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ABSTRACT

Though various techniques have been suggested for the analysis of ECG signals,
interpretation of these signals, especially as they affect human health, has posed some
difficulties. Consequently, the best way of interpreting these physiological signals by
electric measurements from the body surface in terms of cardiac electric activity
remains an active research topic till today. This research tackles three problems
related to ECG analysis namely, parametric modeling, period normalization
(interpolation) and classification of arrhythmias. In order to model the signal, each
heartbeat is first mapped into a new domain where the transform coefficients vector
would be sparse. The coefficients vector is then approximated to a sum of damped
sinusoids. The transform matrix is generated based on the combination of linear
prediction (LP) and the singular values decomposition (SVD) of the LPC filter
impulse response matrix. This approach leads to relatively satisfactory compression
ratio (CR) as compared to existing techniques. Though parametric modeling of ECG
signals has a central role in real time transmission and classification of heart
abnormalities (arrhythmias), the compression ratios achieved are not suitable for
storage purpose. Therefore, 2D ECG compression schemes are adopted where the
beats of differing periods should be equalized to the same period length and then
arranged in an image matrix before the application of image compression algorithm.
Limitations of the existing techniques for ECG period equalization are highlighted and
a new frequency domain approach for period normalization has been developed. The
proposed approach is signal dependent and able to adapt to the signal characteristics.
An analytical model to generate basis functions has also been developed. The merits
of the proposed technique are appreciated when compared to other techniques
commonly used in the literature. Finally, an algorithm for arrhythmia classification
that conforms to the recommended practice of the Association for the Advancement of
Medical Instrumentation (AAMI) is presented. Three inter-patient classification
scenarios have been considered namely, detection of ventricular ectopic beats (VEBs),
detection of supraventricular ectopic beats (SVEBs) and the multiclass recommended
taxonomy.A novel set of features extraction via the application of orthogonal
transformation of the ECG signal has been developed. These features in conjunction
with some commonly used features are fed into the Regularized Least Squares
Classifier (RLSC) with linear kernel. The proposed classification scheme shows good
separation capability between the classes of ECG arrhythmias as it has achieved a
Balanced Classification Rate (BCR) of 83.9 % for the multiclass scenario which is
comparable to the state-of-the-art performance of automatic arrhythmia classification
algorithms.
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CHAPTER ONE

INTRODUCTION

1.1  OVERVIEW

Cardiovascular Diseases (CVDs) are the leading causes of death in the world, where
more than 80% of these cases are found in developing countries (Goldberger et al.,
2000). This leading position will last for the next thirty years as forecasted by the
World Health Organization (WHO) (Organization, 2012). In terms of numbers, CVDs
claimed the lives of about 17.3 million of the world population (i.e., 30% of the global
deaths) in 2008. In addition, the estimated economical cost of heart related diseases in
the United States only was about 316.4 us $ billion in 2010. This cost covers health
care services, medications and decrease in productivity (Frieden, 2010). For accurate
and early-on assessing of different cardiac diseases Electrocardiogram (ECG) is a
crucial non-invasive diagnostic tool. Abnormalities in both electrical generation and
conduction at different levels in the heart are reflected on the surface ECG as
deviations from the normal heart rhythm. The term arrhythmia is used to refer to these
deviations (Clifford et al., 2006).

In general, the main challenge in developing countries is due to an inadequate
number of physicians who are able to read and analyze ECG signal particularly in
rural areas. In developed countries, on the other hand, the increasing number of
patients in Intensive Care Units (ICU) and the large amount of data recorded by the
Holter monitors make it almost unfeasible for the physicians to manually analyze all
the acquired data (Goldberger et al., 2000). One of the engineering solutions for the

mentioned problem is applying machine learning techniques.



Machine Learning (ML), provides an automatic and low cost analysis of ECG data,
which can assist the human being. Such analysis can reveal hidden information that is
crucial for final decision. The fast development in ML algorithms and the possibility
of extraction of discriminative and stable features using signal processing techniques
give rooms to improve on the current state-of-the-art. Consequently, the possibility to
save many lives if heart abnormalities are detected early-on and accurately is
garanteed.

Generally, learning algorithms can be grouped into two main categories. In the
first, supervised learning, it is assumed that a set of training data is available, and the
classifier is designed by exploiting this apriori known information (Chazal et al.,
2004; Clifford et al., 2006; Kampouraki et al., 2009; Minami et al., 1999; Osowski et
al., 2004). In the second category, training data of known class labels is not available.
In this type of problems, a set of feature vectors is given and the goal is to unravel the
underlying similarities and cluster (group) “similar” vectors together. This is known as
unsupervised pattern recognition, unsupervised learning or clustering (Francisco et al.,
2007; Khawaja, 2006; Sotelo, 2010). With the increase of the number of abnormalities
the clustering task becomes more challenging with unsupervised learning methods.
One of the most promising algorithms for supervised learning is the Regularized Least
Squares Classifier (RLSC). This algorithm has shown to perform as accurately as
Support Vector Machine (SVM) with some advantages in terms of reduced
computational complexity and memory requirements when applied with linear kernel
(Rifkin, 2002).

Parametric modeling of the ECG signal serves to reduce the size of the data for
real-time transmission and to provide features for signals classification. However, by

applying parametric modeling techniques only intersamples (intrabeat) redundancy is



exploited. Interbeats redundancy manifested by the quasi-periodicity of the ECG
signal can be exploited by adopting Two-Dimensional (2D) image compression

algorithms which are more suitable for storage purposes.

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE

Usually a large amount of ECG data is recorded from each patient (about 100,000
heartbeats daily), hence there is a need to store and retrieve these data efficiently for
further consultation. Furthermore, some special applications of telemedicine, where
consultation between medical specialists in different locations is conducted in real-
time, need a compact representation of the ECG signal. This compact representation
of the signal helps to reduce the time and the cost of transmission through
telecommunication networks. Examples of these applications include transmissions
initiated from an ambulance or a patient's home to the hospital for early diagnosis.

The ability of signal processing techniques to detect and classify automatically and
rapidly the large amount of data generated by the Holter monitor at low cost when
compared to manual analysis has brought the interest of many researchers in the last
decades to develop new algorithms for automatic ECG monitoring.

Each of these research problems are discussed more specifically as follows:

a) Lack of efficient modeling techniques for ECG signals. Existing
techniques fail to bring acceptable signal reconstruction for clinical
evaluation in many cases due to the fact that they are based on symmetry
assumptions or due to the large variety in the morphology of the ECG
within and across patients (Osowski and Linh, 2001). The assumptions of

the symmetry of the ECG waves are suitable to model normal and some



b)

pathological rhythms but they do not hold for abnormal rhythms which are
clinically more important.

The best way for ECG period normalization still posses some challenges.
Due to the capability of 2D ECG compression algorithms to exploit
further the redundancy in the signal when compared to 1D compression
algorithms and to yield better compression ratios, an extensive research
effort has been devoted to their development in recent years. In 2D ECG
compression, the beats of differing periods should be equalized to the
same period length using different techniques. These techniques can be
classified into two main categories, namely signal extension and period
normalization techniques. Unlike signal extension, period normalization
techniques are lossy. However, the latter produce a lower Percent Root
mean square Difference (PRD) as compared to the former when used with
2D ECG coder (Chou et al., 2006). This outperformance is justified by the
fact that period normalization provides higher inter-beat correlations
compared to signal extension. The main problem of the widely used period
normalization technique for ECG signals introduced by Wei et al is that it
cannot process extremely irregular ECG very well (Wei et al., 2001). This
problem has been observed and documented by (Chou et al., 2006).
Sampling Rate Conversion (SRC) in the frequency domain using
sinusoidal transforms (Discrete Fourier Transform (DFT) or Discrete
Cosine Transform (DCT)), has not received sufficient attention from the
research community in the past and have not been considered for ECG
signals period normalization. However, recently Bi and Mitra have shown

the merits of this approach in terms of lower computational complexity





