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ABSTRACT 
 

 

 

 

Memristor has become one of the alternatives to replace the current memory 

technologies. Instead of titanium dioxide (TiO2), many researches have been done to 

explore the compatibility of others transition metal oxide (TMO) by using various 

deposition methods. Recently, the compatibility of zinc oxide (ZnO) to be used as the 

active layer of memristor has been widely explored. Meanwhile, the usage of organic 

materials in electronic device has shown a rapid growth as the size demand of devices 

is increasingly smaller and faster. Future electronics industry depends on the 

development of organic base semiconductor devices due to their advantages. In this 

study, the metal-insulator-metal (MIM) of Au/ZnO-Cu2O-CuO/Cu and 

Au/ZnO/ITO/PET memristor were fabricated using dilute electrodeposition of zinc 

(Zn) and subsequent thermal oxidation methods at 773 K and 423 K respectively. The 

15 s deposition gives the thinnest thin film, 80.67 nm for ZnO-Cu2O-CuO on Cu and 

68.10 nm for ZnO on ITO coated PET. The deposited thin film was characterized via 

X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). 

On Cu substrate, the XRD result indicates that Zn was oxidized to ZnO and has a 

wurzite structure. Meanwhile, Cu substrate also was oxidized to Cu2O and CuO. 

There was formation of needle like structure observed through FESEM after thermal 

oxidation method. While on ITO coated PET substrate, Zn was oxidized to wurzite 

ZnO as shown in XRD result with nodule structure of ZnO after the thermal oxidation 

method. Both Au/ZnO-Cu2O-CuO/Cu and Au/ZnO/ITO/PET sandwich memristive 

behavior were identified by the pinched hysteresis loop obtained from the I-V 

measurement. The high resistance state, HRS over low resistance state, LRS ratio of 

1.110 and 1.067 respectively were obtained. Empirical study on thermodynamics of 

ZnO, Cu2O, CuO and diffusivity of Zn2+ and O2- in ZnO shows that zinc vacancy was 

formed in ZnO layer, thus giving rise to its memristive behavior. The synthesized 

Au/ZnO-Cu2O-CuO/Cu and Au/ZnO/ITO/PET memristor show potential application 

in the production of a non-complex and low cost memristor. A flexible Au/ZnO/ITO 

coated PET memristor produces a comparable result to the Au/ZnO-Cu2O-CuO/Cu 

memristor and other previous studies on memristor. The flexible memristor is 

applicable to be fabricated using dilute electrodeposition at room temperature with 

low thermal oxidation process. 
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 ملخص البحث
 

 

 

 

 ثاني أكسيد memristor أحد البدائل لتكنولوجيات الذاكرة الحالية. تم دراسة تصنيع memristor أصبح
تم القيام بمزيد الاونة الأخيرة  فيباستخدام مختلف أساليب الترسيب. إضافة إلى ذلك،  TiO)2( التيتانيوم

 (ZnO) مثل أكسيد الزنك (TMO) الانتقاليمن الأبحاث لاستكشاف مدى توافق أكسيد المعدن 

وفي الوقت نفسه أظهراستخدام المواد العضوية في الأجهزة . memristorلكطبقة نشطة  لاستخدامه
. إن اعلى وسرعةالإلكترونية نموا سريعا، حيث أن حجم الطلب على الأجهزة متزايد بشكل أصغر 

ذات القاعدة العضوية نظرا  الجزئية أجهزة الموصلاتصناعة الالكترونيات في المستقبل تعتمد على تطوير 
 Au/ZnO-لمزاياها. في هذه الدراسة، تم تصنيع المعدن عازل المعدنية باستخدام الترسيب الكهربائي ل

CuO/Cu-O2CuوAu/ZnO/ITO/PET memristor مخفف من الزنك (Zn)  وطرق الأكسدة الحرارية
 و CuO-O2Cu-ZnOنانومتر ل 76.08 طبقة رقيقة و هيثانية يعطي أنحف  51 ل اللاحقة. الترسيب

 . تم تشخيص الطبقة الرقيقة المرسبة من خلال الأشعة السينيةZnO/ITO/PET نانومتر ل 07.56
(XRD) سح الضوئياالإلكتروني ذات حقل انبعاث الم و المجهر (FESEM). أظهرت نتائج XRD أن 

. وفي الوقت نفسه، تم أكسدة ركيزة wurzite تركيبلديه  و ZnO كسيد الزنكأكسد لأ  Znالزنك 
خلال الأكسدة  ZnO أكسيد الزنك تشكيل إبرة مثل . لقد لوحظCuOو O2Cu النحاس أيضا إلى

O2Cu-Au/ZnO- من لكل memristive . تم تحديد سلوك شطيرة887K هي حرارة درجة الحرارية عند

CuO/Cu  وAu/ZnO/ITO/PET عبر قياس  الضيقة التي تم الحصول عليهاالتباطؤ  بواسطة حلقةI-V .
الديناميكا الحرارية  على التوالي. تظهر الدراسة التجريبية على 5.608و  5.556نسبة التحويل المقاوم هو 

تشكل في  أن فراغ الزنك ZnOفي  2O- و Zn+2ل، والانتشارية  CuOو  ZnO ،O2Cu كسيد الزنكلأ
memristor -Au/ZnO . يبين توليفmemristiveإلى سلوكها ال، مما أدى ZnO أكسيد الزنك طبقة

CuO/Cu-O2Cu و Au/ZnO/ITO/PET إمكانية التطبيق في إنتاج memristor غير معقد  بشكل
 نتائج مماثلة ل Au/ZnO/ITOالمرن و المطلي ب PET memristor التكلفة. ينتج ومنخفض

CuO/Cu memristor-O2Cu-Au/ZnO  سابقة على لدراسات أخرى مماثلو memristor يمكن .
المرن باستخدام الترسيب الكهربائي المخفف في درجة حرارة الغرفة و مع عملية  memristor تصنيع

 أكسدة حرارية منخفضة.
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INTRODUCTION 
 

 

 

 

1.1 LIMITATIONS OF CURRENT MEMORY TECHNOLOGIES 

The reliance of people towards technology drove the development of computers and 

other technology devices. Innovation of smaller electronic devices with better 

performance and capacity give a huge impact to the memory storage system. As the 

technology developed, it can be seen that the size of the devices also are getting 

smaller. The smaller the device is, the more efficient it will be, but this brings forth 

the challenge in increasing the physical memory capacity. Presently used memory 

technologies such as dynamic random access memory (DRAM), static random access 

memory (SRAM), and NAND flash are facing design challenge due to the continued 

scale down in physical size. 

The memory system is the most crucial component in any electronic devices. It 

is where the computer keeps its current programs and data that are in use. With the 

advances in the technology of electronic devices, the memory technology has met its 

maximum limit to keep on par with the demand for smaller size and higher capacity 

memory storage.  

Figure 1.1 shows the trends in chip size, memory cell size and storage 

capacitance in response to DRAM generation by (Sunami, 2010). The increase of bit 

size of DRAM by a factor of 106 from 1 kbit to 1 Gbit caused the enlargement of the 

chip size up to 10 times. As mentioned previously, as the fabrication of increasingly 

smaller memory cell size grows harder, it could be expected to meet a limit on 

producing small chip sized with bigger DRAM size. 
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Figure 1.1 Memory cell size shrinkage at DRAM in volume production (Sunami, 

2010)  

 

 

 

On the other hand, the manufacturing cost of DRAM elevated up due to the 

improvement route in size and capacity to achieve the required specifications. 

Therefore, various development efforts have been focusing on reduction of 

manufacturing cost. Stated by Kwon in his thesis, worldwide DRAM industry has lost 

over 10 billion US Dollars during 2006 to 2008 because of the technological 

innovations and DRAM scaling.  The cell size of DRAM has to be reduced every year 

by 30 % to satisfy the latest market demand while the price per bit of DRAM drops 

26 % annually. This will end up in a big loss for the DRAM manufacturer (Kwon, 

2013). A significant portion of the total system power and the total system cost is 

spent in the memory system with the increasing size of the memory system (Qureshi, 

Srinivasan, and Rivers, 2009). Figure 1.2 shows the overall current trend of the 

memory system where the target size approaches 10 nm, with higher capacity and 



3 

speed. But as to reduce the size and improve the performance of the device, the 

manufacturing cost increases because of the increase in power consumption by the 

device itself and its cooling system itself as the structure of the device more complex. 

 

 

Figure 1.2 Overall current trend of memory system technology 

 

 

 

The memory system is one of the most critical components of modern 

computers. Dynamic random access memory (DRAM) and static random access 

memory (SRAM) are the main system memory used in any electronic devices. They 

can be considered as the crucial components of the memory system with fast response 

and good performance. 

But, DRAM and SRAM are the volatile memory system which they cannot 

store the memory data without the power supply (Perez and De Rose, 2010; Lian, 

2014). The current memory devices cost billions dollars to keep pace with the current 

trend and capacity. It has reaching their maximum physical limitation when demands 

of the smaller size memory devices arise. 


