COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DEVELOPMENT OF EFFECTIVE CHO-K1 HOST SYSTEM TARGETING AT NUTRIENT-REGULATED INSULIN-LIKE GROWTH FACTOR I (IGF-I) PATHWAY

BY

VASILA BINTI PACKEER MOHAMED

A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Biotechnology Engineering)

Kulliyah of Engineering International Islamic University Malaysia

MARCH 2014

ABSTRACT

An effective mammalian cell culture host system expressing therapeutic proteins is a combination of cell line's inherent characteristics with efficient use of nutrients that is able to provide desirable output of high cell viability. Insulin-like Growth Factor I (IGF-I) has been shown to have the ability to promote cell proliferation, while also having complex interactions with other constituents in the media. Therefore, it is hypothesized that if IGF-I pathway is effectively manipulated it could lead to achieving the desired high cell density culture. This present study is designed to develop a CHO-K1 based host system by understanding (IGF-I) gene and protein expression in this cell line and its expression relationship between constituents of media. It is confirmed that both IGF-I gene and protein are expressed in CHO-K1 cells, through reverse transcriptase real-time PCR analysis and enzyme-linked immunosorbent assay (ELISA) respectively. Using a three level Full Factorial Design, the optimal media composition of 10 % (v/v) serum and 0.500 mM glutamine was found to contribute to high cell density of 8.870 X 10⁵ cells/ml in T-flask. The optimal media composition was validated and gave 12.500×10^5 cells/ml; an increase of 26.936 % from culturing in standard formulation of 10 % (v/v) serum and 2 mM glutamine. The culture with optimal media then reached 23.300 x 10^5 cells/ml (46.352) % increased) when scaled-up in 500 ml spinner vessel. The culture also reached higher cell density (16.600 x 10^5 cells/ml); increase of 24.699 % from 12.500 x 10^5 cells/ml) when adapted in zero glutamine. Results from Full Factorial Design showed that the quadratic term of glutamine plays an important role for high cell density. This also supports the observation that the cells reached high cell concentration when cultured in zero glutamine media. Based on multivariate data analysis (MVDA) using Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA), the high cell density achieved in low glutamine was found to be correlated with high expression of IGF-I gene and protein. This may be governed through growth hormone signaling and IGF-I signaling pathway as shown in the pathway analysis performed in this work. In conclusion, the study showed that the IGF-I pathway which is known for its role in cell proliferation is responsive to the regulation by nutrients. The relationship between the reduced requirement of glutamine with the high expression of IGF-I gene and protein further improves the efficiency of the system. The host system (CHO-K1 cell line and the improved media formulation) obtained from this study can now serve as a platform for producing bio-products of interest.

خلاصة البحث

النظام الفعال المضيف لخلايا الثدييات المعبر عن البروتينات العلاجية هو مزيج من الخصائص الوراثية للخلية مع الاستخدام الفعال للعناصر الغذائية التي هي قادرة على توفير الناتج المرغوب فيه من كمية الخلايا. شبيه الانسولين عامل (IGF-I) لديه القدرة على تعزيز انتشار الخلايا، مع وجود تفاعلات معقدة له أيضا مع المكونات الأخرى ضمن الوسط الموجود فيه .ولذلك، نخن نفترض أنه إذا تم التلاعب بمسار IGF-I بشكل فعال فإنه يمكن أن يؤدي إلى تحقيق المطلوب من كثافة عالية للخلايا .تم تصميم هذه الدراسة المعتمدة على النظام المضيف لتطوير CHO-K1 عن طريق فهم التعبير الجيني والبروتيني ل (IGF-I) وعلاقته بين الهيئات المكونة في الوسط الموجود فيه في هذا النوع من الخلايا. ولقد تم التأكد من كل من IGF-I التعبير الجيني والبروتينات المعبرة عنه في الخلاياIGF-K ، من خلال تحليل الناسخ العكسى في RT-PCR و فحص الانزيم المرتبط المناعى (ELISA)على التوالي .باستخدام ثلاث مستويات من التصمثم المصنع الكامل . تم العثور على الوسط الأمثل للتكوين الذي يمثل 10 % (v/v) مصل و0.500 ملم الجلوتامين للمساهمة في كثافة عالية من الخلايا $\mathbf{X8.870}$ $\mathbf{X8.870}$ خلية / مل في القارورة .تم التحقق من صحة تكوين الوسط الأمثل وقدأعطى $12.500 imes 10^5 imes 10^5$ خلية / مل؛ بزيادة قدرها 26.936٪ من الخلايا المزروعة في صياغة مستوى 10 $\%~({f V}/{f V})$ مصل و 2 ملى من الجلوتامين . لقد تأكد ذلك في الخلايا المزروعة في الوسط الأمثل عندما وصلت الي 23.300 × 10⁵ خلية / مل وكانت ا الزيادة أعلى كثافة بنسبة (46.352٪ زيادة) عندما تم تكييفها في الشريان الدوار .الخلايا المزروعة وصلت $(12.500 \times 10^5 \times 10^5 \times 10^6 \times 10^5)$ من مستوى الخلايا $10^5 \times 10^{-5}$ $(12.500 \times 10^5 \times 10^{-5})$ مل)عندما كان قيمة الجلوتامين صفر .وأظهرت النتائج من النصميم الكامل المصنع أن مصطلح الدرجة الثانية من الجلوتامين يلعب دورا هاما لكثافة عالية في الخلايا .كما يدعم هذه الملاحظة أن الخلايا المزروعة بلغ ارتفاع تركيزها عاليا عندما كان قيمة الجلوتامين. صفؤا في الوسط الموجود فيه. اعتمادا على أساس تحليل البيانات متعدد المتغيرات (MVDA) باستخدام تحليل المركبات الرئيسية (PCA) و(PLS-DA)،ان الكثافة العالية التي تحققت في الخلية عند انخفاض الجلوتامين وجدت لتكون مرتبطة مع التعبير IGF-I للجينات والبروتينات .ويمكن من خلال هذه الإشارات التحكم في هرمون النمو IGF-I ومساره كما هو موضح في تحليل المسارات التي أجريت في هذا العمل .في الختام، أظهرت الدراسة أن مسار IGF-I والذي يعرف بدوره في انتشار الخلايا؛ يستجيب لتنظيم من قبل العناصر الغذائية .العلاقة بين انخفاض الاحتياجات من الجلوتامين مع التعبير IGF-Iللجينات والبروتينات يحسن زيادة كفاءة النظام.ويذيد كثافة الخلايا. للنظام المضيف CHO-K1) في الخلية مع صياغة الوسط المحسن الذي تم الحصول عليه من هذه الدراسة يمكن ان يستخدم الآن كمنصة لإنتاج المنتجات الحيوية المهمةز هذا النظام هو أيضا على استعداد لمزيد من الصقل في الوسط وبخاصة نحو المصل الخالي من الصياغة

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Biotechnology Engineering).

Yumi Zuhanis Has-Yun Hashim Supervisor

Azura Amid Co-Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science (Biotechnology Engineering).

Hamzah Mohd Salleh Internal Examiner

Nurina Anuar External Examiner

This thesis was submitted to the Department of Biotechnology Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Biotechnology Engineering).

Faridah Yusof Head, Department of Biotechnology Engineering

This thesis was submitted to the Kulliyyah of Engineering and is accepted as a fulfilment of the requirement for the degree of Master of Science (Biotechnology Engineering).

Md Noor bin Salleh Dean, Kulliyyah of Engineering

DECLARATION

I hereby declare that this thesis is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Vasila Binti Packeer Mohamed

Signature Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2014 by Vasila Binti Packeer Mohamed. All rights reserved.

DEVELOPMENT OF EFFECTIVE CHO-K1 HOST SYSTEM TARGETING AT NUTRIENT-REGULATED INSULIN-LIKE GROWTH FACTOR I (IGF-I) PATHWAY

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by: Vasila Binti Packeer Mohamed

Signature

Date

0......

ACKNOWLEDGEMENTS

First and foremost, praises to Allah and peace and blessings upon Prophet Muhammad s.a.w the last messenger. It has been two years since I started this research project under the supervision of Dr Yumi Zuhanis Has-Yun Hashim and Dr Azura Amid, and Alhamdulillah, I am grateful to Allah for blessing me with this great opportunity since the start and guiding me in every step of the way towards the completion of this research. My research has been a stepping stone in my career, and for that I would like to thank both my supervisor and my co- supervisor for giving me the opportunity to be a part of this project and for their guidance, help, and also feedback, not to be forgotten for being amazing teachers to me, providing me with support without me asking, giving me help in every way possible. Truly, without their teaching, guidance and support, this project would not have been completed successfully. I would to thank Ministry of Science, Technology and Innovation Malaysia (MOSTI) for giving me the opportunity to continue my studies by providing me a scholarship. Heartiest thanks I convey to my family, for the endless support that they have given to me during this period of my research.

For my colleagues, lab mates and my companions that I have gained during this particular time of my life, my research would not have been possible without you. I would like to thank Sister Salfarina Ezrina, for being a friend and also a colleague, whom has been so helpful. Not to be forgotten Sister Siti Nuramalis, Sister Yusilawati, Brother Azmir, Sister Najiah, Sister Alawiyah, Sister Siti Hajar, Sister Hidayah, Brother Jaafar and Brother Phirdaous. I would also like to thank the lab technicians for without them, Brother Hafizul, Brother Anuar and Brother Haslan, my work would not have gone as smoothly as possible. Special thanks I would like to give to Sister Nour for her help in translation of my English abstract to Arabic.

These two years have been a great experience, and I have gained so much, and without all these people, it would not have been possible. Many people were involved in the completion of this research, therefore my deepest gratitude to all whom has contributed and whom were involved directly and indirectly in the completion of this project. I apologize if I have not stated your name and thank you from the bottom of my heart. May Allah bless all of you and grant your good deeds with rewards.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approval Page	v
Declaration Page	vi
Copyright Page	vii
Acknowledgements	viii
List of Tables	XV
List of Figures	xviii
List of Abbreviations	xxiv
CHAPTER1: INTRODUCTION	1
1.1 Background	
1.2 Problem Statements	
1.3 Research Hypotheses	
1.4 Research Objectives	5
1.5 Research Methodology	6
1.6 Scope of Study	7
1.7 Thesis Organization	7
CHADTED 2.1 ITED ATUDE DEVIEW	Q
2 1 Introduction	••••••••••••••••••••••••••••••••••••••
2.1 Introduction	0
2.2 Host Expression System for Founding Dio-products	ion
Systems	101
2 2 2 CHO Cell Lines as Mammalian based Host Express	ion System 12
2.2.2 CHO Cell Lines as Mainmanan based Host Express	1 <i>A</i>
2.3 Cell Growth and Its Culture Environment	
2.3 1 Cell Growth and Metabolism	
2.3.1.1 Cell Growth Profile	
2.3.1.2 Kinetics and Metabolism of a Batch Culture	
2.3.1.3 Glucose and Glutamine Metabolism	
2.3.2 Culture Environment	
2.3.2.1 Media	
2.3.2.2 Serum as Media Supplements	
2.3.2.2.1 Advantages of Serum	
2.3.2.2.2 Disadvantages of Serum	
2.3.2.2.3 Halal/ Haram Issues of Serum	
2.3.2.2.4 Ethical Issues of Serum	
2.3.2.2.5 Requirements of Serum Free Medium .	
2.3.2.3 Types of Bioreactor	
2.3.2.4 Mode of Culture Operation	34
2.3.2.5 Culture Mode using Microcariers for CHO-K1	

2.4 Strategies to Improve Productivity of Mammalian Cell Based Culture	35
2.5 Insulin-like Growth Factor (IGF) System- A Target for Effective	
CHO-K1 Host System	38
2.5.1 Overview of IGF System	38
2.5.2 IGF System in Human Physiology and Pathology	38
2.5.2.1 Regulation of Insulin-Like Growth Factor-1 by Nutrition	39
2.5.3 Role of IGF-I System in Cell Proliferation	40
2.5.3.1 IGF-I-IGF-IR Pathway	42
2.5.3.2 IGF-I Non-Receptor Pathway	. 44
2.5.4 IGF-I Gene and Protein Expression in CHO Cells	. 45
2.5.5 IGF-I as Products	45
2.5.6 Application of IGF-I in Cell Culture Media	46
2.6 Summary	46
2.0 Summary	10
CHAPTER 3:MATERIALS AND METHODS	. 53
3.1 Introduction	53
3.2 Materials	56
3.2.1 Cell Line	56
3.2.2 Culture Medium	56
3.2.2 Culture Medium	56
3.2.4 Chemicals and Reagents	56
3.2.5 Microcarriers	57
3.2.6 Culture (Bioreactor) Systems	57
3.2.0 Equipments	. 58
3.3 Cell Maintenance in T-flask and Spinner Vessel	.58
3.3 1 Medium Preparation	58
3.3.2 Routine Cell Maintenance	.59
3.3.2 Routine Cell Maintenance	50
3.3.2.2 Freezing Cells	60
2.2.2.2.1 Teezing Cens	60
3.3.2.4 Changing the Medium	· 00
2.2.2 Microsofrier Droporation	61
2.3.4 Determination of Call Growth and Bahaviour in Different	01
Culture (Bioreactor) Systems	63
3 3 4 1 Culturing Cells in Culture Systems	63
3.3.4.1 Culturing Cens in Culture Systems	63
3.3.4.1.1 1-Hask Culture	63
2.2.4.2.Coll Counting in Different Culture Systems	64
3.5.4.2 Cell Counting in Different Culture Systems	· 04
3.3.4.2.1 1-Hask Culture	04 65
2.2.4.2 Determination of Call Crowth Vinctics and	03
5.5.4.5 Determination of Cell Growth Kinetics and	66
Biochemical Responses	· 00 66
2.2.4.2.2 Discharging Decreases	· 00
3.3.4.3.2 Biochemical Kesponses	•0/
5.5.4.5.5 Stoicniometry and Kinetics of Cell Growth and	<u> </u>
Product Formation	08
5.4 Expression of IGF-I and IGF-IK Genes and Proteins in CHO-KI Cells	•69
3.4.1 Expression of IGF-1 and IGF-IR Genes in CHO-K1 Cells	• 69

3.4.1.1 Confirmation of IGF-I and IGF-IR Gene using	
Quantitative PCR-Based Method	69
3.4.1.1.1 RNA Extraction, Quantity, Purity and	
Quality Measurements	69
3.4.1.1.2 Reverse Transcription Polymerase Chain Reaction	
(RT-PCR)	71
3.4.1.1.3 Optimization of Annealing Temperature for	
Reference and Target Genes using PCR	
Amplification (Temperature Gradient PCR)	72
3.4.1.1.4 Optimal Annealing Temperature using	
Standard Condition PCR	.75
3.4.1.2 Determination of IGF-I Gene Expression using	
Quantitative PCR (qPCR)	.76
3.4.1.2.1 Comparative C_T Method ($\Delta\Delta C_T$)	.77
3.4.2 IGF-I and IGF-IR Protein Expression in CHO-K1 Cells	80
3.4.2.1 Confirmation of IGF-I and IGF-IR Protein	
Expression in CHO-K1 Cells using SDS-PAGE	80
3.4.2.2 Determination of IGF-I Protein Expression using	
Enzyme-linked Immunosorbent Assay (ELISA)	82
3.5 Studies on Effect of Glutamine and Serum Level on CHO-K1 Cell	
Growth	83
3.5.1 Effects of Glutamine and Serum on IGF-Dependent in	
T-Flask Culture	84
3.5.2 Validation of Optimal Run	85
3.5.3 Adaptation of CHO-K1 Cells in Zero Glutamine Media	86
3.5.4 CHO-K1 Cultured in 500 ml Spinner Flask Culture	86
3.6 Pathway Analysis	86
3.7 Statistical Analysis	87
3.8 Summary	87
CHAPTER 4: RESULTS AND DISCUSSION	89
4.1 Introduction	. 89
4.2 Confirmation of Expression IGF-I and IGF-IR Gene and IGF-I	
Protein in CHO-K1 Cells	89
4.2.1 IGF-I and IGF-IR Gene Expression in CHO-K1 Cells	90
4.2.1.1 Optimization of Annealing Temperature for	
Reference and Target Genes using Temperature	
Gradient PCR	90
4.2.1.2 Confirmation of IGF-I Gene in CHO-K1 Cells	
using Quantitative Polymerase Chain Reaction	
(qPCR)	-93
4.2.1.2.1 Standard Curve and C_T Value for Target (IGF-I)	<u> </u>
and Reference Gene (GAPDH)	.94
4.2.1.2.2 Determining the Lowest Value of $C_{\rm T}$ to be	<u> </u>
used as Control in $\Delta\Delta C_{T}$ Method	·94
4.2.1.2.3 IGF-I Gene Expression using $\Delta\Delta C_{T}$ Method	95
4.2.2 IGF-I Protein Expression in CHO-K1 Cells	. 99

4.2.2.1 Confirmation of IGF-I Protein Expressions in CHO-K1
Cells Using SDS-PAGE
4.2.2.2 Confirmation of IGF-I Protein Expression in CHO-K1
Cells using Enzyme-Linked Immunosorbent Assay
(ELISA)
4.2.3 Summary of IGF-I Gene and Protein Expression in CHO-K1
Cells 103
4.3 Effects of Glutamine and Serum on IGF-Dependent CHO-K1 Cell
Growth in T-Flask and Spinner Flask Culture 103
4.3.1 CHO-K1 Cell Growth Behaviour and Kinetics in RPMI
1640 Media with Different Levels of Glutamine and Serum104
4.3.1.1 Cell Growth Pattern106
4.3.1.2 Cell Growth Kinetics
4.3.1.3 Biochemical Responses111
4.3.1.3.1 Glucose
4.3.1.3.2 Glutamine
4.3.1.3.3 Lactate
4.3.1.3.4 Biomass 116
4.3.1.3.5 Total Protein Content (TPC)117
4.3.1.4 Kinetics of Cell Growth and Product Formation
4.3.1.5 IGF-I Gene and Protein Expressions
Optimization Experimental Run121
4.3.1.5.1 Dataset 1: IGF-I Gene and Protein Expression in
Centre Point Experiment 11 from DOE 121
4.3.1.5.2 Dataset 2: IGF-I Gene and Protein Expression from
Mid Exponential Samples from All Optimization
Experimental Runs125
4.3.1.5.3 Dataset 3: IGF-I Gene and Protein Expression
from Samples of Four Groups Comprising
Different Level of Serum and Glutamine
4.3.2 Regression Models of Effects of Glutamine and Serum on
IGF- Dependent CHO-K1 Cell Growth in T-Flask Culture 131
4.3.2.1 Stage 1: Evaluation of Raw Data
4.3.2.1.1 Evaluation of Raw Data: Replicate Plot
4.3.2.1.2 Evaluation of Raw Data: Histogram
4.3.2.2 Stage 2: Model Fitting and Interpretation
4.3.2.2.1 Model Fitting: The Summary of Fit Plot 136
4.3.2.2.2 Model Interpretation: Coefficient Plot
4.3.2.2.3 Model Refinement 143
4.3.2.2.4 Regression Analysis: Analysis of Variance
(ANOVA)
4.3.2.2.5 Regression Analysis: variable Important Plot (VIP) 147
4.3.2.3 Stage3: Use of Regression Model149
4.3.2.4 Summary of Responses Surface Method (RSM)153
4.4 Validation of Optimal Condition and Adaptation of CHO-K1 Cells
in Zero Glutamine Media

4.6 Coi	relatio	n between Serum and Glutamine Concentrations with			
IG	F-Dep	endent on CHO-K1 Cell Growth	161		
4.	.6.1 M	ultivariate Data Analysis (MVDA)	161		
	4.6	5.1.1 Dataset 1: Centre Point Experiment 11 from DOE	162		
	4.6.1.2 Dataset 2: All 12 Experimental Data with Mid-				
		Exponential IGF-I Gene and Protein Expressions	170		
		4.6.1.2.1 Different Classes Based on Level of			
		Glutamine Concentrations	174		
		4.6.1.2.2 Different Classes Based on Level of			
		Serum Concentrations	178		
	4.6	5.1.3 Dataset 3: Four Groups Comprising Different			
		Levels of Serum and Glutamine	181		
		4.6.1.3.1 Different Classes Based on Level of Glutamine			
		Concentrations	185		
		4.6.1.3.2 Different Classes Based on Level of Serum			
		Concentrations	188		
4.	.6.2 Su	mmary of the Multivariate Data Analysis (MVDA)	193		
4.7 The	e Nutrie	ent Regulated IGF-Dependent Pathway in CHO-K1			
Ce	lls in C	ulture	194		
4.	.7.1 Pa	thway Analysis	196		
4.	.7.2 Su	mmary of Pathway Analysis	203		
4.8 Ove	erall Su	immary	203		
CHAPTER 5	S: CON	ICLUSIONS AND RECOMMENDATION	207		
			11111		
5.1 CC	onclusi	on	207		
5.2 Re	comm	on endation	207		
5.1 CC 5.2 Re	rclusion comm	on endation	207 209 210		
5.2 Re	ecomm ES	on endation	207 209 210		
5.1 CC 5.2 Re REFERENC	ecomm ES	on endation	207 209 210 220		
5.2 Re REFERENC APPENDIX APPENDIX	ES	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA	 207 209 210 220 220 224 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX	ES	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION	 207 209 210 220 220 224 225 		
5.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX	A C D	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET	207 209 210 220 224 225 226		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX	A C D E C D E	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR	207 209 210 220 224 225 226		
5.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE	207 209 210 220 224 225 226 229		
5.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	ES A B C D E F	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD	 207 209 209 210 220 224 225 226 229 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY	 207 209 209 210 220 224 225 226 229 231 		
5.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY	 207 209 210 220 224 225 226 229 231 232 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT	 207 209 210 220 224 225 226 229 231 232 236 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS	 207 209 210 220 2210 220 2210 2220 2224 2225 2226 2229 231 232 232 236 238 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEET	207 209 210 220 224 225 226 229 231 232 236 238 242		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	ES A B C D E F G H I J K	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS ACRYLAMIDE SEPARATING	 207 209 209 210 220 221 222 222 222 222 222 223 224 225 226 229 231 232 232 232 236 238 242 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J K	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS. ACRYLAMIDE SEPARATING GEL AND STACKING GEL (PROTOCOL)	207 209 210 220 224 225 226 229 231 232 236 238 242 238 242		
5.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J K	ON endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS. ACRYLAMIDE SEPARATING GEL AND STACKING GEL (PROTOCOL)	 207 209 209 210 220 221 220 221 222 222 222 223 224 223 223 224 223 224 223 224 223 224 2243 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	ES A B C D E F G H I J K L	CHO-K1 CELL LINE DATASHEET	 207 209 209 210 220 224 225 226 229 231 232 236 243 243 247 		
5.2 Re 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J K L	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS. ACRYLAMIDE SEPARATING GEL AND STACKING GEL (PROTOCOL) ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD RNA OUALITY AND YIELD	207 209 210 220 224 225 226 229 231 232 236 238 242 243 243 243 247 251		
S.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	ES A B C D E F G H I J K L M N	CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS. ACRYLAMIDE SEPARATING GEL AND STACKING GEL (PROTOCOL) ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD RNA QUALITY AND YIELD OLIANTITATIVE PCR (aPCR) RESULTS	207 209 210 220 224 225 226 229 231 232 236 238 242 243 247 251 252		
S.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J K L M N O	CHO-K1 CELL LINE DATASHEET	207 209 210 220 224 225 226 229 231 232 236 238 242 238 242 243 247 251 252 257		
S.1 CC 5.2 Re REFERENC APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	A B C D E F G H I J K L M N O P	on endation CHO-K1 CELL LINE DATASHEET CCOMMONLY USED CULTURE MEDIA RPMI 1640 MEDIA COMPOSITION MICROCARRIER PREPARATION DATASHEET PREPARING CYTODEX MICROCARRIERS FOR CULTURE BOVINE SERUM ALBUMINE (BSA) STANDARD CURVE FOR BRADFORD ASSAY TOTAL RNA PURIFICATION KIT SUPERRIPT III REVERSE TRANSRIPTASE KIT PRIMER DESIGN DATASHEETS PRIMER SYNTHESIS DATASHEET SDS-PAGE ANALYSIS. ACRYLAMIDE SEPARATING GEL AND STACKING GEL (PROTOCOL) ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD RNA QUALITY AND YIELD QUANTITATIVE PCR (qPCR) RESULTS SDS-PAGE GEL CALCULATION METHOD	207 209 210 220 224 225 226 229 231 232 236 238 242 238 242 243 247 251 252 257 258		

APPENDIX	Q	MORPHOLOGY OF CHO-K1 CELLS IN RPMI 1640	
		MEDIA	. 259
APPENDIX	R	COMPLETE GROWTH PROFILE AND	
		BIOCHEMICAL RESPONSES RESULTS FOR	
		ALL 12 EXPERIMENTAL RUNS	-260
APPENDIX	S	RNA YIELD AND QUALITY FOR SELECTED	
		SAMPLES OF 12 EXPERIMENTAL RUNS	308
APPENDIX	Т	QUANTITATIVE PCR RESULTS FOR 12	
		EXPERIMENTAL RUNS	314
APPENDIX	U	RELATED CALCULATIONS FOR ELISA RESULTS	
		OF 12 EXPERIMENTAL RUNS	. 324
APPENDIX	V	ANOVA	.328
APPENDIX	W	PUBLICATIONS	331
APPENDIX	Х	AWARD	334

LIST OF TABLES

Table No.		Page No.
2.1	Expression systems and transformed hosts for recombinant products in United States and European markets	10
2.2	The benefits and drawbacks of bacteria, yeast and mammalian host cell system	11
2.3	The target protein size, complexity and glycosylation process in bacteria, yeast and mammalian cells	11
2.4	Selected list of approved biologics produced in Chinese Hamster Ovary cell lines	13
2.5	The role of serum in cell culture media	25
2.6	Constituents of serum	25
2.7	Serum free medium in various applications using different types of cell line.	31
2.8	Types of microcarrier and some physical characteristics of Cytodex microcarriers	35
2.9	Medium optimization works for improvement of cell proliferation and recombinant protein production in CHO cells.	37
2.10	Molecular features of members of the insulin-like growth factor family.	41
2.11	IGF-I effects towards cell proliferation via signalling pathways.	43
2.12	IGF-I production using various expression systems.	47
2.13	IGF-I Application in Serum Free Culture Media	48
3.1	Target and reference genes, primer sequence and melting temperature information for the primer sets tested.	74
3.2	PCR setup for all four primer sets for optimization of annealing temperature.	75

3.3	PCR condition for all four primer sets with a gradient step introduced into the annealing step.	75
3.4	Optimal running protocol (PCR amplification) for all four primer sets.	77
3.5	Lysis buffer	81
4.1	Fold change expression of IGF-I at different time points relative to control, calculated by $\Delta\Delta C_{T}$ method	98
4.2	Comparison of maximum cell concentration, specific growth rate and doubling time of CHO-K1 cell ($n = 3$; Mean \pm SD)	105
4.3	Experimental design matrix to study the effects of serum and glutamine concentrations and summary of cell growth kinetics for CHO-K1 cell	107
4.4	Statistical analysis using one-way ANOVA with Tukey post-hoc test (SPSS Statistic Data Editor, SPSS version 17.0) to study the difference between doubling time (t_D) and specific growth rate (μ) between experimental run 2,3 and 12	110
4.5	Specific rates of nutrient consumption, product formation and other related kinetic studies over the exponential period of CHO-K1 culture (n =3; Mean \pm SD)	120
4.6	Responses chosen to investigate the effects of glutamine and serum on IGF-dependent CHO-K1 cell growth in T-flask culture using Response Surface Methodology (RSM) tools	133
4.7	Design of Experiment and Response values	133
4.8	Summary lists for all responses fitted using Partial Least Square (PLS).	138
4.9	Summary regression model of coefficient plots for all responses. Model was fitted using Partial Least Square (PLS)	141
4.10	Summary lists for all responses fitted using Partial Least Square (PLS)	145
4.11	Summary of ANOVA for all responses	147
4.12	Summary of optimal process condition for CHO-K1 cell growth and other related responses	152

- 4.13 Summary of CHO-K1 cell growth behaviour in different culture 155 environments
- 4.14 Summary of CHO-K1 cell growth behaviour in spinner vessel 161 culture

LIST OF FIGURES

Figure No	<u>P. </u>	age No.
1.1	Development of efficient CHO-K1 host system targeting at nutrient-regulated IGF-I pathway	6
2.1	The isolation of various CHO subclones	15
2.2	Cell growth, its culture environment and their factors	16
2.3	Kinetics of a batch culture	19
2.4	One step conversion of pyruvate to lactate	20
2.5	The deamination reaction	22
2.6	Signal transduction pathways of the ligand-activated IGF-IR	42
3.1	An overview of experimental studies. A: Related steps for gene expression study; B: Related steps for overall study	55
3.2	Preparation of Microcarriers	62
3.3	Counting grid and chamber of haemocytometer (65
3.4	Summary of Comparative C_T method ($\Delta\Delta C_T$ Method) calculation	80
3.5	Design of experiment (DOE) in T-flask culture (MODDE 9: SIMCA P+12, Umetrics, Umea, Sweden). Twelve experimental runs were generated with four centre points. Data for responses were collected for each run as depicted from column 5-8	84
4.1	Amplification of cDNA fragments on 2 % agarose gel in 1x TAE buffer for (A) GAPDH, (B) ACTB, (C) IGF-I and (D) IGF-IR. (M is 100 bp DNA Ladder, 45 to 65.5 is the range of annealing temperature ($^{\circ}C$)	92
4.2	Amplification cDNA fragments on 2 % agarose gel in 1x TAE buffer at optimal annealing temperature, 53 °C	93
4.3	Amplification plots, dissociation curve for GAPDH and IGF-I gene expression	96
4.4	IGF-I gene expression and viable cell concentration in RPMI 1640 media (seeding concentration: 2.0 x 10^5 cells/ml; n = 2). Sample express in lowest IGF-I gene expression served as control. Fold difference is calculated based on Comparative C _T method	99

- 4.5 IGF-I protein from CHO-K1 supernatant (IGF-I size ~7.6 kDa) 100 using SDS PAGE method (an exemplary image of one biological replicate). (Lane 1: Low range protein ladder (3.4 to 100 kDa); 2: Sample at 32 h; 3: 48 h; 4: 64 h and 5: 88 h
- 4.6 IGF-I protein expression and viable cell concentration in RPMI 102 1640 media (seeding concentration: 2.0×10^5 cells/ml; n = 2 ± SD)
- 4.7 CHO-K1 cell growth during batch culture (RPMI 1640, 10 % 105 (v/v) serum, 2 mM glutamine) and the percentage of viable cells (seeding concentration: 2.0 x 10⁵ cells/ ml; n = 3; Mean ± SD). (I indicates the exponential phase, II is mid-exponential and III is death phase)
- 4.8 Total viable cell number for all the 12 runs experiment (n = 3; 108 Mean \pm SD)
- 4.9 Glucose concentration of CHO-K1 cell growth during batch 112 culture (n = 3; Mean \pm SD) (Initial concentration of glucose was 2000 mg/l or 11.101 mM)
- 4.10 Glutamine concentration of CHO-K1 cell growth during batch 114 culture (n = 3; Mean \pm SD) (Initial concentration of glutamine was between 0.500 6 mM)
- 4.11 Lactate concentration of CHO-K1 cell growth during batch culture 116 $(n = 3; Mean \pm SD)$
- 4.12 Biomass concentrations for CHO-K1 cell growth during batch 117 culture (n = 3; Mean \pm SD)
- 4.13 Total Protein Content concentrations for CHO-K1 cell growth 118 during batch culture (n = 3; Mean \pm SD)
- 4.14 Cell growth profile of CHO-K1 from experiment 11 (10 % (v/v) 123 serum and 3.250 mM glutamine). (A) Composite graph of cell growth, IGF-I gene expression and IGF-I protein expression, (B) IGF-I protein expression using ELISA method and (C) IGF-I gene expression using qPCR method
- 4.15 Cell growth profile of CHO-K1 from mid exponential phase 126 samples for all optimization experimental runs. (A) Composite graph of cell growth, IGF-I gene expression and IGF-I protein expression, (B) IGF-I protein expression using ELISA method and (C) IGF-I gene expression using qPCR method

- 4.16 Cell growth profile of CHO-K1 from samples of four groups 129 comprising different level of serum and glutamine. (A) Composite graph of cell growth, IGF-I gene expression and IGF-I protein expression, (B) IGF-I protein expression using ELISA method and (C) IGF-I gene expression using qPCR method
- 4.17 Replicate plot for five responses maximum viable cell 135 concentration (Y1), doubling time (Y2), IGF-I protein expression at mid-exponential phase (Y3), IGF-I gene expression at mid-exponential phase (Y4) and viable cell concentration at mid-exponential phase (Y5)
- 4.18 Summary of fit for all responses fitted using Partial Least Squares 137 (PLS)
- 4.19 Regression coefficients for all responses (before model 142 refinement). Model was fitted using Partial Least Square (PLS)
- 4.20 Summary of fit for all responses of the refined interaction model, 144 fitted using Partial Least Square (PLS)
- 4.21 Regression coefficients of the refined interaction model (Note: 146 term ser*ser (serum*serum) and ser*glu (serum*glutamine) were omitted). Model was fitted using Partial Least Square (PLS)
- 4.22 Variable Importance Plot (VIP). Glu *Glu is the quadratic term 148 which is the dominating factor in this study
- 4.23 Responses contour plots showing that maximum signal is obtained 150 at low glutamine (0.500 mM) and high serum (15 % (v/v) for A: Maximum Viable Cell Number, B: Doubling Time and E: Viable Cell Number at Mid Exp Phase. (X is optimal point)
- 4.24 'Optimizer' tool used to show optimization cycle and this 151 specifically optimize and obtain the exact coordinates of the optimal combination of factors
- 4.25 Predicted values with their 95 % confidence interval 152
- 4.26 Morphology (Epithelial-like) of CHO-K1 cells. (A) CHO-K1 cells 155 cultured in optimal condition at maximum cell density (56 hour) and (B) CHO-K1 cells cultured in zero glutamine media (80 hour)
- 4.27 CHO-K1 cell growth during batch culture in optimal condition and 156 zero glutamine media (seeding concentration: 2.0×10^5 cells/ ml; n = 3; Mean ± SD)

- 4.28 Glucose concentration of CHO-K1 cell growth during batch 158 culture in different culture conditions (n = 3; Mean \pm SD) (Initial concentration of glucose was 2000 mg/l or 11.101 mM)
- 4.29 Morphology (Epithelial-like) of CHO-K1 cells cultured on 159 Cytodex 3TM microcarrier in 500 ml spinner vessel at maximum cell density (80 hour)
- 4.30 CHO-K1 cell growth during batch culture in 500 ml spinner vessel 159 using Cytodex 3^{TM} microcarrier. (Seeding concentration: 2.0 x 10^5 cells/ ml; n = 3; Mean ± SD)
- 4.31a Scatter plot of samples from centre point Experiment 11 from 164 DOE. Each plot mark denotes one time point
- 4.31b PCA loading plot of samples from centre point Experiment 11 165 from DOE with the second loading vector p_2 plotted against the first loading vector p_1 . Based on the distribution of the eight response descriptors, the PPs were tentatively interpreted as growth (PP1) and IGF-I expression (PP2). PP: Principle component
- 4.32a PLS-DA t1/t2 score plot of samples from centre point experiment 167 11 DOE. The two classes of growth phases are clearly discriminated
- 4.32b PLS weight plot $(w*c_1/w*c_2)$ of samples from centre point 168 experiment 11 DOE and distribution of the dummy variables
- 4.33 VIP plot of the PLS-DA model. The higher the numerical value, 169 the stronger the discriminatory power of the response descriptors
- 4.34a Scatter plot of samples from mid exponential phase for all 12 172 experimental run DOE. Each plot mark denotes one experimental run
- 4.34b PCA loading plot of samples from mid exponential for 12 173 experimental run DOE with the second loading vector p_2 plotted against the first loading vector p_1 . Based on the distribution of the seven response descriptors, the PPs were tentatively interpreted as growth (PP1) and IGF-I expression (PP2). PP: Principle component
- 4.35a PLS-DA t1/t2 score plot of samples from mid exponential phase 175 for all 12 experimental run DOE. The three classes of glutamine levels are clearly discriminated

- 4.35b PLS weight plot (w*c₁/w*c₂) of samples from mid exponential 176 phase for all 12 experimental run DOE and distribution of the dummy variables
- 4.36 VIP plot of the PLS-DA model for Dataset 2 (12 experimental 177 runs at mid-exponential phase). The higher the numerical value, the stronger the discriminatory power of the response descriptors
- 4.37a PLS-DA t1/t2 score plot of samples from mid exponential phase 179 for all 12 experimental run DOE. The three classes of serum levels are not clearly discriminated
- 4.37b PLS weight plot (w*c₁/w*c₂) of samples from mid exponential 180 phase for all 12 experimental run DOE and distribution of the dummy variables
- 4.38a Scatter plot of samples from four different group of glutamine and 183 serum level. Each plot mark denotes one sample
- 4.38b PCA loading plot of samples from four different group of 184 glutamine and serum level with the second loading vector p_2 plotted against the first loading vector p_1 . Based on the distribution of the eight response descriptors, the PPs were tentatively interpreted as growth (PP1) and IGF-I expression (PP2). PP: Principle component.
- 4.39a PLS-DA t1/t2 score plot. The two classes of conditions of group 186 samples are clearly discriminated based on different glutamine concentration
- 4.39b PLS weight plot (w^*c_1/w^*c_2) of samples from different glutamine 187 level and distribution of the dummy variables
- 4.40 VIP plot of the PLS-DA model of samples based on different 188 glutamine level. The higher the numerical value, the stronger the discriminatory power of the response descriptors
- 4.41a PLS-DA t1/t2 score plot. The two classes of conditions of group 190 samples are clearly discriminated based on different serum concentration
- 4.41b PLS weight plot $(w*c_1/w*c_2)$ for different level of serum and 191 distribution of the dummy variables
- 4.42 VIP plot of the PLS-DA model of different level of serum. The 192 higher the numerical value, the stronger the discriminatory power of the response descriptors

4.43	Low glutamine may promote the CHO-K1 cell proliferation heading to high cell density through the expression of IGF-I gene and protein	195
4.44	A snapshot of top scoring pathways, processes and diseases related to IGF-I gene and protein expression as described by iReport. DEG: differently expressed gene i.e. IGF-I gene. Results obtained from iReport	196
4.45	The Wheel: Overview of Biological Processes for cell viability of muscle cell lines. A: cell biology, B: cell death and C: cell survival. Results obtained from iReport	198
4.46	Growth hormone signaling pathway from iReport	200
4.47	IGF-I signaling pathway from iReport	201

LIST OF ABBREVIATIONS

ACTB	Beta Actin
ANOVA	Analysis of Variance
ATCC	American Type Culture Collection
BSA	Bovine Serum Albumine
BSC	Biosafety Cabinet
CHO-K1	Chinese Hamster Ovary K1
CS	Calf Serum
DOE	Design of Experiment
EGF	Epidermal Growth Factor
ELISA	Enzyme-linked Immunosorbent Assay
FBS	Fetal Bovine Serum
GAPDH	Glyceraldehyde 3-Phosphate Dehydrogenase
GH	Growth Factor
GHR	Growth Factor Receptor
HEPES	N-2-Hydroxyethylpiperazine-N'-2-ethane Sulfonic Acid
IGF-I	Insulin-like Growth Factor I
IGF-IR	Insulin-like Growth Factor I Receptor
MVDA	Multivariate Data Analysis
NCBI	National Center for Biotechnology Information
PBS	Phosphate Buffered Saline
PCA	Principal Component Analysis
PCR	Polymerase Chain Reaction
PLS	Partial Least Square
PLS-DA	Partial Least Square Discriminant Analysis
qPCR	Quantitative Polymerase Chain Reaction
RNA	Ribonucleic Acid
RPMI	Rosewell Park Memorial Institute
RSM	Response Surface Method
RT-PCR	Reverse Transcriptase Polymerase Chain Reaction
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide
UV	Ultraviolet
VIP	Variable of Importance
YSI	Yellow Spring Intruments

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

An effective host system to express therapeutic proteins is a system that is able to provide desirable outputs which may include high cell density, good growth rate, minimize consumption of media and high expression of the protein of interest. While many host systems can be used such as bacteria, plant, yeast, insect and mammalian cells, the latter is the optimal and preferred host system for the production of recombinant eukaryotic proteins for biopharmaceutical purposes. Its major benefit is the direct expression of the desired protein, including large and complex proteins like Factor VIII in the culture medium. Mammalian cell culture host also allows correct folding and posttranslational modifications for optimal biological activity of the protein produced (Martin & Harmsen, 2008; Hossler, Khattak & Li, 2009).

In order to develop an efficient mammalian cell culture host system, there are several strategies to be focused on. This includes improved design and the ability of the host cell line to offer potential product improvements, maximization of viable cell number, improvement of medium formulation, inclusion of exogenous growth factors, implementation of high performance reactor configurations and maximization of production rate per cell (Rader, 2008; Martin & Harmsen, 2008). Many earlier studies focused on a single strategy at a time. For example, Baserga (1993) and Sunstrom et al. (2000a) reported on the development of an efficient cell line which produced the constitutive expression of Insulin-like growth factor I (IGF-I) leading to self