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ABSTRACT

Femtocells are home access points installed by end consumers inside their
houses which are an important and a promising technology in future wireless
networks. It was proposed as a solution to the indoor propagation problems and to
increase the indoor bandwidth. However, many challenges need to be addressed before
deployment of femtocells. One of the most important challenges are assessing and
mitigating the interference. In order to calculate the Signal to Interference plus Noise
Ratio (SINR), an accurate path loss model is required. Most of the studies in the open
literature considered a two dimensional scenarios where the femtocell has specific
location and uniformly distributed in the network. On the contrary, this research will
consider more practical scenarios where the femtocell is randomly distributed in a
three Dimensional (3-D) environment to accommodate interference from cells spaced
horizontally on a terrestrial access or stacked vertically as in the case for office or
residential towers. The vertical interference is still not considered in the open literature
yet. The most important parameter that should be considered once calculating the
interference is the path loss. Since femtocell is installed in an indoor environment, this
thesis addresses only the indoor propagation channel. Most of the available
propagation models are for long range communication networks like macro and micro
cellular networks. Models for femtocell networks, where the effects of walls and floors
are considered, appeared to be necessary. In this research six different models of
indoor propagation were studied and compared with measured data. Comprehensive
measurements were conducted in a four storey building using most popular
frequencies for Long-Term Evolution (LTE) networks of 1.8 and 2.6 GHz. Three
different scenarios with different numbers of penetrated walls and floors were
considered. The results were analyzed statistically using linear and non-linear
regression methods. Further, a three dimensional path loss model based on two
distance concept is proposed for indoor femtocells. In this model, the path loss
intercept is made equal to the free space losses. Two path loss exponents were
proposed. The first one is the vertical exponent that equals 7.62, and was inferred
based on the vertical propagation measurements. The second path loss exponent is the
horizontal one (variable) and it is found to be a function of transmitter and receiver
heights. This model is found to be suitable for applications in LTE wireless networks
and maybe applied in both LTE and LTE-Advanced (LTE-A) system level simulators.
In addition, path loss has been evaluated in terms of various antenna aspects such as
polarization and directivity. Finally a three dimensional system level simulator is
developed and integrated into the famous Vienna LTE simulator in order to help the
researcher in LTE femtocell field to analyze and investigate more real scenarios of
femtocell deployment. The developed simulator allows the researcher to locate a
multi-storey building in the region of interest, choose the number of floors, determine
the ceiling height, and allocate the position of the femtocell inside the house. The
proposed three dimensional indoor propagation model is implemented in the simulator
and is used to assess and model interference. Different parameters such as Signal to
Interference plus Noise Ratio (SINR), and throughput, were studied especially for
vertically stacked femtocells. Results indicate the validity of the proposed 3-D model
and confirm that it is a more realistic tool for assessment and model of femtocell
interference.
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CHAPTER ONE
INTRODUCTION

1.1 BACKGROUND

The rapid development of smart phones and tablet PCs has transformed cellular
networks from being essentially voice networks to becoming mostly data networks.
This has led to unpredictable growth in global mobile and internet data traffic rate. In
consequence, it is expected that monthly global mobile and tablet data traffic will
exceed 30.6 Exabyte in 2020 (Cisco, 2016). Moreover, the attenuation of cellular
signal inside buildings reduces the signal strength and causes the signal not to be
available in some regions, since the macrocell signals do not penetrate walls. Thus, to
overcome the rapid increase in the traffic data and to solve the indoor coverage

problem, small cells called femtocells are introduced.

=

Figure 1.1 Femtocell network architecture (Small cell forum, 2008).

Femtocell is a small range (10-30 m), low-power access point (10-100 mW)
that can be installed by end users to connect them to a network via the internet as
shown in Figure 1.1 (Airvana, 2007; Small cell forum, 2008). Millions of femtocells

are already deployed in all over the world. Since January 2012, eight of the top 10



mobile operator groups have provided femtocell services (Informa Telecoms &
Media, 2011; Small cell forum, 2012). Femtocell shipment is expected to increase
from 4 million femtocells in 2016 to nearly 10 million femtocells by 2020 (Small cell
forum, 2016).

Femtocell has been introduced as a solution to the indoor coverage problems,
since it increases the network’s coverage and capacity, and reduces both cost and
power. Reducing the transmission distance improves the link capacity, and saves the
mobile battery. Moreover, the deployment of femtocells in an existing macrocell
scenario reduces the indoor traffic, thus the network capacity and reliability will
improve. However, there are many challenges that face the success of deployment of
femtocell. One of the most important challenges is the interference assessment,
modelling and mitigation. In order to achieve that, realistic propagation models that
capture the Three Dimensional (3-D) stacking of femtocells so mitigation techniques
can be applied, is of paramount importance. There are two types of interference in
femtocell networks; the first one is interference between femtocell and macrocell
which called cross-layer interference; and the other one is the interference between
femtocell and other femtocells that are deployed in the coverage of the main
macrocell, this type of interference is called co-layer interference. Both type of
interference should be considered when designing femtocell networks.

Next section presents the statement of problem that is going to be addressed

and solved in this research.

1.2 PROBLEM STATEMENT
Several challenging issues must be addressed and resolved before femtocell

technology becomes a reality. One of the most important challenges is assessing and



mitigating the interference. Therefore, interference management is necessary and a
practical interference mitigation method is a must. As stated in the open literature
review, most of the proposed schemes assumed specific locations and uniform
distributions for the femtocells in the network. On the contrary, in practical scenarios,
the femtocells are randomly distributed in a dense 3-D environment. Such distribution
is required in order to study interference effect not only from cells spaced horizontally
on a terrestrial access, but also stacked vertically as in the case for office or residential
towers. Few research has considered the vertical interference. Therefore, developing a
3-D System Level Simulator (SLS) is required.

In addition, most of the available propagation models in the literature are for
long range wireless networks. Hence, indoor propagation channel needs to be
investigated in short range environment. According to Saunders (1999) and recent
studies (Valcarce & Zhang, 2010; Zhao et al, 2013; Degli-Esposti et al, 2013), the
available indoor path loss models may not be suitable for femtocell networks and
require further improvements in order to predict the indoor propagation more
accurately.

Furthermore, the antenna directivity and polarization effect on the path loss
and interference level need to be studied, especially, for 3-D environment. None of
the previous studies investigated these two parameters on users stacked vertically at

different floors of the transmitter.

1.3 RESEARCH PHILOSOPHY

Femtocells are promising technology to increase the capacity, efficiency and the
coverage of the cellular networks (Chandrasekhar et al., 2008; Zhang & De la Roche,

2010). Due to their low cost, they can be deployed as consumer equipment, reducing



the capital load and operating expenses of the host network. However, in order to
implement femtocell in real advantage for network operator and consumer, several
challenging issues must be addressed first and resolved before this technology
becomes a reality. Path loss and Interference management are considered key
challenging issues for this promising technology to become real. Since most of the
available indoor path loss models are developed based on two dimensional (2-D)
measurements for long range networks, those do not reflect the vertical femtocell
environment. Therefore, the philosophical approach followed in this thesis, to address
the issues of path loss and management of interference in 4G femtocells, is based on a
3-D concept. Empirical model based on comprehensive measurements in a practical
multi-storey building with different scenarios can reflect the femtocell accurately.
Empirical models can be further enhanced by integrating antenna directivity and
polarization effects on interference. Not only a 3-D path loss model is proposed, but

also a 3-D SLS is developed to handle the 3-D deployment scenarios.

1.4 RESEARCH OBJECTIVES

The main objectives of this research are:
1- To conduct indoor recieved signal strength measurements campaign for
2-D and 3-D Environments.
2- To propose a 3-D path loss model for indoor femtocell networks.
3- To develop a 3-D Long-Term Evolution (LTE) SLS.
4- To evaluate, verify and compare the performance of the proposed model

and the developed SLS using the measurement campaign.



1.5 RESEARCH SCOPE

The scope of this research is to model the interfernce for Orthogonal Frequency
Division Multiple Access (OFDMA) indoor femtocells, which use LTE. Moreover,
OFDMA works as a multi-access technique and exploits channel variations in
frequency domain and time domain to avoid interference (Lopez-Perez et al, 2009).
The access mode that will be considered is the Closed Subscriber Group (CSG), where
the worst scenario occured. A four storey building with all possible indoor scenarios is
considered in the measurement. A maximum of 20 dBm transmit power is used during
measurements. Two types of antenna directional and omnidirectional are used during
measurements. Three different polariztion, namly Vertical-Vertical (VV Transmitter
(Tx) 1is vertical and Receiver (Rx) is vertical), Horizontal-Horisontal (HH), and
Horizontal-Vertical (HV) are used. The frequencies considered in this research are 1.8
and 2.6 GHz. Far field distance is d > 2D%A is considereed only, where D is the
maximum antenna dimension and A is the wavelength (Nikitin et al., 2007). Therefore,
it is assumed throughout this study that the signal is propagating through far field
region. The simulator is developed based on MATLAB platform and then integrated

into the famous Vienna simulator.

1.6 RESEARCH METHODOLOGY

The research methodology is based on a combination of three different approaches.
The first approach is experimental, where real measurements were conducted to
evaluate the available indoor path loss models. The second approach is mathematical,
where regression methods were applied to fit the measured data and proposed a new

empirical model for 3-D indoor environment. The last approach is to develop a 3-D



