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ABSTRACT

In a conventional statistical analysis the term survival analysis or reliability analysis as
it is known in engineering, has been used in a broad sense to describe collection of
statistical procedures for data analysis for which the outcome variable of interest is
time until an event occurs. The time to failure of a particular experimental unit might
be censored and this censored can be right, left, and interval (Partly Interval Censored
(PIC)). In this thesis the analysis of this particular model was based on non-
parametric, semi-parametric Cox model, and parametric accelerated failure time
model via PIC data. In these models several imputation techniques are used that is;
midpoint, left & right point, random, mean, median, and Multiple Imputations (MI).
The maximum likelihood estimate was considered to obtain the estimated survival
function. These estimates were then compared to the existing model such as Turnbull
and Cox model based on clinical trial data (breast cancer data), for which it showed
the validity of our models. In contrast, the data needed to be modified to PIC data for
the purpose of the researcher’s needs. Likewise, engineering failure rates data was
also modified to represent PIC data and then simulation data was generated where the
failure rates were taken based on engineering PIC data and was also used to further
compare these three methods of estimation. From the simulation study for this
particular case, we can conclude that the semi-parametric Cox model proved to be
more superior in terms of estimating the survival function, likelihood ratio test and
their P-value. In additional to that, based on imputation techniques, the MI, midpoint,
random, mean and median showed better results with respect to estimate of the
survival function. For the ultimate results, even though the semi-parametric model
showed better output compared with the nonparametric and parametric models, all
three models can easily be implemented based on engineering data set, medical data
and simulation data.
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CHAPTER ONE

INTRODUCTION

CHAPTER OVERVIEW

We shall introduce here the background of the research. In addition, we shall describe
major key words such as the survival analysis, Cox model, censoring and major types
of censoring, imputation techniques. Also the formulation of the problem, the

objective of the research, and the scope of the thesis shall be described.

1.1 SURVIVAL ANALYSIS

The term survival analysis has been used in a broad sense to describe collection of
statistical procedures for data analysis for which the outcome variable of interest is
time until an event occurs.

In the past, applications of survival analysis used to focus on biomedical
research, an event could have been death, recurrence of a disease, the development of
a disease, cessation of smoking, and so forth. Recently the applications have been
extended to other fields, such as, criminology, sociology, marketing, health insurance
practice, business, economics and last but not least reliability engineering where the
event could be the failure of electronic devices, components or systems.

The study of survival data has previously focused on predicting the probability of
response, survival, or mean lifetime, and comparing the survival distributions of
experimental animals or of human patients. In recent years, the identification of risk
and/or prognostic factors related to response, survival, and the development of a

disease has become equally important.



Survival models, like other statistical models, can also be considered as situational
estimates to a more complex process, and may, therefore, give a less definite result.
This can give rise to doubts about the models. A variation study on the results of the
analysis with small modifications on the data is then necessary. Therefore, one
important factor in statistical analysis is to conduct a study on result suitability.
Residual value and Hessian matrix are useful components in detecting extreme points,
but, they cannot be used to assess the effect on model suitability in general, and
parameter estimate, in particular. In this research, we extend the techniques of
studying result suitability of a survival model focusing on imputation techniques

based on semiparametric Cox model and other models.

1.2 COX MODEL

The proportional hazards regression model of Cox (Cox, 1972), plays a very important
role in the theory and practice of lifetime and duration data analysis. This is because
the Cox regression model provides a convenient way to evaluate the influence of one
or several covariates on the probability of conclusion of lifetime or duration spells.

In dealing with survival data without any knowledge about the underlying distribution,
a semiparametric approach is most suitable to describe the relationship between
several variables and the survival probability.

When incorporating explanatory variables, the most popular method is the Cox
Proportional Hazard Model. The Cox proportional hazard model given by Cox (1972)

is as follows:
At,2) = 2, () exp( B, 2) (1.01)
here A,(¢) is an unknown baseline hazard function, z is a p-vector covariates and f,

is a vector of regression coefficients.



1.3 CENSORING
Censoring occurs when the information of a failure time of some subjects is
incomplete. There are different reasons for censoring which lead to different types of

censored data and below are the main types of censoring.

1.3.1 Right Censored

Right censored data occurs when the last observation of a subject is not its failure yet
whether it is because the survival study ended before the event of failure of some
subjects occurs or because they left the study before it ends. It is the most common

type of censored data and the one that received the most attention.

1.3.2 Left Censored

A subject is left censored if it’s true survival time is less than the observed time. This
happens when some subjects had already failed before the study started. A very
common example of left censoring is when conducting Aids studies and some of the

subjects test positive in the initial testing.

1.3.3 Interval Censored

While in the previous two types the event of interest occurred either before the
beginning of the study or after it ended, in this type of censored data the event occurs
within the time of the study but it is not exactly observed, it is only known to fall in an
interval [A,B] for example.

Interval censored data arises in many areas such as demography, epidemiology,
finance, medicine and engineering but its importance is not confined to that but also to

its flexibility.



The left censored data can be treated as interval censored data where A is 0 and B is
the first observed time while right censored data can be treated as interval censored
data where A is the last observed time and B is infinity. There are many types of

interval censoring data and here is a summary of the most common ones.

Case 1 Interval Censored
By case 1 interval censoring we mean that there is only one random observation time
T that divides the study time into two intervals. So all we know is whether the event

occurred before or after that observation time.

Case 2 Interval Censored
In case 2 interval censored data we have two observation times, T; and T, which
divide the study period into three intervals [0,T;], [T, T2] and [T2, ). And generally

case k interval censored data has exactly & observations.

Mixed Case Interval Censored
Mixed case interval censored data means that different objects in the study may have
different number of observations. Each object is observed » times where n is an

integer n €[1,k] instead of being exactly & in “case k interval censored data”.

There are two main reasons why mixed case interval censoring appears; first, in many
cases the nature of the experiment produces different number of observations, for
example, it is common that in medical follow up studies different patients may have
different number of observations (follow ups). Second, we may find out that the event

occurred before the kth observation and in that case continuing until the Atk



observation is a waste of time and resources which makes mixed case interval

censoring preferred to case k interval censoring especially when £ is large.

1.3.4 Partly Interval Censored

One of the most important types of interval censored data is partly interval censored
data which means that for some of the subjects the event of interest is exactly
observed while for others it lies within an interval (Kim 2003).

Not many researchers used partly interval censored data in their study compared with
other types that mentioned early in this chapter. In this thesis, analysis will be based

on partly interval censored via engineering and medical data.

1.4 IMPUTATION
Imputation methods can be classified into:
1. Probability-based imputation method.

2. Simple imputation methods.

1.4.1 Probability-Based Imputation Methods

Probability-based imputation requires estimating the distribution of the partly interval
censored data based on the observed intervals and using our knowledge of the
distribution to impute the missing data. More detailed discussion of this probability
based imputation techniques and references of past work are given in the next two

chapters.



1.4.2 Simple Imputation Methods

There are three main types of simple imputation methods:

1. Right-point imputation where the event time is imputed by the right limit of the
interval.

2. Left-point imputation where the event time is imputed by the left limit of the
interval.

3. Mid-point imputation which refers to imputing the event time by the midpoint of

the interval.

1.5 PROBLEM STATEMENT

Cox’s proportional hazard model is one of the most important statistical methods. It is
widely used in medical, engineering, economical researches and etc. Many researchers
addressed Cox model from several angles, among others; Kim (2003) discussed the
maximum likelihood estimation in the present of partly interval censored data under
the Cox model. Elfaki (2012) used Cox model with Weibull distribution in the present
of partly interval censored data and applied it to AIDS studies. Elfaki et al (2013)
presented the estimating functions for partly interval censored data using the semi-
parametric Cox’s model of the sub-distribution function. Alharpy and Ibrahim (2013a)
used parametric Weibull distribution for score test and likelihood ratio test based
partly interval censored data and Alharpy and Ibrahim (2013b) used piecewise
exponential distribution with non-proportional hazard for partly interval censored
data.

For imputation techniques, Liu et al. (1988) used midpoint imputation to estimate of
the mean incubation period of AIDS. Mariotto et al., (1992) used midpoint imputation

to estimate the acquired immune deficiency syndrome incubation period in



intravenous drug users. Law and Brookmeyer (1992) used midpoint imputation for
Kaplan-Meier to estimate the survival function based on wide interval censoring.
Xiang et al. (2001) used right-point imputation on survival of patients with HIV.
Tillmann et al., (2001) also used the right-point imputation method for HIV-infected
patients. Zhang et al. (2009) compared right-point, midpoint, conditional mean,
conditional median, conditional mode, multiple and random methods for doubly
censored HIV data. Alharpy and Ibrahim (2013a & 2013b) used multiple imputations
for parametric and nonparametric based on partly interval censored data.

As there are few studies that focus on the partly interval censored data and even fewer
applied it to engineering related applications, this research will tackle partly interval
censored data for reliability analysis and apply a model that is significantly applicable
to be used in engineering and medical data via Cox proportional hazard model in the

present of imputation techniques which is used to simplify the procedure.

1.6 RESEARCH OBJECTIVES
The main objectives of the study are:
* To modify a model suitable for engineering partly interval censored data.
* To compare the survival functions of the proposed model with the existing
model.
* To investigate the performance of Cox’s model on partly interval censored
data using imputation techniques.
* To compare the imputation techniques based on partly interval censored data

using both secondary data and simulation data.



