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ABSTRACT 
 

 

 

 

This dissertation presents experimental measurements on a round free turbulent jet 

and numerical simulations on a flow past a surface mounted cylinder. The 

experimental measurements map the Reynolds stresses in a vertical round free jet. A 

12 mm diameter nozzle with exit velocity of 8 m/s with corresponding Reynolds 

number of 6000 were used to determine the differences in mean velocity profiles, 

turbulence intensity profiles, and velocity spectra in the flow of a vertical round free 

jet at room conditions. Constant Temperature Anemometry (CTA) with 1D probe was 

used to measure the mean and fluctuating velocity components to obtain the Reynolds 

stress correlations. The results show that different mechanisms may have control in 

various types jet flows or in different regions of a jet flow. In free jet flows, the 

downstream region is dominated by turbulence structure whereas coherent eddy-

structure can have a strong influence on the near field; particularly for low-Reynolds 

number jet flows. The present study is an attempt to review the current information on 

vertical round free turbulent jet flows. The influence of origin of the jet (initial 

conditions) and the boundary conditions on the jet flow structure is considered. The 

result depicts that the exit conditions of the jet play a very important role in the 

development of the jet in the near field but the far field flow remains independent of 

the exit conditions of the jet. The numerical solution is preform by using large eddy 

simulations (LES) for the flow around a surface mounted cylinder. Cylinder of height-

to-diameter ratios of 2.5 with a thin boundary layer of the approach flow have been 

analyzed and compared to the available literature using StarCCM+. The detailed study 

presented confirms largely the flow behavior of the fluid flow comprehensively when 

the fluid interacts with a bluff (solid) body (cylinder). It also provides further insight 

and quantitative information on the mean flow, the turbulent fluctuations and the 

unsteady flow features.  The mean-flow behavior is analyzed with the aid of 

streamlines and contour plots of mean-velocity and fluctuation components. The 

vortex shedding flow pattern past the cylinder is further analyzed for determining the 

Reynolds stresses. Alternating shedding is found to occur over the cylinder. The 

shedding is observed mainly near the ground where it is also mostly alternating but 

intermittently also symmetrical. The aim of the work is to characterize turbulence in a 

fluid flow in terms of Reynolds stresses. 
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 خلاصة البحث
 

 

الأطروحة  تقدم قياسات تجريبية للأضطربات الحرة على منفث مستدير  هذه

بالاضافة الي محاكاة عددية للتدفق العابر علي سطح اسطوانة .تمت اجراءت 

القياسات التجريبية لايجاد توزيع  اجهادات رينولدز في المحور الرأسي للمنفث 

م/ث عند عدد  8ملم مع  فتحة خروج بسرعة  12المستدير. و تم استخدام فوهة بقطر 

وذلك لتحديد الاختلافات في توزيع السرعة المتوسطة وشدة  6000رينولدز مساوً لـ 

الاضطراب وسرعة الأطياف في التدفق العمودي للمنفث المستدير عند ظروف 

مع  (CTA) الغرفة. تم استخدم جهاز قياس سرعة الرياح عند درجة حرارة ثابتة

ادي الابعاد لحساب مركبات السرعة المتوسطة و السرعة  المتذبذبة مجس اح

للحصول على علاقة اجهاد رينولدز. اظهرت النتائج أن آليات متنوعة قد يمكن 

  استخدامها للتحكم في تدفقات مختلفة أو في مناطق مختلفة من للمنفث المستدير

حين ان الدوامة يهيمن الاضطراب في التدفقات الحرة على منطقة المصب في 

المتماسكة يمكن أن يكون لها تأثير قوي في المناطق القريبة، خاصة عند  تدفقات 

أعداد رينولدز القليلة .هذه الدراسة هي محاولة لإعادة النظر في المعلومات الحالية 

عن الأضطربات الحرة للمنفث المستدير. تم اخذ تأثير الظروف الأولية للطائرة 

هيكل التدفق بعين الاعتبار.واظهرت النتائج أن شروط الخروج  وشروط الحدود على

من المنفث تؤثر في تطوير المجال القريب، ولكن يظل تدفق المجال البعيد مستقل عن 

تمت دراسة المحاكاة العددية باستخدام دوامة كبيرة للتدفق . ظروف مخرج المنفث

  2.5ة طول إلى قطر مساوً حول سطح مركبة اسطوانية. وقد تم تحليل اسطوانة  بنسب

النتائج .+ StarCCM  داخل تدفق بطبقة حدود رقيقة ومقارنتها باستخدام برنامج

التفصيلية لهذه للدراسة تؤكد إلى حد كبير أن سلوك تدفق السوائل يكون بشكل شامل 

عندما يتفاعل السائل مع جسم صلب )اسطوانة(, كما أدت النتائج الي القاء الضو علي 

المتوسط و الاضطرابات المتذبذبة وخصائص التدفق الغير مستقر.خصائص  التدفق

التدفق المتوسطة  تم تحليلها  بمساعدة الخطوط الانسيابية وخطوط  شكل السرعة 

المتوسطة و المركبة المتذبذبة للتدفق. كذلك تم تحليل نمط تدفق الدوامة بعد عبور 

تائج تدفق دوامات فوق الاسطوانة أظهرت الن.الاسطوانة لتحديد اجهادات رينولدز

وتقل شدتها بمسافتها بوجود تناوب متماثل فوق الاسطوانة بالقرب من سطح الأرض. 

والهدف من هذا العمل هو وصف الاضطرابات في تدفق السوائل من حيث الضغوط 

 .رينولدز
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CHAPTER ONE 

INTRODUCTION 

 

 

 
 BACKGROUND 1.1

Turbulence in fluid flow is a very complex and also an interesting phenomenon which 

has captivated the imagination of Engineers and Physicists from all over the world 

ever since the conceptualization of modern science. The turbulence problem is far 

from solved, whether in terms of mathematical and intuitive understanding, or in 

terms of characterization of turbulence. A fundamental understanding and 

characterization of turbulence is very essential because it will help to solve many 

engineering problems related to fluid flow and also in the control of turbulence itself. 

This research is an effort to characterize the turbulence field in the flow past a surface 

mounted cylinder.  

 

 TURBULENCE IN FLOW OF FLUIDS 1.2

The phenomenon of turbulence can be found almost anywhere and everywhere in 

every field of life, starting from the wind in the atmosphere to stirring of a coffee cup. 

The flow of rivers and wind is generally turbulent, even if the currents are very gentle. 

The air or water swirls and eddies while its overall bulk moves along a specific 

direction. Almost all industrial, man-made flows are turbulent. And also all naturally 

occurring flows on earth, in oceans, and atmosphere are turbulent.  Most practical 

flows occurring in engineering applications involve non-homogeneous turbulent flows 

that are affected by boundaries or body forces. Some of the examples of a turbulent 

flows include jet streams in the upper troposphere, currents below the surface of the 
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oceans, strong cumulus clouds and deep turbulent convection in the ocean, the 

boundary layer in the earth’s atmosphere, boundary layers growing on propellers and 

aircraft wings, combustion processes, mixing in turbulent chambers, wakes of cars, 

ships, aircrafts and submarines, blood flow in arteries, oil transport in pipelines, lava 

flow, the flow through pumps and turbines etc. 

From a scientific perspective, turbulent flows are complex to understand but 

also at the same time, they are fascinating even after many decades of research. The 

drawbacks of many numerical simulations and uncertainty of the results obtained 

through all these years of research on turbulent flows, serve as additional information 

for many more researches to be conducted to provide a better understanding of the 

concept of turbulence itself.  The main aim of the study of turbulence research is to 

understand the concept of turbulence in real time in the fluid flow and its structure. It 

is very important to know that turbulence is not a feature of fluids but of fluid flow, in 

which the fluid undergoes irregular fluctuations compared to a laminar flow which is 

the motion of fluids in layers and of smooth paths. In turbulent flow the velocity of the 

fluid at a point is continuously undergoing changes in both magnitude and direction. 

Tennekes and Lumley (1972) proposed a list of some basic characteristics of turbulent 

flows: 

• Irregularity or randomness:  Turbulent flow is always unpredictable. Thus a 

deterministic approach has to be employed to study the problem of turbulence by 

relying on numerical and experimental methods. 

• Diffusivity: This is a property of turbulence, which causes rapid mixing and 

increased rates of momentum, heat, and mass transfer and makes it an important 

feature in turbulent flows. This property is useful for many applications. It prevents 

boundary-layer separation on airfoils at large angles of attack, increases heat transfer 



 

3 

rates in machinery of all kinds. It is the source of the resistance of flow in pipelines, 

and it increases momentum transfer between winds and ocean currents. If a flow does 

not exhibit spreading of velocity fluctuations through the surrounding fluid but pattern 

looks random, then the flow is surely not turbulent. In a case of aircraft jet contrails, 

excluding the turbulent region just behind the aircraft, the contrails have a very nearly 

constant diameter for several miles. Such a flow is not turbulent, even though it was 

turbulent when it was generated.  

• Reynolds number: Turbulent flows always occur at high (Re > 5x10
5
 for flows 

past flat plate) Reynolds numbers. It often originates as instability of laminar flows if 

the Reynolds number becomes too large. The instabilities are related to the interaction 

of viscous terms and nonlinear inertia terms in the equations of motion. This 

interaction is very complex. Randomness and nonlinearity combine to make the 

equations of turbulence nearly intractable. Thus this situation makes turbulence 

research a very challenging. It is one of the principal unsolved problems in physics 

even today after many decades of research.  

• Three-dimensional vorticity fluctuations: Turbulence is rotational and three 

dimensional. It is characterized by high levels of fluctuating vorticity. Hence, vorticity 

dynamics plays an essential role in the description of turbulent flows. If the velocity 

fluctuations were two dimensional, the random vorticity fluctuations that characterize 

turbulence could not maintain themselves. Flows that are substantially two 

dimensional, such as the cyclones in the atmosphere which determine the weather, are 

not turbulent themselves, even though their characteristics may be influenced strongly 

by small-scale turbulence, which interacts with the large-scale flow.  For example, 

random waves on the surface of oceans are not in turbulent motion since they are 

essentially irrotational. 
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• Dissipation: turbulent flows are always dissipative. Viscous shear stresses 

perform deformation work which increases the internal energy of the fluid at the 

expense of kinetic energy of the turbulence. Turbulence needs a continuous supply of 

energy to make up for these viscous losses. If the energy supply is stopped, turbulence 

of the flow decays rapidly. Random motions, such as gravity waves in planetary 

atmospheres and random sound waves (acoustic noise), have insignificant viscous 

losses and, therefore, are not turbulent. The major distinction between random waves 

and turbulence is that waves are essentially non dissipative, while turbulence is 

essentially dissipative. 

• Continuum: turbulence is a continuum phenomenon, governed by equations of 

fluid mechanics. Even the smallest scales occurring in a turbulent flow are ordinarily 

far larger than any molecular length scale. 

• Property of Flows: Turbulence is a feature of fluid flows and not of fluids. The 

dynamics of turbulence is almost the same in all fluids, whether they are liquids or 

gases, provided the flow has a high Reynolds number. Since the equations of motion 

are nonlinear, each individual flow pattern has certain unique characteristics that are 

associated with its initial and boundary conditions. No general solution to the Navier-

Stokes equations is known; consequently, no general solutions to problems in 

turbulent flow are available. Since every flow is different, it follows that every 

turbulent flow is different, even though all turbulent flows have many characteristics 

in common.  

The above discussed properties are the characteristics of turbulence. 

Turbulence study is broadly classified into three categories Experimental, analytical 

and numerical simulations. In our research, we study the characteristics of turbulence 

experimentally and through numerical simulations. In this work, experimental 
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investigation of a round free turbulent jet and numerical simulation of a three-

dimensional flow past a surface mounted bluff body (cylinder) will be carried out in 

order to get a better understanding of turbulence. 

 

 FLOW PAST A BLUFF BODY 1.3

A bluff body is a body of certain volume which obstructs flow of a fluid in a particular 

direction. The flow of fluid over the bluff body generates aerodynamic forces, skin 

friction drag, a wake region behind the body and vortex shedding in the wake region. 

The size, intensity and interaction of the vortex system varies substantially based on 

factors like the Reynolds number, aspect ratio of the body, surface roughness of the 

body and proximity to the mounting  surface. A proper experimental/numerical study 

of these vortex patterns may provide an insight into the nature of turbulence itself. 

Therefore in this work, the bluff body is modelled as a cylinder and mounted on a flat 

surface. Numerical simulations are carried out to observe the flow behavior in close 

proximity of the cylinder. The choice of a cylinder as a bluff body has been made due 

to the fact that cylinder-like structures can be found in many engineering applications, 

such as heat exchangers, cooling systems for nuclear power plants, offshore structures, 

buildings, chimney stacks, overhead power transmission lines, undersea cables and 

pipe lines. Such a configuration complicates the fluid flow dramatically. 
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Figure ‎01.1: Flow visualization of a flow past a surface mounted cylinder: (a) top view 

and (b) side view (Afgan et al, 2006) 

 

When the fluid flows over a bluff body (cylinder), a series of disturbances 

occur in the flow along the direction of the flow around the cylinder. When the flow 

reaches the bottom of the cylinder, it deflects along the surface of the cylinder causing 

counter rotation of currents known as vortices on all sides of the cylinder. A down 

flow is developed due to the downward negative stagnation pressure gradient of the 

non-uniform approach flow adjacent to the upstream face of the cylinder. The 

interactions between the bottom edge flow and the horizontal boundary layer 

separation close to surface results in the formation of a vortex system. The two ends of 

this vortex system are swept downstream by the flow as they wrap around the cylinder 

in the shape of a horseshoe in plain view and hence popularly known as the horseshoe 

vortex. Horseshoe vortex is created at the intersection of the cylinder with the 

mounting plane which is often not steady in terms of its location and size. At the top, 
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free end of the finite cylinder, a complex three-dimensional flow is formed. The flow 

climbs the cylinder and when it passes, it forms a series of vortices at the edge.  

In order to map these vortical structures and to visualize them, some of the 

techniques like Smoke-wire visualization, Constant Temperature Anemometry (CTA), 

Particle induced velocimetry (PIV) Laser Doppler Anemometry (LDA), Laser 

Doppler Velocimetry (LDV) surface pressure measurement and numerical simulations 

using any commercial software can be employed to study the effects on the surface of 

cylinder on the laminar and turbulent junction flows. The above mentioned methods 

are mainly used to measure the turbulence quantities like mean velocity components, 

fluctuating velocity components and Reynolds stress components of the flow. 

Mapping and understanding the Reynolds stress components in a flow are of high 

importance in the study of turbulence as it might give some new insight into the 

physical mechanisms responsible for the vortex shedding. Hence engineers and 

scientist are developing many methods to find the Reynolds stress components in a 

flow by using both experimental and numerical methods. By using Reynolds stress 

components, we may obtain a better or complete understanding of the characteristic 

and the mechanisms which is responsible for the creation of turbulence in the fluid 

flow. 

 

 REYNOLDS STRESSES 1.4

The fundamental objective of most researches in field of turbulence is to ultimately 

explain the nature of the transport process. Turbulent shear flow in these transport 

processes tends to explain the physical meaning of Reynolds stresses. The Reynolds 

stresses are the mean forces (per unit area) imposed on the mean flow by turbulent 

fluctuations. They arise from the nonlinear advection term when the Navier–Stokes 


