibration of the road from the passenger.
Active suspension system has the capability to continuously adjust itself, hence has a
better design trade-offs compared to a conventional suspension system. Active
disturbance rejection control (ADRC) is a relatively new control method and has not
been thoroughly investigated in the area of ride comfort and advanced automotive
suspension. In this thesis, ADRC with and without input decoupling transformation
(IDT) is proposed to improve the ride quality performance of a vehicle with active
suspension system according to several performance criteria: minimizing vehicle body
accelerations, suspension working space, and road holding. Three vehicle models:
quarter-car, half-car, and full-car model were used in this thesis. The models used in
the analysis were limited to discrete models which break down the vehicle model into
lumped systems. Through experimental simulation studies, the ability of the proposed
controllers to cope with varying process is investigated. The optimized controllers are
then compared to an ideal skyhook control to benchmark the performance. Results
show that ADRC-IDT was able to produce comparable performance to a typical
ADRC control structure, but with less number of control parameters. Both controllers
were able to significantly reduce vehicle body acceleration while maintaining other
responses. Furthermore, On the whole, it is shown that the performance of the
optimized ADRC and ADRC-IDT is close to the performance of an ideal skyhook
control especially for the sprung mass vertical acceleration which is the main indicator
of vehicle ride comfort.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

Ride comfort is one of the primary criteria in evaluating the performance of a ground
vehicle. When a vehicle travels across a rough surface, the disturbance, or the
vibration from the surface impacts ride comfort in a negative way. A vehicle
suspension is the main part of vehicle to achieve good ride comfort by isolating the
vibration caused by travelling over road disturbances from the passengers. At the
same time, a vehicle suspension also functions to support vehicle weight as well as to
keep good vehicle handling and contact between the tire and the road. The design of a
conventional or passive suspension system has always been focused in obtaining a
good compromise between these objectives. However, physical limitations prevent
passive suspension from achieving the best performance for all goals. A “soft”
suspension setting, for instance, facilitates a comfortable ride at the expense of
increased tire motions and suspension working space as the tire has to travel further
before it stops. Conversely, good road handling characteristics and smaller tire motion
is an attribute of “hard” suspension setting.

Active suspension system has the capability to continuously adjust itself,
hence has a better design trade-off compared to a conventional suspension system.
The desired additional force in active suspension system is usually employed by
pneumatic, hydraulic or electromagnetic actuators which are secured in parallel with a
spring and a damper. The force generated by each actuator is controlled by the
controller based on the motions of the vehicle which is received from various sensors

located at different points of the vehicle.



Various control strategies have been implemented on active suspension
systems such as LQR (BenLahcene et al., 2014), H-infinity control (van der Sande et
al., 2013), PID (Changizi & Rouhani, 2011), and fuzzy control (Cao, Li, & Liu, 2010).
Results of these studies show that active suspension systems have the potential to
improve ride comfort of a vehicle considerably. However, the model of the system is
usually chosen to be linear through various assumptions and approximations. The
approximation may become undesirable at certain level which may cause poor control
performance, particularly if the control strategy employed is a model-based that is too
dependent on the accuracy of the system’s analytical description (Madonski &
Herman, 2011).

Although it has been in work since the late 80’s, active disturbance rejection
control (ADRC) was first introduced in English literature in 2001 (Gao et al., 2001;
Han, 2009) and has since become an attractive control alternative for its easy
applicability and good robustness against process variations (Herbst, 2013). The basis
of ADRC concludes that if the external and internal disturbances of a system can be
estimated in real time, then they can be cancelled out without having to know the
precise model of these disturbances. Current ADRC application includes longitudinal
attitude control for aircraft landing (Zhang et al., 2013), permanent magnetic
synchronous motor control (Chao, Wu-bin, & Bing, 2013), vibration suppression in
two-inertia systems (Zhao & Gao, 2013), flexible-joint manipulator (Kordasz et al.,
2012), and tracking of electro-hydraulic servo system for active suspension system
(Shi et al., 2011a). To the author’s best knowledge, ADRC for improving ride comfort
of a vehicle with active suspension system has not been proposed in the current

literature.



