COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

HYBRID FUZZY- PID CONTROLLER OF AN INVERTER FOR AC INDUCTION MOTOR

 $\mathbf{B}\mathbf{Y}$

AHMED MOHAMMED TAHIR AHMED

A dissertation submitted in partial fulfillment of the requirement for the degree of (Master of Science Mechatronic Engineering)

> Kulliyyah of Engineering International Islamic University Malaysia

JANUARY 2011

ABSTRACT

The usage of the AC induction motor (ACIM) becomes widely increased in the industrial applications as well as in the domestic usages, due to the good features of the ACIM and the new technologies of the electronic switching topologies. Different approaches are used to control the speed of the ACIM. One of these approaches is the Frequency variation of the sinusoidal wave form applied to the ACIM; this is achieved by using DC to AC converter (inverter). This research develops a voltage source inverter (VSI), which its output is a variable frequency sine wave between (20 and 60) Hz to control the speed of the ACIM. Proportional-integral-derivative (PID) controller will be used to improve the inverter output, while the significance of this research is the implementation of the fuzzy logic controller (FLC) as an additional controller and its rule to enhance the performance of the system. Hybrid FLC - PID controller of an inverter for ACIM is described in this research. The speed of the ACIM will be changed according to the change of the generated sine wave frequency. The output voltage error and its derivative are used as input variables for the FLC to adjust the error of the system, and FLC output will be subtracted from the output of the PID controller to reduce the error signal and eventually optimize the dynamic response of the speed controller of the motor. Simulated results show the performance of PID controller and the rule of FLC in improving the speed controller performance. Experimental results show that the variation of reference sign wave at the input can lead to variation at the output sine wave frequency; this is adequate for the variation of the motor speed. Both the VSI and FLC boards were fabricated based on programmable microcontrollers, PIC16F877A was used in the inverter circuitry to generate the pulse width modulation (PWM) and to generate internal sine wave with variable frequency to control the speed of the motor accordingly, while for the FLC circuitry it will process the rule base inference engine and calculate the FLC output upon on that. Using such a PIC controller in the inverter and FLC circuits will simplify the design, minimize the hardware and accordingly reduce the cost, at the same time it will increase the reliability of the proposed system.

ملخص البحث

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Master of Science Mechatronic Engineering

Riza Muhida Supervisor

Rini Akmeliawati Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Master of Science Mechatronic Engineering

> Muhammad Mahbuburashid Examiner

This dissertation was submitted to the Department of Mechatronic Engineering and is accepted as a partial fulfillment of the requirements for the degree of Master of Science Mechatronic Engineering

> Asan Gani Abdul Muthalif Head, Department of Mechatronic Engineering

This dissertation was submitted to the Kulliyyah of Engineering and is accepted as a partial fulfillment of the requirements for the degree of Master of Mechatronic Engineering

Amir Akramin Shafie Dean, Kulliyyah of Engineering

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Ahmed Mohammed Tahir

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2011 by Ahmed Mohammed Tahir. All rights reserved.

HYBRID FUZZY- PID CONTROLLEROF AN INVERTER FOR AC INDUCTION MOTOR

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Ahmed Mohammed Tahir

Signature

Date

ACKNOWLEDGEMENTS

My profound gratitude and thankfulness are due to Allah the Almighty for enabling to complete my thesis and Master degree. I gained a lot of knowledge and experience through completing this project. However, this project would not and could not come this far if there is not a few people of whom I always immensely indebted. For that, I would like to express my deepest gratitude to my supervisor Assoc. Prof Dr. Riza Muhida and to my co supervisor Assoc. Prof. Dr. Rini Akmeliawati for their willingness to share the knowledge and for their very-time available, constructive criticism and sound advices. Your laborious work of monitoring this project is highly appreciated.

A large means of gratitude is owed to Prof. Dr. Khalid Al Khateeb from ECE department Faculty of Engineering for his continuous support, motivation and advice along the whole program. I especially wish to extend my sincere thanks and appreciation to Assoc. Prof. Dr. Mayadda Alani from university of Bahrain for the great support and help.

I shall take this opportunity to express my appreciation to the staff from MCT department and the colleagues in the MCT workshop especially br. Ahmad Firdaus Bin Ahmad Zaidi. and br. Sahlan for their kindness and support.

Special thanks to my beloved wife Ghada Faisal Al Ani, and my family especially my beloved elder son Abdullah for their support, patience in this ordeal, as well as taking pride in my work. Finally I would like to thank everybody who was important to the successful realization of this thesis, as well as expressing my apology that I could not mention the names personally one by one. Thank you all. May Allah bestow his bless upon us all.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval Page	iv
Declaration.	v
Copyright page	vi
Acknowledgement	vii
List of Tables	xi
List of Figures	xii
List of Symbols	XV
List of Abbreviations	xviii

CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement and its significance	6
1.3 Research Objectives	7
1.4 Research Methodology	7
1.5 Scope of Research	8
1.6 Organisation of the Thesis	9

CHAPTER 2: LITERATURE REVIEW	10
2.1 Background	10
2.2 Fuzzy Logic Controller (FLC) Theory And Applications	16
2.2.1 The Fuzzy Inference System (FIS)	18
2.2.1.1 Fuzzification	19
2.2.1.2 The Fuzzy Inference Engine	20
2.2.1.3 Defuzzification	23
2.2.2 Applications of Fuzzy Logic to Electric Drives	25
2.3 Theory of Inverters	25
2.3.1 Single Phase Half Bridge Voltage Source Inverters	
2.3.2 Single Phase Full Bridge Voltage Source Inverters	
2.3.2.1 Bipolar PWM Technique	31
2.3.2.2 Unipolar PWM Technique	32
2.4 Summary	34

CHAPTER 3: METHODOLOGY	36
3.1 Introduction	36
3.2 Simulation of the Sine Wave PWM Voltage Source Inverter VSI	39
3.3 Simulation of the Speed Controller System Using VSI	42
3.4 Simulation of the Speed Controller System Using VSI	
and PID Controller	43
3.5 Simulation of the Speed Controller System Using VSI	
with PID Controller and FLC	44

3.5.1 Introduction	44
3.5.2 FLC Design and Membership Functions	45
3.6 Experimental Methodology (Design and Fabrication of the Models).	50
3.7 Design and Fabrication of the Inverter	51
3.7.1 PWM Generator and Triggering Control Board	52
3.7.2 Triggering Control Signal Module	57
3.7.3 MOSFET H- Bridge Chopping Circuit Board	60
3.8 Design and Fabrication of PID Controller	64
3.9 Design and Fabrication of the FLC Board	69
3.10 Programming Microcontroller	78
3.11 Experimental Rig	80
3.12 Calculation of the Inverter Power	82
3.11 Summary	83

4.1 Introduction	
4.2 Simulation Results of the SPWM VSI	
4.3 Speed Controller Using Inverter without PID or FLC	91
4.4 Speed Control Simulation after Implementing	
PID Controller	99
4.5 Speed Control Simulation after Implementing	
PID Controller and FLC	106
4.6 Study Comparison	110
4.7 Summary	113
 4.5 Speed Control Simulation after Implementing PID Controller and FLC 4.6 Study Comparison	

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION	114
5.1 Introduction	114
5.2 SPWM VSI Experimental Results	114
5.3 Performance of the Speed Controller	124
5.4 Summary	125
-	

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS	
6.1 Conclusion	126
6.2 Future Studies	127
BIBLIOGRAPHY	128
PUBLICATIONS	
APPENDIX A:	133
APPENDIX B:	142

LIST OF TABLES

le No.	Page No.
Fuzzy and linguistic variables.	17
Switch states for a half-bridge single-phase VSI	29
Switch states for a full-bridge single-phase VSI	31
Base rules for the FLC	49
Base rules for the experimental FLC	76
Legends description for the system boards	82
Fundamental and harmonics magnitudes and angles	89
Fundamental and harmonics when speed is 250rpm	93
Fundamental and harmonics when speed is 1000rpm	97
Fundamental and harmonics when speed is 250 rpm and using PID	101
Simulated results for different controllers for input step 250 rpm	111
Simulated results for different controllers for input step 500 rpm	111
Simulated results for different controllers for input step 1000 rpm	112
Simulated results for different controllers for input step 1500 rpm	112
ACIM speed variation according to respected frequency	125
	Fuzzy and linguistic variables. Switch states for a half-bridge single-phase VSI Switch states for a full-bridge single-phase VSI Base rules for the FLC Base rules for the experimental FLC Legends description for the system boards Fundamental and harmonics magnitudes and angles Fundamental and harmonics when speed is 250rpm Fundamental and harmonics when speed is 250 rpm and using PID Simulated results for different controllers for input step 250 rpm Simulated results for different controllers for input step 500 rpm Simulated results for different controllers for input step 1000 rpm Simulated results for different controllers for input step 1000 rpm ACIM speed variation according to respected frequency

LIST OF FIGURES

Figu	<u>e No</u>	Page No
1.1	PWM signal generator	2
1.2	Characteristics of ACIM	3
1.3	Frequency and voltage relationship	4
1.4	Block diagram of the proposed system	5
2.1	Fuzzy inference systems.	19
2.2	Fuzzification of the crisp numerical inputs.	20
2.3	Fuzzy inference engines.	21
2.4	A three-level adjustable speed drive scheme and associated waveforms	. 27
2.5	Single-phase half-bridge VSI.	29
2.6	Single-phase full-bridges VSI.	30
2.7	Full-bridge VSI. Ideal waveforms for the unipolar SPWM	34
3.1	Block diagram for the steps of research methodology.	36
3.2	Architecture of voltage source inverter using MATLAB SIMULINK	39
3.3	Two channels of triggering control signals.	40
3.4	Amplification part of two channels control signals	40
3.5	Amplification part of PWM signal generator	41
3.6	MATLAB SIMULINK algorithm to calculate the	
	harmonic components along the frequency spectrum	41
3.7	Speed controller for ACIM using Inverter	40
2.0	without PID or FLC controllers	42
3.8	Conventional PID controller	43
3.9 2.10	Speed controller for ACIM using Inverter with PID controller	44
3.10 2.11	Speed controller for ACIW using inverter with PID controller and FLC	43
3.11 2.12	FLC FIS editor	40
3.12	FLC input V_e membership functions	4/
3.13	FLC input $V_e dot$ membership functions	48
3.14	FLC output V_o membership functions	48
3.15	FLC rule viewer	50
3.16	Proposed FLC and PID controllers of Inverter for ACIM	51
3.17	Schematic diagram of the Inverter PWM generator circuitry	53
3.18	PWM generator Board layout	54
3.19	DAC schematic using Eagle software	55
3.20	DAC board as fabricated using eagle software	33
3.21	I wo channels control signal triggering module	58
3.22	Output of the two channels control signal	60
3.23	I wo channels control signal board	60
3.24	Inggening of H-bridge MOSFET	01 (2
3.23 2.26	Schematic layouts for H-bridge organized	03
5.20 2.27	Dualu layout loi n-olluge cliculuy	04 65
3.21	r ID controller clicuit diagram Schematic layouts for the DID controller	03 20
3.28	Deard levents for the DID controller using angle software	08
3.29	board rayouts for the PTD controller using eagle software	69

Figure No

Page

3.30	Schematic layout of the FLC board	70
3.31	FLC board designed using eagle software	71
3.32	R_2R ladder DAC to obtain the FLC output	72
3.33	DAC board for FLC as fabricated	73
3.34	FLC FIS file	73
3.35	Experimentally V_e input membership	74
3.36	FLC input $V_e dot$ memberships	75
3.37	FLC output memberships	76
3.38	FLC surface viewer	77
3.39	Flow chart of process to programming a PIC microcontroller	79
3.40	JDM Programmer circuit	80
3.41	Experimental rig as was integrated and tested	80
3.42	The inverter control circuitry boards as was tested	81
3.43	The system boards as was fabricated	81
4.1	Generated trigger signal using bipolar switching SPWM	86
4.2	Two channels of trigger signal using switching SPWM	
	which is out of phase of each other.	86
4.3	Output voltage after the H-bridge circuit berfore LC filtering	87
4.4	Simulated sine wave of the inverter at 20 Hz	87
4.5	Simulated sine wave of the inverter at 50 Hz	88
4.6	Simulated sine wave of the inverter at 70 Hz	88
4.7	Amplified section of the inverter simulated circuit	
	showing Fourier block	89
4.8	FFT MATLAB SIMULINK algorithm to calculate the	
	magnitude of harmonic components over the frequency spectrum	90
4.9	Magnitude spectrum for the fundamental and harmonics	90
4.10	THD for inverter before using PID or FLC	91
4.11	Simulated speed response for inverter without PID	
	or FLC when input speed is 250 rpm	92
4.12	Magnitude spectrum for the fundamental and harmonics	93
4.13	THD for inverter output before implementing PID or	
	FLC when input speed is 250 rpm	94
4.14	Speed response for ACIM for inverter without PID or	
	FLC when input speed is 500 rpm.	95
4.15	THD responses for inverter without PID	
	or FLC when input speed is 500 rpm	95
4.16	Speed responses for inverter without PID or FLC	
	when input speed 1000 rpm	96
4.17	THD responses for inverter without PID or FLC	
	when input speed is 1000 rpm	96
4.18	Magnitude spectrum for the fundamental and harmonics	97
4.19	Speed responses for inverter without PID or FLC	
	when input speed 1500 rpm	98
4.20	THD responses for inverter without PID or FLC	
	when input speed is 1500 rpm	98
4.21	Speed responses for inverter with PID controller 250 rpm	100

<u>Figure No</u>		Page No
4.22	THD responses for inverter with PID controller	
	when input speed is 250 rpm	100
4.23	Magnitude spectrum for harmonics	
	after implementing PID controller	101
4.24	Speed responses for inverter with PID controller	100
4.25	when input speed 500 rpm	102
4.25	THD responses for inverter with PID	102
1 76	Speed responses for inverter with DID controller	102
4.20	when input speed 1000 rpm	103
4 27	THD responses for inverter with PID controller	105
7.27	when input speed is 1000 rpm	104
4 28	Speed responses for inverter with PID controller	101
	when input speed 1500 rpm	105
4.29	THD responses for inverter with PID controller	100
	when input speed is 1500 rpm	105
4.30	Speed responses for inverter with PID controller	
	and FLC when input speed 250 rpm	106
4.31	THD responses for inverter with PID controller	
	and FLC when input speed is 250 rpm	107
4.32	Speed responses for inverter with PID controller	
	and FLC when input speed 500 rpm	107
4.33	THD responses for inverter with PID controller	
	and FLC when input speed is 500 rpm	108
4.34	Speed responses for inverter with PID controller	100
4.25	and FLC when input speed 1000 rpm	109
4.35	THD responses for inverter with PID controller	100
1 26	and FLC when input speed is 1000 rpm	109
4.30	and ELC when input speed 1500 rpm	110
1 37	THD responses for inverter with PID controller	110
H .57	and FLC when input speed is 1500 rpm	110
51	PWM signal generated from microprocessor	115
5.2	Control signal as two channels out of phase	116
5.3	Two channels of trigger signal	117
5.4	Amplified version of trigger signal for the two channels	117
5.5	Output voltage after H-bridge when frequency is 50Hz	118
5.6	Digital Sine wave as generated from PIC 16F877A	119
5.7	Output voltage after H-bridge when frequency is 20Hz	120
5.8	Output voltage after H-bridge when frequency is 30Hz	120
5.9	Output voltage after H-bridge when frequency is 40Hz	121
5.10	Output voltage after H-bridge when frequency is 60Hz	121
5.11	Output voltage after LC filter when the sine frequency is 50Hz	122
5.12	Output voltage after LC filter when the sine frequency is 25Hz	123
5.13	Output voltage after LC filter when the sine frequency is 35Hz	123
5.14	Output voltage after LC filter when the sine frequency is 60Hz	124

LIST OF SYMBOLS

- Φ_m Flux
- V Voltage
- F Frequency
- T Torque
- P Power
- I Current
- *x* State variable input
- A_i Fuzzy variable for input x
- y State variable output
- C_i Fuzzy variable to classify out put y
- U Fuzzy linguistic universe
- U_x Fuzzy linguistic universe for the input x
- U_y Fuzzy linguistic universe for the output y
- μ Midpoint of the membership function
- μ_G Midpoint of Gaussian membership function
- μ_L Midpoint of linear membership function
- σ Width of the membership function
- σ_{G} Width of Gaussian membership function
- σ_L Width of linear membership function
- *X* Membership function
- X_{PV} Positive membership function
- X_{ZE} Zero membership function
- X_{NV} Negative membership function
- \underline{x} Fuzzy vector
- x_{NV} Negative membership value
- x_{ZE} Zero membership value
- x_{PV} Positive membership value
- R_i ith typical rule
- x_i *i*th fuzzy variable
- x^{1} First linguistic variable (input-1)
- x^2 Second linguistic variable (input-2)
- \underline{x}^{1} First input of fuzzy vector
- \underline{x}^2 Second input of fuzzy vector
- \underline{X}^{1} Membership function for the fuzzy vector (input-1)
- \underline{X}^2 Membership function for the fuzzy vector (input-2)
- X_{NV}^{n} Membership functions for the negative fuzzy variable for input *n*
- X_{ZE}^{n} Membership functions for the zero fuzzy variable for input *n*

- X_{PV}^{n} Membership functions for the positive fuzzy variable for input *n*
- x_i^1 Degree of membership of input-1 into the *i*th fuzzy variable's category.
- x_i^2 Degree of membership of input-2 into the *j*th fuzzy variable's category.
- R_{ij} ith jth typical rule
- C_{ij} ith jth output value
- R_j jth typical rule
- w_i Strength of the overall rule evaluation
- x_i^k Membership value of the k_{th} input into the i_{th} fuzzy variable's category
- *y^{COG}* Output centre of gravity
- y^{MOM} Output mean of maxima
- C_+ positively charged capacitor
- *C*____ Negatively charged capacitor
- S_{+} Switch in the positive half
- *S*_____ Switch in the negative half
- D_+ Diode in the positive half
- D_{-} Diode in the negative half
- v_i Input voltage
- i_o Output current
- \hat{v}_{o1} Amplitude of fundamental component
- \hat{v}_{ab1} Amplitude of the harmonic component
- m_a Over modulation region
- m_f Normalized carrier frequency
- v_c Sinusoidal modulating signal
- v_{aN} Phase voltage
- v_{bN} Phase voltage 120° out of phase with v_{aN}
- \hat{v}_{aN1} First harmonic amplitude of phase voltage
- f_h Normalized odd frequencies
- *h M*ultiples of normalized harmonic frequencies
- f_p Normalized even frequencies
- v_{cN} Phase voltage
- \hat{v}_c Amplitude of modulating signal
- \hat{v}_{Δ} Amplitude of carrier signal
- \vec{v} Voltage space vector
- Ω Ohm
- Q Transistor
- R Resistor
- JP Connector
- K_P Proportional gain
- K_i Integral gain

- K_d Derivative gain
- R_f Feedback resistor
- R_i Input resistor
- V_o Output voltage of the PID controller
- V_i Input voltage of the PID controller
- μf Microfarad
- R_d Derivative resistance
- C_d Derivative capacitor
- V_e Error voltage
- dV_e Error voltage derivative
- τ_c Time constant
- τ_s Settling time
- τ_r Rising time
- M_{P} Overshoot percentage

LIST OF ABBREVIATIONS

AC	Alternating Current
ACC	Acceleration
ACIM	Alternating Current Induction Motor
ADC	Analogue to Digital Converter
ASD	Adjustable Speed Drive
BJT	Bipolar Junction Transistor
BLDC	Brush Less Direct Current
С	Compiler
CFI	Current-Fed Inverter
CMCON	Comparator Configuration
COG	Centre of Gravity
CSI	Current Source Inverter
DAC	Digital to Analogue Converter
DC	Direct Current
DPE	Derivative of Position Error
DTC	Direct Torque Control
FACTS	Flexible AC Transmission Systems
FICO	Fuzzy Input Crisp Output
FIFO	Fuzzy Input Fuzzy Output
FIS	Fuzzy Inference System
FLC	Fuzzy Logic Controller
FFT	Fourier Transform Block
FOC	Field Oriented Control
GA	Genetic Algorithim
GND	Ground
GTO	Gate Turn Off
Hz	Hertz
IC	Integrated Circuit
IGBT	Insulated-Gate Bipolar Transistor
IM	Induction Motor
LC	Inductive Capacitor
MCT	Metal Oxide Semiconductor- Controlled Thyristors
MOM	Mean of Maxima
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
NB	Negative Big
NL	Negative Large
NMS	Negative Medium Small
NS	Negative Small
NV	Negative
OPAMP	Operational Amplifier
PB	Positive Big
PCB	Printed Circuit Board
PE	Position Error
PI	Proportional Integral
PIC	Programmabl Interface Controller

PID	Proportional Integral Derivative
PM	Positive Medium
PS	Positive Small
PSPIES	Simulation Program with Integrated Circuit Emphasis
PV	Positive
PVS	Positive Very Small
PWM	Pulse Width Modulation
RMS	Root Mean Square
RPM	Revolution per Minute
SE	Speed Error
SHE	Selective Harmonic Elimination
SIT	Static Induction Transistors
SP	Speed
SPWM	Sine wave Pulse Width Modulation
SVSI	Sinusoidal Voltage Source Inverter
THD	Total Harmonic Distortion
UPS	Uninterruptible Power Supply
V	Volt
VC	Vector Control
VFD	Variable Frequency Drive
VFI	Voltage Fed Inverter
VSI	Voltage Source Inverter
Ζ	Zero

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

AC induction motors (ACIM) are the most common motors used in industrial motion control systems, as well as in main powered domestic appliances. Simple design, rugged, low maintenance, low cost, and direct connection to an AC power source are the main advantages of AC induction motors (Parekh, 2009). They are also robust and immune to heavy loading (Abdul Wahab and Sanusi, 2008).

Although the ACIM is easier to design than DC motor, the speed and the torque control in various types of ACIM require a greater understanding of the design and the characteristics of these motors (Rashid, 2006). The induction motor drives can be categorized as:

- a) Servo drives. Uses precise control scheme, they are used with applications including computer peripherals, machine tools and robotic tools.
- b) Adjustable drives. Uses speed control with braking; they are used in applications including fans, compressors, pumps, blowers (Agrawal, 2001). In order to achieve the speed variation of the ACIM, different approaches can be cooperating to achieve this task. One of these approaches is the frequency variation. The synchronous speed of the induction motor (IM), and hence the motor rotor speed can be controlled by varying the frequency of the stator AC supply (Boss, 2006). Frequency conversion techniques can be considered to cover this method by which it is possible to take a fixed frequency or DC source, and convert this energy to provide a load with a different or variable frequency supply (Lander, 2001).

This conversion from DC supply or fixed frequency to AC variable frequency is known as DC to AC converters or simply as inverters (Rashid, 2006). There are different types of inverters that control the speed of the IM.

- 1- Pulse width modulation (PWM) voltage fed inverters, used by the largest segment of applications.
- 2- Current fed inverter drives are used in higher power ranges (Boss, 2006).
- 3- An advanced scalar control technique based on direct torque and flux control (DTC) (Boss, 2006).

The term pulse width modulation (PWM) refers to a train of variable width pulses. These PWM pulses are the result of the comparison between the modulated sine wave and 2000Hz saw tooth carrier frequency. In Figure 1.1(a) the triangular signal is the carrier or switching frequency of the inverter, while the modulation generator produces a sine wave signal that determines the width of the pulses, both the sine wave and the triangular signals are compared, consequently the output of the comparison is the PWM signal, as illustrated in Figure 1.1 (b) (Agrawal, 2001).

(a) PWM generator

(b) Output of PWM generator

Figure 1.1 PWM signal generator

Recent advancements in PWM generation and control techniques have been combined with state-of-the-art control algorithms in a pre-programmed solution which is designed to dramatically minimize front development costs and time to market in variable speed AC motor control applications (Wilson and Lucas, 2005), for these reasons the recent inverters design have been related to the PIC and microprocessors rather than conventional design.

The type proposed in this research is PWM voltage source inverter (VSI), which produces a sine wave with a variable frequency between (20 and 60) Hz to meet the project requirements. Selecting the upper frequency limit equal to 60 Hz because for frequencies less than 60 Hz any increase in frequency will lead to increase the voltage as shown in Figure 1.2 (a). Consequently voltage to frequency ratio will be constant to keep the flux m constant as in Equation (1.1).

$$\phi_{m} = K_{2} * \frac{V_{1}}{f_{1}}$$
(1.1)

$$T = K_1 * \boldsymbol{\phi}_m * \boldsymbol{i}_2 \tag{1.2}$$

Until the base rated frequency (60 Hz) is reached. Increasing the frequency beyond 60 Hz will cause the voltage to be constant as shown in Figure 1.2 (a). This will reduce the flux and according to Equation (1.2) the torque will be reduced as shown in Figure 1.2 (b).

Figure 1.2 Characteristics of ACIM

While the reason for choosing the frequency more than 20 Hz, because for less than 20 Hz the voltage will be constant until the frequency 20 Hz, then the voltage to frequency ratio will be increased due to frequency increase causing a change in the speed without reducing the flux as shown in Figure 1.3 below (Bowling, n.d.)

Figure 1.3 Frequency and voltage relationship for ACIM

Basic inverter switching, normally results in a non-sinusoidal output voltages and currents, which may affect the performance of a non-linear load, Thus the usage of LC filter to shape the square waveform and eliminate the sharp angles at the output of the inverter H-bridge is important (Cortés et al, 2009), moreover this LC filter will add smoothness to the rotation of the ACIM (Santiago, 2004). The generation by the inverter of an AC waveform with low harmonic content is extremely important, harmonic filters are not an option, when controlling speed, due to the large range in the frequency spectrum at the inverter output (Leão et al, 2000). The performance of the speed controller has been enhanced by adding a fuzzy logic controller (FLC) and proportional-integral-derivative (PID) controller. The FLC and PID controller of an inverter for single phase AC Induction motor is described in this thesis. Figure 1.4 shows the block diagram of the proposed system. The speed of the ACIM will be changed according to the change of the VSI sine wave frequency. The error and its derivative are used as input variables for the FLC to adjust the error of the system, it will be subtracted from the output of the PID controller to enhance the performance of the system and minimize steady state error for the speed of the motor. While implementing the FLC to the system will eliminate the overshoot of the speed and improve the dynamic response of the system.

Figure 1.4 Block diagram of the proposed system

To add more rigidity and simplicity in addition to minimize the cost of the circuit, inverter circuitry and FLC circuit was designed based on PIC16F877A microcontroller to generate the pulse width modulation PWM and to generate internal sine wave with variable frequency to control the speed of the motor accordingly. Using such PIC controller in the inverter circuits will simplify the design, hardware, and will increase the reliability of the proposed system (Wilson and Lucas, 2005).

As a measure to the quality of the inverter output sine wave the harmonic components power should be very small so that the total harmonic distortion (THD)

should be as equal or less than 5%. THD can be defined as the sum of the power ratios of all harmonic components to the power of the fundamental frequency (Tzou et al, 1999).

$$THD = \frac{\Sigma \text{ harmonic powers}}{\text{fundamental frequency power}} = \frac{P_2 + P_3 + P_4 + \dots + P_n}{P_1}$$
(1.3)

For typical high quality sine wave inverter output harmonic components should be minimized to obtain $THD \le 5\%$. As a measure of the inverter output quality, results prove that the proposed system is able to produce a low THD in the inverter output.

1.2 PROBLEM STATEMENT and ITS SIGNIFICANCE

ACIM speed controllers, using SPWM VSI, designed for a particular frequency variation should be adequate. However, inverter exhibit poor performance concerning the steady state response of the system due to the power shortage if using the inverter alone. Thus the involving of PID controller will be necessary. Contribution of the PID will be obvious in minimizing steady state error due to the inverter shortage in power.

Moreover the rule of the PID controller of an inverter in the speed controller can be improved by implementing FLC as an additional controller to adjust the error of the system. Contribution of the FLC additional controller will be obviously regarded during the simulation results. This research developed a hybrid fuzzy PID controller to improve the response of the speed controller system.