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ABSTRACT 
 
 
 
 
Calcium phosphate is an interesting material for biomedical applications such as for 
artificial bone implant and cell culture. Their excellent bioactivity makes them 
suitable material for cells to grow. However, the application of porous calcium 
phosphate including biphasic calcium phosphate (BCP) in biomedical applications is 
limited to non-stressed loaded regions owning to the brittle nature and the low fracture 
toughness of the bioceramics. Incorporation of metal as sintering additive is a simple 
way to improve the densification, mechanical and biological performance of porous 
BCP. In this work, magnesium (Mg) was incorporated into the BCP as sintering 
additive to improve the performance of porous BCP. The work covered synthesis of 
calcium phosphate including magnesium doped-biphasic calcium phosphate through 
sol-gel method by varying the concentration of Mg. Porous calcium phosphate 
ceramics were prepared via polymeric sponge method using the synthesized powders. 
The biological performance of the pure BCP and Mg-doped BCP porous scaffold was 
tested using cell culture method. The crushed porous scaffolds, functioning as 
microcarrier were tested in vitro using spinner vessel cell culture for attachment and 
proliferation of Vero cells. Morphological evaluation by SEM measurement showed 
that the particles of Mg-BCP were tightly agglomerated, with primary particulates of 
75-150 nm diameters. FESEM result also showed that doping of magnesium into BCP 
particles caused fusion of particles leading to more progressive densification of 
particles as shown by higher concentration of magnesium doped.  Successful 
incorporation of Mg into BCP lattice structure was confirmed by higher crystallinity 
of Mg-BCP and by shifting of tricalcium phosphate (TCP) peaks in XRD patterns to 
higher 2θ angles as the Mg content increased. XRD and FTIR measurement showed 
that the increment of crystallinity was directly proportional to the amount of the 
dopant. Both analyses also revealed that TCP appeared only after calcination of 700ºC 
and above. The macroporous ceramics with different pore sizes ranged from 100 to 
1000 µm have been successfully fabricated.  The physical characterizations found that 
the density of the porous bodies varied from 1.90 g/cm3 to 2.19 g/cm3 with 31 –35 % 
porosities.  Doping of 10 mol% magnesium has increased the compressive strength by 
over 5 times compared to pure BCP (0.395 MPa to 2.170 MPa). Cell culture studies 
revealed that porous pure BCP and Mg-doped BCP were suitable for attachment, 
spreading and proliferation of Vero cells. FESEM results showed that Mg substitution 
induced a spread-like and irregular morphology which was quite different from the 
cell grown onto the pure BCP where the cells just remain on the surface of the 
scaffold, or proliferated in a localized area within the porous ceramics. 
 

 

 
 
 
 



 iii

 ملخص البحث
  

 
 

 
الطبيعة . إن مادة فوسفات الكالسيوم مادة جديرة بالاهتمام في التطبيقات الطبية، مثل صناعة العظام الاصطناعية

مع ذلك، فان التطبيقات لهذه المادة محدودة وليس عليها أي طلب . العالية الفعالية للمادة يجعلها ملائمة لنمو الخلايا
من الممكن إضافة مواد أخرى لتحسين المواصفات . تكسر الحاصل في السيراميك المصنع منهابسبب الطبيعة الهشة وال

في هذا العمل، تم إدخال المغنيسيوم لتحسين ). فوسفات الكالسيوم الثنائي(الميكانيكية والبيولوجية للمعدن المسامي 
تم تحضير سيراميك فوسفات . النسبةالمواصفات وإدخال نسب مختلفة من المغنيسيوم لغرض دراسة تأثير زيادة 

تم فحص تأدية كل من فوسفات الكالسيوم الثنائي وفوسفات . الكالسيوم المسامي باستخدام الباودر الصناعي
إنه فوسفات الكالسيوم مع المغنيسيوم كانت متكتلّة ) أس إي أم(وضحت فحوصات .الكالسيوم مع إضافة المغنيسيوم
إنه باضافة المغنيسيوم تم ) أف إي أس إي أم(أوضحت نتائج . نانوميتير 150 – 75 بشدة وكان قطر الجزيئات بين

تم التأكد من الاتحاد الناجح للمغنيسيوم مع فوسفات الكالسيوم الثنائية . تحسين الكثافة كلما زادت نسبة المغنيسيوم
ثيتا  2شعة أكس الى زوايا أعلى من من البلورة العالية بينهما وزحف القراءات لفوسفات الكالسيوم الثلاثية في أ

إن البلورة تزيد كلما زادت نسبة ) أف تي آي آر(أوضحت نتائج أشعة أكس و. كلما زاد محتوى المغنيسيوم
إن فوسفات الكالسيوم الثلاثية تظهر في ) أف تي آي آر(أوضح كل من فحص أشعة أكس و. المغنيسيوم المضافة

 1000 – 100تم تصنيع السيراميك بحجوم بين . مئوية أو أعلىمنهادرجة  700حالة الحرق بدرجات حرارة 
 - 31مع مسامية  3سم/غم 2.19الى  3سم/غم1.9المواصفات الفيزياوية وهي الكثافة بين . مايكروميتر بنجاح

من المغنيسيوم وتم زيادة قوة الضغط بخمسة أضعاف مقارنة بفوسفات % مول 10تم الحصول عليها باضافة  35%
أوضحت هذه الدراسة ان فوسفات الكالسيوم ). ميكا باسكال 2.175الى  0.395 من(سيوم الثنائية النقي الكال

إن إضافة المغنيسيوم ) أف إي أس إي أم(أوضحت نتائج . الثنائي والمعزز بالمغنيسيوم ملائم للاضافة أو لابدال العظام
قليلا عن فوسفات الكالسيوم النقي الذي تكون الخلايا يتغلغل في التركيب ويجعله غير متجانس والذي يعتبر مختلف 

                               .على السطح فقط أو تتكتل في أماكن معينة في تركيب السيراميك المسامي
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
 

1.1 INTRODUCTION 

Biomaterial by definition is an artificial non-drug substance suitable for inclusion in 

biological systems which augment, repair or replace the function of bodily tissues or 

organs (Heness, et al., 2004). Biomaterial also can be defined as a nonviable material 

used in a medical device, intended to interact with biological systems (Ratner, et al., 

2004). Biomaterial improves the quality of life as it deals with the development of 

material used in medical field. Demand for development of biomaterial study arises 

due to improvement of average human lifespan, as well as higher expectation on the 

quality of life. The success of a biomaterial application critically depends on the 

achievement of a stable attachment to connective tissue. In producing a successful 

biomaterial which will survive in the body for a long period of time, the identified 

material needs to be developed specifically for clinical applications. The key factors in 

a biomaterial usage are its biocompatibility (Heness, et al., 2004; Agrawal, 1998), 

biofunctionality (Heness, et al., 2004), and availability to a lesser extent (Heness, et 

al., 2004). Moreover, it should be nonalergic, nonimflammatory, nontoxic, 

noncarcinogenic and owns sufficient physical and mechanical properties to serve as an 

augmentation or replacement for body tissues (Agrawal, 1998).  From practicality 

point of view, a biomaterial should be amenable to be formed or machined into 

different shapes, has a relatively low cost, and be freely available.  

 Biomaterials can be divided into four categories mainly governed by the tissue 

response. The categories are biotoxic, bioinert, bioactive and bioresorbable. The term 
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biotoxic refers to any material that will be rejected by living tissue once placed in 

human body and will result in the surrounding tissue to die. An example of this 

material is alloy containing cadmium. Bioinert material refers to material illicit no or 

minimal tissue response once placed in the human body. This material will maintain 

physical and mechanical properties while in the host. Generally, a fibrous tissue of 

various thicknesses might form around bioinert implants. Thus, its biofunctionality 

will rely on tissue integration with the implant. The examples of these materials are 

tantalum, titanium, aluminum, zirconia (PSZ), UHMW polyethylene and stainless 

steel. High density hydroxyapatite, glass-ceramics A-W, and certain bioglassses are 

examples of bioactive implant materials. These materials will encourage bonding of 

implant with surrounding tissue. Bioresorbable materials are materials that incorporate 

into the surrounding tissue and dissolve completely over a period of time. Common 

examples of bioresorbable materials are porous hydroxyapatite, tricalcium phosphate, 

polyurethane and polylactic-polyglycolic acid copolymer.  

 Additional factors shall be identified and thoroughly considered with respect to 

the basic categorization of biomaterial. By choosing the appropriate material, a 

desirable biological response such as good bonding between tissues and implants may 

be achieved. It is advantageous to have the ability to tailor the mechanical properties 

of the biomaterial to match those of the body component which it is replacing, that it 

is an analogue. 

 From a different aspect, biomaterial can be classified into four categories 

which are metals, polymers, ceramics, and natural materials (Agrawal, 1998.) This 

thesis focused on ceramics biomaterials. Bioceramic is within a class of advanced 

ceramics which are defined as ceramic products or components employed in medical 

and dental applications, mainly as implants and replacements (Paul, et al., 2005). 
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Ceramic examples are including but not limited to refractory, polycrystalline 

compounds, usually inorganic, including silicates, metallic oxides, carbides, and 

various refractory hydrides, sulfides and selenides (Praphulla, et al., 1995). Ceramics 

are materials that exhibit great strength and stiffness, having low density, and 

excellent resistance to corrosion and wear. Materials classified as bioceramics are 

alumina, zirconia, calcium phosphates, silica based glasses or glass ceramics, titania 

and pryolictic carbon (Paul, et al., 2005). Bioceramics have made significant 

contribution in modern health care industry by improving the quality of human life. 

Bioceramics can be used inside of human body without rejection due to their 

biocompatibility, low density, chemical stability, high wear resistance, and for 

calcium phosphates, mainly due to composition similarity with the mineral phase of 

bone (Kalita, et al., 2007). 

Calcium phosphate bioceramics have widely been developed in biomedical in 

applications due to excellent biocompatibility, bioactivity and osteoconduction 

characteristics. Among various phases of calcium phosphate, hydroxyapatite 

[Ca10(PO4)6(OH)2, HA] and bheta-tricalcium phosphate [Ca3(PO4)2, β-TCP], with 

similar composition and crystal structure to natural bone (Hsu, 2003), are the two 

most commonly used calcium phosphate ceramics used for medical purposes. These 

materials are fabricated in porous, granular and dense forms (Liu, et al., 2008).  

In biomedical applications, porous ceramics have been used for artificial bone 

substitutes, drug delivery and cell culture (Sopyan, et al., 2007). Porous ceramics 

exhibit strong bonding to the bone as the pores provide a mechanical interlock leading 

to a firm fixation of the material. Bone tissue grows well into the pores, which 

increases the strength of the porous ceramic implants. Highly porous scaffolds provide 

a framework for enhanced cell infiltration and migration throughout the scaffold 
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(Sunho, et al., 2006). Therefore, a porous structure will promote cell attachment, 

proliferation, and differentiation, provides pathways for transport of biofluids, 

nutrients and metabolic waste (Liu, et al., 2008). In addition to that, porous structures 

are light in weight, provide appropriate space for the ingrowth of the bone tissue, and 

accelerate the replacement of the material by bone tissue (He, et al., 2008).  

Porous HA and β-TCP have been extensively applied for artificial bone substitutes. 

The primary purpose of tissue engineering is for repair, regeneration, and 

reconstruction of lost, damaged or degenerative tissues (Sopyan, et al., 2008). 

Although bone tissue itself shows an excellent ability of bone regeneration, for big 

bony defect or for such situations that bone healing process is difficult, bone grafts are 

required. At this point, it is very crucial to match the osteoconductive properties of 

porous ceramic scaffolds in one side with the osteoinductive or osteogenic properties 

of living bone cells in the other side. 

 Great diversity of the biomedical usage has led to the development of various 

methods in preparation of porous ceramic materials. This has allowed the design and 

production of porous materials with controlled porosity, good pore interconnectivity, 

mechanical strength and surface properties. 

Porous bioactive ceramics have been prepared by multiple methods, including 

introduction of porous structures using pore-creating volatile particles which burn 

away during sintering (Frieβ, et al., 2002), via direct conversion of marine coral 

skeleton and natural bone (Heness, et al., 2004), via ceramics foaming technique 

(Woyansky, et al., 1992) foam-gel technique (Tamai, et al., 2002) or hydrothermal hot 

pressing (Kusmant, et al, 2008). All the above-mentioned techniques have respective 

advantages and disadvantages. For example, gel casting of foams can be used in 
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producing ceramic scaffolds with high mechanical strength, but typically results in a 

structure with poorly interconnected pores and non-uniform pore size distribution. 

Another approach for fabricating porous ceramics is via the replication of a polymeric 

sponge substrate to produce reticulated open-celled porous ceramics (Sopyan, et al., 

2007). The polymeric sponge method, as the name suggest, is performed by 

impregnating porous polymeric substrates (sponges) with hydroxyapatite (HA) slurry. 

The method has been proven reliable in assuring a proper pore-size distribution, as 

osteoconduction requires, characterized by the existence of micro/meso/ macropores 

with a sufficient connection degree (Richart, et al., 2005). Therefore, one of the 

important aspects in the development of bone and organ substitute materials is the 

fabrication of supporting matrices or scaffolds with an appropriate micro- and 

macroscopic structural morphology including pore size, pore interconnectivity, 

mechanical strength and biodegradability. 

 

1.2 PROBLEM STATEMENT 

Theoretically, a degradagation rate of an implant similar to the rate of tissue formation 

is expected. However, porous HA has poor rate of biodegradability (Kalita, et al., 

2006). In contrast, porous β-TCP is widely used as a biodegradable bone substitutes as 

it gives rise to extensive bone remodeling around the implant (Tas, et al., 1997). On 

the other hand, when used as biomaterial for alveolar ridge augmentation, the rate of 

biodegradation of β-TCP has been shown to be too fast compared to degradation of 

natural bone (Kivrak, et al., 1998). Moreover, β-TCP is difficult to sinter, exhibits 

poor mechanical strength and low resistance to crack-growth propagation (Kalita, et 

al., 2006). Thus, in order to achieve an optimized balance of the non-biodegrability of 

HA which is more stable phase and at the same time to slow the rate of biodegradation 
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of β-TCP, the interest of biphasic calcium phosphate (BCP) concept have been studied 

by multiple research groups. 

Biphasic calcium phosphate (BCP) ceramics generally comprised of intimate 

mix of non-resorbable HA and resorbable β-TCP (Nilen, et al., 2008). Porous BCP is 

particularly suitable materials for synthetic bone substitute applications as to mimic 

the porous nature of cancellous bone (Nilen, et al., 2008) because the HA phase will 

provide a permanent scaffold for new bone formation via osteoconduction, and the 

resorption of the β-TCP oversaturates the local environment with Ca2+ and PO4
3- ions 

to accelerate this new bone formation (Nilen, et al., 2008). The BCP allows its 

bioactivity and biodegradation to be controlled by varying the HA/ TCP ratio (Victor, 

et al., 2008).  

However, the application of porous calcium phosphate including BCP in 

clinical orthopaedic and dental applications is limited to non-stressed loaded regions 

owning to the brittle nature and the low fracture toughness of the bioceramic (Tan, et 

al., 2008). In addition to that, a three dimensional (3-D) interconnected porous 

structure is necessary to allow cell attachment, proliferation, and differentiation, and 

to provide pathways for biofluids (Ramay, et al., 2003). In fact, it is generally known 

that the mechanical strength of porous ceramic usually decreases as the porosity 

increases. Thus, optimizing balance between the biological requirements and 

mechanical properties of porous scaffold of BCP is very desirable. Multiple researches 

and development effort have been carried out in enhancing the mechanical properties 

with respect to the biological compatibility of porous BCP including varying the 

powder processing technique (Tan, et al., 2008), manipulation of processing 

parameters such as particle size and shape, distribution and morphology of the starting 
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powders, control of sintering temperatures and incorporation of metal as sintering 

additive into the BCP.  

Incorporation of metal as sintering additive (Bhatt, et al., 2007, Kalita, et al., 

2006; Itatani, et al., 2002) is a simple and economical way to improve the 

densification, mechanical and biological performance of porous BCP. In this work, 

magnesium was incorporated into the BCP as sintering additive to improve the 

performance of porous BCP. 

Various research groups have attempted to dope calcium phosphate materials 

with magnesium (Zyman, et al., 2008; Kalita, et al.,  2007; Landi, et al., 2006; 

Kannan, et al., 2005; Gibson, et al., 2002; Fadeev, et al., 2003) for better performance 

bone implant materials. Doping of magnesium ions into BCP will results in biological 

improvement as the ion will cause the acceleration of nucleation kinetics of bone 

minerals (Landi, et al., 2006). Magnesium depletion adversely affects all stages of 

skeletal metabolism, leading to decrease in osteoblastic activities and bone fragility. 

Addition of magnesium might as well improve thermal stability of TCP which 

prevents phase transformation of β-TCP to α-TCP at high temperature (Xue, et al., 

2008). Thus, this will results in a better mechanical properties of porous BCP.  

Addition of magnesium into porous BCP has encouraged the spreading and improves 

the adhesiveness of cells onto bioceramic matrices (Paul, et al., 2007). Landi et al. 

(2006) has revealed that doping of magnesium into the apatite has improved the 

behaviors of cultured cells in term of adhesion, proliferation and metabolic activation, 

compared to stoichiometric. 
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1.3 SCOPE OF RESEARCH 

Here, BCP powder doped by magnesium was synthesized via a sol-gel method by 

utilizing non-alkoxide compounds as the raw materials. Several advantages gained by 

producing ceramic powder through the sol-gel method are good homogeneity of 

powder (Bezzi, et al., 2003; Gibson, et al., 2001), nanosize dimensional of the primary 

particles, and high reactivity (Bezzi, et al., 2003) compared to conventional methods 

such as solid-state reaction (Suchanek, et al., 1998), hydrothermal (Suchanek, et al., 

1998), and wet chemical precipitation (Suchanek, et al., 1998). Moreover, the sol-gel 

method employed in this work is economically attractive, using raw materials which 

are easily obtained, compared to conventional sol-gel method which usually uses 

expensive alkoxide compounds (Xiu, et al., 2005). 

The advantage of using chemical methods like sol-gel method is that 

magnesium will replace calcium in molecular level to join the lattice of BCP. This is 

better approach if comparison is made with a physical method such as milling method 

in mixing MgO and BCP (Tan, et al., 2008) which may produce residual MgO that 

cannot be accepted as bone implant.  

In order to produce porous ceramic implants of BCP and Mg-doped BCP to 

mimic scaffolds for spongy bone application, water based suspensions from the 

synthesized powders were prepared using Duramax D3005 as the dispersant agent. 

Each slurry was homogenized by stirring. Commercial cellulosic sponges were shaped 

and impregnated in the slurry and left to dry off. The porous samples were later heat 

treated to remove organic matrix and densify the porous phase. Physical, chemical and 

mechanical properties of the prepared porous ceramics were characterized by using 

XRD, FESEM, TG/ DTA, densitometer (Archimedes principle), FT-IR and 

mechanical testing machine.  




