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ABSTRACT 

Applications of Xylanase nowadays have become very important and widely used by 
the textile industry as the enzyme is safe and environmental friendly besides having 
more advantages compared to the use of chemical reagents. Previously, chlorine was 
widely used in the paper whitening process in pulp and paper industry. Because of the 
huge size of this industry, chlorine residues released to the environment became a 
huge environmental threat. Due to the hazardous effect of chlorine, xylanases have 
been proposed to decrease the usage of chlorine in pulp and paper industry. However, 
xylanases have to be functional at 60-70 °C which is the temperature of the incoming 
pulp for the bleaching operation. Generally, xylanases have an optimal activity at 55-
60 °C. Bacillus circulans xylanase (BcX) has been proposed to be used in the pulp and 
paper industry because of its small size (20.4kDa), but due to the high temperature 
used in the process BcX will not survive. In this research, Molecular Dynamics 
simulation (MD) was used as an in silica approach to design a thermostable BcX that 
can survive at high temperatures. Experimentally proven thermostable Bacillus 
subtilis xylanase (BsX) is used as a reference system to identify the structural and 
dynamic factors responsible for the thermostability of mutant BsX. Similar structural 
and dynamic attributes of BsX are incorporated into BcX by suitable mutations to 
produce similar thermostability behavior in BcX. Molecular Dynamics simulations of 
BsX and BcX were performed to identify structural and dynamic factors influencing 
thermostability. The assumption was, if the proposed mutant has the same attributes of 
structural interactions and dynamic behavior as those of thermostable mutant BsX, 
then the proposed mutant BcX would be thermostable as well. Both BsX and BcX 
were examined by MD at 318 Kand 338 K. Thermostability of mutant BsX was found 
to be contributed by the stability of the overall structure analyzed by root mean square 
deviation (RMSD), the existence of an important salt bridge within the active site, and 
an increase in the hydrophobic area. This research reported similar structural and 
dynamic factors between experimentally proven thermostable BsX and the proposed 
thermostable mutant BcX. By comparing the trends obtained in MD simulation, 
mutant BcX is expected to have similar or lesser thermostability compared to mutant 
BsX. Major factors contributing to the thermostability of BsX were also observed in 
mutant BcX. However, changes in the number of hydrogen bonds in mutant BcX were 
slightly different compared to those in BsX. Further in silica mutantions need to be 
carried out to pinpoint the thermostability factors in BcX. 
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CHAPTER ONE 

INTRODUCTION 

1.1 OVERVIEW OF STUDY 

' 

Enzyme technology is an alternative to chemical technology in industrial processes 

and has already been developed and used widely. Due to the large scale production of 

a variety of products in the chemical technology field, the world is threatened by the 

disposal of hazardous wastes and serious problems caused by industrial effluents such 

as effluents from the paper industry and toxic wastes from the rubber industry. Even 

though the chemical technology has boosted the production capacity, however, its side 

effects are hard to tolerate any longer. The need for safer and environmental friendly 

technologies has become essential. Therefore enzyme technology alternatives over 

polluting chemical technologies are considered worthwhile and practical for future 

applications. As enzymes originated from nature, limitations of their properties such 

as temperature and pH constitute factors that obstruct the total substitution of chemical 

technology by enzymes. Compatibility of enzymes to industrial processes can be 

improved by protein engineering techniques; specifically the mutagenesis approach 

(Kazlauskas and Bornscheuer, 2009). Enzymes can be modified or altered to achieve 

desired enzymatic properties for specific purposes. 

Protein engineering involves high costs if it is to be carried out experimentally. 

Mutational processes, for instance, can be preliminarily performed computationally 

(in silica) to study their effect and to see whether mutations have positive or negative 

effect on the structure of the protein. By doing this, the scope of mutations can be 
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narrowed down to one that is predicted to contain promising points of mutation 

(Noorbatcha et al., 2009). For example, to do a mutation on a structure with 300 

residues, every single amino acid residue has the possibility to be substituted with 

nineteen other amino acids. Therefore, it is a tedious task to perform random 

mutations experimentally. However, computer simulations help reduce the cost and 

time of trial and error of this process by providing insights to narrow down the 

number of possible promising mutations. 

This study describes the in silica designing of a thermostable Bacillus 

circulans xylanase (BcX). Molecular Dynamics (MD) simulation is used to 

investigate the dynamic behavior of experimentally proven thermostable Bacillus 

subtilis xylanase (BsX) by comparing the structures of the wild type with mutant 

enzyme at different temperatures to study the effect temperature has on the enzyme 

structure and its stability. The information learned from MD simulations of BsX was 

then taken to be a reference to design a new thermostable BcX. 

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE 

Xylanases have been proposed for applications in the pulp and paper industry. They 

serve as an effective bio-reagent used for bio-bleaching, which would replace the 

poisonous chlorine compounds commonly used to achieve pulp brightness. In 

addition, xylanases are used in the manufacture of high-quality paper products. 

Meanwhile, xylanases are required to function at temperatures ranging from 60-70 °C, 

which is the temperature of pulps at the time of bleaching process, under high alkaline 

conditions (Srinivasan and Rele, 1999). However, most xylanases display optimal 

activity at 55-60 °C and pH 5.0-7.0 (Subramaniyan and Prema, 2002) 
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Family 11 xylanases have several advantages over other xylanases when used 

in the pulp industry. Most of family 11 xylanases are smaller in size compared to 

xylanses from other families. Having an enzyme with small size helps penetrate the 

pulp fibers to release xylan from the pulp and improve its bleaching. Furthermore, 

unlike xylanases from other families, xylanases from family 11 only hydrolyze xylan 

but do not hydrolyze cellulose at the same time. The hydrolysis of cellulose damages 

the pulp and is unacceptable in commercial mills. 

Bacillus circulans xylanase, from family 11, makes a very good candidate for 

industrial use as it has a small size and an optimum pH of 7.0-8.0 which meets the 

requirements of the bleaching process (Torronen and Rouvinen, 1995). Nevertheless, 

the enzyme has an optimum temperature of 45 °C which is a limitation to its potential 

use. As a result, it is crucial to design a new Bacillus circulans xylanase enzyme that 

(in addition to its ideal size and pH profile) has an optimum temperature of 60-70 °C. 

Employing computational methods to improve the thermostability of xylanase can 

save a lot of time and cost often invested in experimental methods. 

1.3 RESEARCH OBJECTIVES 

The ultimate objective of this research is to design, using computational methods, a 

mutant Bacillus circulans xylanase that is functional at temperatures of 60-70 °C to be 

used in the bio-bleaching industry. The specific objectives of this study are as follows: 

a) To conduct in silica mutations on Bacillus circulans xylanase (BcX) to 

improve its thermostability. 

b) To conduct Molecular Dynamics (MD) simulations on both BsX and BcX at 

different temperatures to study the dynamic behavior of the enzymes. 
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c) To analyze the interactions and structural properties of the experimentally 

proven thermostable Bacillus subtilis xylanase (BsX) and to identify the 

factors responsible for thermo stability. 

1.4 RESEARCH METHODOLOGY 

This study employs computational methods to achieve its objectives. Various methods 

and tools will be used to study the structure and different static and dynamic 

properties of BsX and BcX. Mathematical algorithms and force field calculations 

(such as CHARMM force field) employed in Molecular Dynamics (MD) simulation 

(Figure 1.1) will be used to study the changes in behavior of enzymes under different 

temperatures. Improvements in enzyme stability would be reflected in its dynamic 

behavior represented by the Root Mean Square Deviation (RMSD) of the atoms and 

residues of the protein, which will be generated using MD simulation. RMSD values 

will be calculated for backbone, beta-sheet, alpha-helix, tum, and coil atoms. In 

addition, radius of gyration of the molecule will be calculated to analyze the 

compactness of the structure. 
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Figure 1.1: Flow chart ofresearch methodology for overall process of the study 
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