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ABSTRACT

The incorporation of TiC through surface melting at high energy input was found to
produce a thin layer of hard coated material on the surface of the substrate beneficial
for wear resistant. This work involved the cheap TIG melting technique to melt the
hard TiC particulates on the AISI 4340 low alloy steel substrate material rather than
the expensive laser or electron beam method. The experimental work involving three
phases were initiated by producing single melt layers at different processing
conditions in order to identify the sample that exhibits high hardness values that is
crack free associated with densed population of TiC microstructures. The
characterization of the single layer and multipass layers were affected by the
microstructural features and surface topography investigated using optical microscope
(OM), scanning electron microscope (SEM) and X-Ray diffraction (XRD) while the
microhardness values were conducted using Vicker microhardness machine. Under
the first phase, the calculated energy used was varied from the lowest at 1008 J/mm to
2640 J/mm while the powder content was in the range of 0.4 mg/mm? to 2 mg/mm?.
The shielding argon gas was from 10 I/min to 30 I/min and the measured working
distance was at 0.5 mm to 1.5 mm. The optimum processing condition for this single
layer at 1344 J/mm with 1 mg/mm? powder content produced crack free sample with
hardness value up to 4 times than the substrate material. The second stage involved
melting for multipass layers using the single layer optimum processing condition to be
overlapped at the 50% of offset distance. The preheating effect from re-melting of the
previous layers at this stage dissolved more of TiC particulates for homogeneity of re-
precipitated TiC microstructures across the melt track. With the multipass layers, the
microhardness ranges from 600 HV to 1000 HV which is over two times than the
substrate. In the third stage, investigation of the wear behavior was conducted at the
room temperature of 20°C under the dry sliding wear test using alumina ball as the
counterpart. The improvement of hardness by the coated layer up to 2.3 times than the
substrate exhibited 13 times lesser of wear rate than the uncoated sample that was seen
to endure wear severance dominated by deformation. The persistency of oxidative,
adhesive and abrasive wear mechanism appeared on the samples resulted difference of
surface morphologies that had much influenced the value of friction coefficients. The
research may provide additional knowledge and information to produce hard coated
layer for the suitability of technology application in industries like, automotive,
aerospace and oil and gas.
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of TiC particulates at 1008 J/mm with 0.4 mg/mm? sample

Arrayed dendritic type of microstructure formed by the
dissolution of TiC particulates

Un-dissolved TiC particulates with poor matrix infiltration
shown by arrow left a gap as the matrix solidify

Partially dissolved TiC microstructure (i) surrounding the
adjacent undissolved particulate (ii)
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4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

XRD pattern from the single melt layer sample at 0.4
mg/mm’? powder content with heat input energy of 1008
J/mm

Influence of heating and cooling rate that resulted in the
formation of (i) cracked particulates and (ii) un-cracked TiC
particulates within the melt pool layer

Martensitic microstructure within the HAZ formed by
substrate conduction which had allowed heat to be dissipated
(X1000)

Microhardness profile of single melt at different powder
content ranging from 0.4 mg/mm’ to 2.0 mg/mm’ at
different heat input energy

[llustrations to describe the effect of hardness values at
regions containing different amount of TiC microstructures.
The dark spots with the 2160 J/mm shows vicinity of TiC
agglomerations as shown in Fig. 4.18(f)

Surface topography of single melt layer at working distance
of 0.5 mm under heat energy input of 1344 J/mm with 20
/min gas flow rate. Dark arrows show ripples. Yellow arrow
shows sample moving direction under TIG static torch.

Surface topography of the single melt layer at the working
distance of 1.5 mm under the heat input of 1344 J/mm with
20 V/min gas flow. Yellow arrow shows sample moving
direction under static TIG torch

Microstructure of the single melt layer at 1344 J/mm with
0.5 mm of working distance showing pores by white arrows
and rich TiC re-precipitated region by black arrow. Powder
content, 1 mg/mm? and gas flow rate, 20 I/min

(a) Microstructure of densed TiC precipitates near the arc
source from Fig. 4.33 and (b) EDX result from a dendrite
region of (a)

Microstructure of the single melt layer at 1344 J/mm with
1.5 mm of working distance showing pores by white arrows
and rich TiC re-precipitated region by black arrows. Powder
content, 1 mg/mm? and gas flow rate 20 /min

xviii

146

147

147

148

150

155

156

159

160

161



4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

Schematic diagram to describe (a) the low working distance
embraces less radiation loss giving spot size for greater melt
size and (b) the high working distance that is more in
radiation loss with smaller melt pool

Microstructure of TiC in various morphologies observed
near the arc source in Fig. 4.35. (i) undissolved TiC
particulates, (ii) re-precipitated TiC

Microhardness profile for different working distance at the
energy input of 1344 J/mm under constant 1 mg/mm?’
powder content and gas flow rate, 20 I/min

Surface topography of single melt layer at the gas flow rate
of 10 /min under the heat input energy of 1344 J/mm with 1
mm working distance. The circle shows the dull surface.
Yellow arrow shows sample moving direction under static
torch

Surface topography of single melt layer at the gas flow rate
of 30 I/min under the heat input energy of 1344 J/mm with 1
mm working distance. Smooth surface by black arrows
showing perpendicular rippling marks against torch melting
direction. Yellow arrow shows sample moving direction
under static TIG torch

Microstructure of the single melt layer at 10 I/min of gas
flow rate with 1344 J/mm heat input energy and 1 mm
working distance showing high in agglomeration at the
edges

Variation of re-precipitated TiC microstructure observed
near the arc source in Fig. 4.41

Schematic diagram to illustrate the arc column in the TIG
process (Kou, 2003)

Microstructure of single melt layer at 30 I/min gas flow rate.
Almost homogeneous distribution of TiC microstructure
with particulates that is lower in size. Agglomerations are
seen at the edges

Densed re-precipitation of TiC near the arc source from Fig.
4.44. Armed dendritic microstructures shown by white
arrows
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4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

Microhardness profile for different gas flow rate at the
energy input of 1344 J/mm under constant 1 mg/mm?
powder content

Topography of the first and second half within the first layer
melted at the energy input of 1344 J/mm. Oval shows poor
in rippling marks while the arrow show more ripples in the
second half. Yellow arrow shows the direction of moving
sample under static TIG torch. Test conditions: input energy,
1344 J/mm; powder content, 1 mg/mm?; working distance, 1
mm; gas flow rate, 20 I/min

Topography of the first and second half within the ninth
layer at the heat input energy of 1344 J/mm. The melt that
ease shows flat surface by oval while the arrows show
ripplings. Yellow arrow shows the direction of the moving
sample under static TIG torch. Test conditions: input energy,
1344 J/mm; powder content, 1 mg/mm?; working distance, 1
mm; gas flow rate, 20 I/min

The cross sectional view of the multipass layers showing (a)
melt layers, (b) heat affected zone, (c) left side of the first
melt area, (d) re-precipitation of TiC in the upper region of
the first half within the first melt layer, (e) re-precipitation
of TiC in the upper region of the second half and (f)
overlapped of HAZ. Arrows in the insert showing porosity.
Test conditions: input energy, 1344 J/mm; powder content, 1
mg/mm?; working distance, 1 mm; gas flow rate, 20 I/min.

Schematic diagram showing overlapping distance by 50%
with the multipass layers in (a) and (b) shows overlapping
that is less than 50% for more powder with lower in re-
melting in the first layer

Left side of the first melt layer showing TiC agglomeration
from Fig. 4.49 (c).

Micrograph in the middle within the first melt layer
observed in Fig. 4.49(d) showing re-precipitation of TiC

Cracked particulate shown by oval allows for less viscous
melt to infiltrate through the interstitial gap

Micrograph in the second half of the first layer from Fig.
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4.55
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4.57

4.58

4.59

4.60
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4.62

4.63

4.64

4.65

4.66

4.67

4.49(e) exhibited re-precipitation of TiC into (i) globular and
(i1) flower morphologies

Martensitic microstructure at the HAZ as shown in Fig.
4.49(%)

Microstructure of partially dissolved TiC particulates
observed within the third layer

(a) Micrograph of re-precipitated TiC phase in cubic
microstructure observed in third layer and (b) EDX result
from the cubic microstructure

(a) Micrograph of finer re-precipitated TiC phase in the
ninth layer and (b) EDX analysis

Micrograph of the re-precipitated microstructure at the top
observed in the ninth layer from Fig. 4.58(a)

Micrograph of the re-precipitated microstructure in the
middle observed in the ninth layer from Fig. 4.58(a)

(a) Micrograph showing re-precipitation of flower type
microstructure from Fig. 4.60 and (b) EDX result

Martensitic microstructure in the ninth layer observed within
the HAZ area

Martensitic microstructure in the tenth layer observed within
the HAZ area

Re-precipitation of TiC microstructures in the seventeenth
layer. High agglomeration near the substrate shown by an
oval

Formation of re-precipitated TiC phase (oval) in the
microstructure at the second half of the seventeenth layer
caused by dissolution of TiC particulates

Microstructure of the HAZ within the seventeenth layer

XRD result with the multipass layers at the heat input energy
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4.68

4.69

4.70

4.71

4.72

4.73

4.74

4.75

4.76

of 1344 J/mm with 1 mg/mm? of powder content

Profile of hardness with the multipass layers melted at the
energy input of 1344 J/mm with 1 mg/mm? powder content

Wear track profile at the room temperature (a) uncoated
layer with depth and width at 24 pm and 0.81 mm
respectively and (b) with the TiC coated layers having the
depth at 1.83 pum and width at 0.29 mm. Processing
conditions for coating layer with 1mg/mm? powder content
and multipass overlapped at 50% distance under 1 mm
working distance

Wear morphology and elemental analysis of uncoated AISI
4340 steel: (a) SEM micrograph of wear surface, (b) EDX
spectrum on the dark contrast region and (¢) EDX spectrum
on the grey contrast region. Region of (i) is shown in Fig.
4.71

Micrograph of the surface failures of uncoated steel sample
at room temperature showing extensive ploughed grooves
under deformation which was taken from Fig. 4.70(1)

EDX elemental result from the tribo powder of uncoated
layer at room temperature

Wear morphology and elemental analysis of coated AISI
4340 steel at room temperature: (a) SEM micrograph of the
wear surface, (b) EDX spectrum on the grey contrast region,
(c) EDX spectrum on the dark contrast region

Micrograph of the coated layer sample showing sheared
surface on the matrix and on the TiC structures that consist
of mild striations along the direction of alumina rotation

Micrograph of TiC microstructure that is protruded away
from the surface of the substrate

Profile of friction coefficient against travelling distance. The
testing condition: speed, 3.46 cm/s; load, 10 N; travelling
distance, 500 m; travelling diameter, 10 mm
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BOD

CaF,

CNC

CO,

CPS

Cr

CRT

Cu

CVD

DCEN

DLC

DMD

d/w

EBW

EDX

LIST OF ABBREVIATIONS

Atomic Energy Authority
Silver

American Iron and Steel Institute — Society of Automotive Engineers
Aluminum

Gold

Boron

Block on disk

Carbon

Calcium flouride

Computer numerical control
Carbon dioxide

Count per second
Chromium

Cathode ray tube

Copper

Chemical vapor deposition
Direct current electrode negative
Diamond like coating
Direct metal deposition
depth to width

Electron beam welding

Electron disperse X-Ray
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