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ABSTRACT

Comprehensive comparison on quarter-car, half-cad é&ull-car models were
conducted to analyze the effect of using semiaaosmrol policies, namely skyhook,
groundhook and hybrid controls, in improving rideatity of passenger vehicle.
Sprung mass acceleration, suspension deflectiontiendleflection responses were
analyzed for measurements of ride quality, rafpleee and road holding, respectively.
Analyses in frequency-domain transfer functiongtidomain transient state and time-
domain steady state were conducted on each of duels1 Peak-to-peak values in
both time-domain analyses and settling time anddstestate values in the transient
state were compared to passive system. Results gtadvlybrid control policy gives
significant improvements in most responses whileth® same time it does not
compromise road holding ability of vehicle. Skyhoo&ntrol generally improves
sprung mass responses while at the same time s&gemsprung mass responses. On
the other hand, groundhook control generally impsounsprung mass responses at
the expense of sprung mass responses. Groundhotbklcalso found to take longer
time to settle in transient state response. Fudbantitative comparison of responses
on all three models shows that quarter-car modeinsble to accurately represent
responses in full-car model. Half-car model giveasonable representation of full-car
model in some of the states. Root mean square @asasyfurther conducted on a H-
car 2-DOF system and the results show good agradgméme previous work on Q-car
2-DOF. As expected, the response exhibit simildwalb®r of the skyhook control.
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

By definition, Ride Quality is degree to which tkéhole subjective experience
(including the motion environment and associatetbis) of a journey or ensemble of
journeys by vehicle is perceived and rated as faveror unfavorable by passengers
or operators (International Organization for Stad@ation [ISO] 5805, 1997). Its
primary concern is on sensation or feel of drivepassenger in the environment of a
moving vehicle. In a simple word, ride is considees comfort when the occupant is
comfortable riding the vehicl&/ehicle ride quality is strongly related to thechitand
vertical motions of the vehicle.

Vehicles traveling at high speed usually experieacéroad spectrum of
vibrations. These vibrations are transmitted tospagers either by tactile, visual or
aural paths (Gillespie, 1992). Ride is usually ohgplwith the tactile and visual
vibrations, while the aural vibration is categodzes noise. Alternatively, spectrum of
vibrations may be categorized by frequency rangkspecified as ride for frequency
range of 0 to 25 Hz and noise between 25 to 20600 H

Ride quality is affected by various designs andrafp®y parameters in a
highly complex manner, including high frequencyraifions, body booming, body
roll and pitch motion, vertical motion by spring the suspension system and
frequency vibration transmitted from the road inputitations. Other factors include
high frequency vibrations or noise induced by agnadhic forces as well as the

engine and driveline. Ride quality can also beumficed by vehicle interior design



such as seat comfort, temperature, ventilatioratlon of features etc. Among these
factors, the major source of vibration of a vehitlat affects ride quality is the road
irregularities which are transferred to the passengrough the tires and suspension
system.

Generally vibrations affecting ride quality can ¢etegorized into two parts;
low frequency vibrations and high frequency vilas. The range differs from one
researcher to another, but is generally agreed tti@atlow frequency is less than
around 25 Hz. High frequency vibrations may be textby either impacts originating
at the wheels and transmitted through the suspensio alternating forces by
unbalanced rotating masses in the engine (Janel@A3). This vibration may be
eliminated by having proper cushioning of impact atcurate balancing of high
speed rotating parts. However, low frequency vibres, which mainly due to the road
irregularities posed more significant effect on tide quality of vehicle. This is due to
it being close to the natural frequencies of vehiGenerally the natural frequency of
sprung mass (mass of the vehicle, excluding tleadird its components) is about 1
Hz, the natural frequency of unsprung mass (magkeofire and its components) is
between 8 to 10 Hz and there exist an intermediateral frequency between 6 to 20
Hz (Janeway, 1948).

To eliminate this low frequency vibrations effech passenger, there are
several components of interest that become thesfotimprovement; tire, suspension
and passenger seat. Tire technology has come tel#&sve stagnant, as not much
improvement can be made as far as ride qualitpime@rned. Limited improvements
can be made on the seat but at the expense tha¢hiede as a whole having to face
the vibrations, which could cause some componeaisiré. The focus of most

researchers in this area is thus looking towardgsawing the suspension system in



order to eliminate the vibrations. Several reseansithave proposed the concept of
active control system, which claimed to eliminalbe inherent problem of passive
suspension system — that is the conflicting pararedor ride and handling. However,

this new system is by far still not free from atmpgcomings.

1.2 RIDE QUALITY CRITERIA

Over the years, various researches were conductedentify some generalized
criteria in ride quality, which is commonly calle ride comfort criteria. Several
approaches have been proposed. One of them is @@sevomfort criterion, which is

described in th&ide and Vibration Data Manual J6a of the Society of Automotive

Engineers (SAE) (1965). Figure 1.1 defines the piatde amplitude of vertical

vibration as a function of frequency and it coudddivided into three parts:

1. Frequency range of 1-6 Hz - peak jerk < 12.6°1f496 in./3)

2. Frequency range of 6-20 Hz - peak acceleratior88r/$ (13 in./$)

3. Frequency range of 20-60 Hz - peak velocity < 2.7eni®.105 in./s)

It should be noted that this criterion is based/ertical sinusoidal vibration of
a single frequency data. There is no establishe ba evaluate the effect when two
or more components of different frequencies arsene All data that were used to
establish the boundaries were obtained with tdgests standing or seating on a hard
seat (Wong, 2003).

ISO has developed and adopted a general guideeforirdy human tolerance
to whole-body vibration, ISO 2631 (1997). This gudkefines three distinct limits for
whole-body vibration in the frequency range of 1H&) such as:

1. Exposure limits, which are related to the preséwadf safety and should

not be exceeded without special justification.



2. Fatigue or decreased proficiency boundaries, wiaich related to the
preservation of working efficiency and are applieduch tasks as driving
a road vehicle of a tractor.

3. Reduced comfort boundary, which are concerned thithpreservation of
comfort and are related to such functions as rggduniting and eating in

a vehicle.
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Fig. 1.1: Vertical vibration limits for passenger
comfort proposed by Janeway (Wong, 2003).

Figure 1.2 shows the fatigue or decreased profigiddoundaries: (a) vertical
vibration direction and (b) transverse or lateradction which is defined in terms of
root-mean-square values (RMS) of acceleration geireguency for various exposure

times. It can be observed that as exposure time®ases, the boundary lowers.



Generally, the exposure limits for safety (or Healtan be obtained by raising the

boundaries by a factor of 2 and for the reducedfedrboundaries by a factor of 3.15.
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Fig. 1.2: Limits of whole-body vibration for fatiguor decreased proficiency for
various exposure times, as recommended by ISO (W\20G§).

As for motion sickness, ISO 2631 (1997) suggedttti@percentage of people
who may vomit is proportional to the Motion Sicked3osage Value (MSDV). This
value is calculated by the square root of the nategf the square of the frequency
weighted z-axis acceleration. A severe discomfaunoary and a reduced comfort
boundary for various exposure times in the frequeramge of 0.1-1 Hz has been
recommended by ISO.

Another proposed parameter in evaluating humanorespto vibration is the
absorbed power, which is the product of vibratiorcé and velocity transmitted to the
whole body. It is basically a measure of the ratelach vibration energy is absorbed
by human. This parameter has been used mainlylitamivehicle research and it has
been reported that the tolerance limit is definedaa 6 W absorbed power at the

driver’s position (Wong, 2003).



In short, extensive researches have been conductédtter understand on
how to measure ride quality. However, they is myl&, generally accepted approach.
Several ride comfort criteria have been suggesteadal are derived from various
limitations in data and assumptions and far frora #ttual situation in vehicle

vibration and motion.

1.3 VEHICLE SUSPENSION SYSTEM

Suspension system separates the axles from veblw@ssis, so that any road
irregularities are not transmitted directly to tthever and the load on the vehicle.
Suspension system affects both ride quality andlirepperformance of vehicle. As a
matter of fact, ideal ride quality and handlingfpemance pose a conflicting design
requirement of vehicle suspension. While a lighdgmped soft suspension yields
good shock performance, hard suspension with heghpihg is desirable to achieved
good handling. Active suspension system has be&dimced as a promising
alternative to overcome this traditional designitaton.

Suspension systems can be classified into pasgsters and active system,
according to the existence of control input. Tlewentional passive suspension
system consists of a typical spring and dampeis the oldest system built by the
principles outlined by Olley (1934) and gradualiymproved. Most vehicles used
nowadays are using this system. Active suspersystem can be further classified
into two types — a semiactive system and a fullsivacsystem, according to the
control input mechanism. While the fully active gession system produces the
control force through a separate hydraulic/pneumatit, the semiactive suspension

system uses a varying damping force as controéf@onget al., 2002).



Semi-active and fully active systems are relativedyv systems introduced as
an attempt to overcome the shortcomings existdth@npassive system. An optimal
fully active suspension system is expected to letab(Barak, 1992):

1. Optimize between ride comfort and road handling.

2. Control car attitude changes due to braking (dieegelerating (lift) and

cornering.

3. Maintain optimal system response independent ofleloads.

4. Faster system response time.

However, the improved performance is directly mdatwith increased in
hardware complexity, higher costs and diminishd@bgity. Semiactive suspension
system was therefore introduced as a compromiseebet passive system and fully
active system. In general, it improves ride with@oimpromising the handling of
vehicle as compared to passive system and at the 8me less complexity and less
costly than active system. Semiactive suspensistesyis the main focus in this work
and the result is compared to the conventionaliypasystem.

There are generally two types of semiactive dampysiem, namely electro-
rheological (ER) damper or magneto-rheological (MRjnper. Magneto-rheological
fluid (MRF) is used in MR damper. This MRF usuallya fluid such as hydrocarbon
oil filled with randomly dispersed micron-sized magjcally polarizable iron.
Additives usually are added to promote homogenaity to prevent gravitational
settling of the irons. This MRF exhibit a changeheological properties from a free-
flowing fluid state to a semi-solid state upon aggion of an external magnetic field.
This change can be varied according to the strewigtifie applied magnetic field. The
process is also reversible that upon removal ofthgnetic field, the fluid will revert

back to its original free-flowing state.



