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ABSTRACT 
 

 

 

The incorporation of TiC through surface melting at high energy input was found to 
produce a thin layer of hard coated material on the surface of the substrate beneficial 
for wear resistant. This work involved  the cheap TIG melting technique to melt the 
hard TiC particulates on the AISI 4340 low alloy steel substrate material rather than 
the expensive laser or electron beam method. The experimental work involving three 
phases were initiated by producing single melt layers at different processing 
conditions  in order to identify the sample that exhibits high hardness values that is 
crack free associated with densed population of TiC microstructures. The 
characterization of the single layer and multipass layers were affected by the 
microstructural features and surface topography investigated using optical microscope 
(OM), scanning electron microscope (SEM) and X-Ray diffraction (XRD) while the 
microhardness values were conducted using Vicker microhardness machine. Under 
the first phase, the calculated energy used was varied from the lowest at 1008 J/mm to 
2640 J/mm while the powder content was in the range of 0.4 mg/mm2 to 2 mg/mm2. 
The shielding argon gas was from 10 l/min to  30 l/min and the measured working 
distance was at 0.5 mm to 1.5 mm. The optimum processing condition for this single 
layer at 1344 J/mm with 1 mg/mm2 powder content produced crack free sample with 
hardness value up to 4 times than the substrate material. The second stage involved 
melting for multipass layers using the single layer optimum processing condition to be  
overlapped at the 50% of offset distance. The preheating effect from re-melting of the 
previous layers at this stage dissolved more of TiC particulates for homogeneity of re-
precipitated TiC microstructures across the melt track. With the multipass layers, the 
microhardness ranges from 600 HV to 1000 HV which is over two times than the 
substrate.  In the third stage, investigation of the wear behavior was conducted at the 
room temperature of 20oC under the dry sliding wear test using alumina ball as the 
counterpart. The improvement of hardness by the coated layer up to 2.3 times than the 
substrate exhibited 13 times lesser of wear rate than the uncoated sample that was seen 
to endure wear severance dominated by deformation. The persistency of oxidative, 
adhesive and abrasive wear mechanism appeared on the samples resulted difference of 
surface morphologies that had much influenced the value of friction coefficients. The 
research may provide additional knowledge and information to produce hard coated 
layer for the suitability of technology application in industries like, automotive, 
aerospace and oil and gas. 
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 ملخّص البحث

 
 
 

الصلبة على  TiC الـ حبيبات لإذابة TIG ـاستخدام تقنية الصهر الرخيصة لهذا العمل  تضمن

.العمل  العاليةذو التكلفه  يمن لحام الليزر والشعاع الإلكترون بدلا  ، AISI 4340 معدن سطح 

تحديد ل ،مختلفة تشغيليةفي ظروف  ةباذم مفردة طبقات بإنتاج بدأت مراحلتضمن ثلاثة  معمليال

في البنية  TIGجسيمات  كثافةمع  مرتبطةات تشققال وخالية منعاليه  صلادةقيم  لهاالعينه التي 

المجهري  هيكلال بميزات المتأثرةمتعدد الاو الطبقات  المفردةالطبقة  وصف ان ريه.هالمج

(، المجهر اللكتروني OM)قد تحقق منها باستخدام المجهر الضوئي  الطبوغرافيوالسطح 

 Vickerالصلادة باستخدام آلة  قيست(، في حين XRD( وحيود الأشعة السينية )SEMالماسح )

 2640 إلى جول/ملم 1008 مابين تتراوح الطاقة المستخدمة  كانت الأولىي إطار المرحلة ف.

. وكان معدل 2ملم ملغ/ 2إلى  2ملم ملغ/ 0.4مسحوق في حدود ال كمية ت، بينما كانجول/ملم 

ا لتر/دقيقة،  30لتر/دقيقة إلى  10من تدفق غاز الرجون  المستخدمه للعمل كانت سافة الم وأيضا

 1344 عند المفردةالمثلى لهذه الطبقة  الظروف التشغيلية وكانت ملم. 1.5ملم إلى  0.5 من

 صلادةمع قيمة عينة خالية من الشقوق  تنتجقد ا 2 ملمملغ /  1/ملم مع محتوى مسحوق جول

 طبقات متعددةالمرحلة الثانية تضمنت الذوبان ل .المعدن الساسيمرات من  4 اعلى إلى تصلو

ن ا من مسافة التوازن. 50ظروف التشغيل المثلى للطبقة المفرده لكي تتداخل عند % باستخدام

 الـ جسيمات لحلادى الى تمن إعادة ذوبان الطبقات السابقة الناتج  المسبق التسخين ةتأثير عملي

TiC   ذوبان. مع الطبقات المتعددة ، الية عبر مسار المجهرالبنية تجانس أكثر مما اعطى

الساسي. المعدن أكثر مرتين من  تكان حيث، HV 1000الى  600HVالصلادة من  تراوحت

باستخدام  C20˚ة درجة حرارة الغرف عند الحتكاك من خواصق قالتح تم في المرحلة الثالثة

من اعلى مرة  2.3إلى  المطلية للعينةة دصلاالت تحسنو .امن الألومينكرة و نزلق الجافلا

 ذلك ة وكانغير مصقولالأقل من العينة  ةمر 13 تأكل معدلالسطح الساسي للمعدن واظهرت 

الأكسدة،  ان ثبات تواجد .واضح من قدرتها على تحمل القص المهيمن عليها من خلال التشوه

أشكال تضاريسية سطحية تكون  الى عينات أدىالعلى  تظهرالتي  للبلىآلية والكشط ك اللتصاق

وفر البحث المعرفة والمعلومات  قد.و قيمة معامل الحتكاك ىلها تأثير كبير علالتي كان و مختلفة

في الصناعات مثل صناعة  تطبيق التكنولوجيملائمة من اجل ال صلدةالإضافية لإنتاج طبقة 

 السيارات والطيران والنفط والغاز.
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LIST OF ABBREVIATIONS 
 

 
 
 
AEA Atomic Energy Authority 

Ag Silver 

AISI                  American Iron and Steel Institute – Society of Automotive Engineers 

Al Aluminum 

Au Gold 

B Boron 

BOD Block on disk  

C Carbon 

CaF2 Calcium flouride 

CNC Computer numerical control 

CO2 Carbon dioxide 

CPS Count per second 

Cr Chromium 

CRT Cathode ray tube 

Cu Copper 

CVD Chemical vapor deposition 

DCEN Direct current electrode negative 

DLC Diamond like coating 

DMD Direct metal deposition 

d/w depth to width 

EBW Electron beam welding 

EDX Electron disperse X-Ray 


