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ABSTRACT 

Femtocells are home access points installed by end consumers inside their 
houses which are an important and a promising technology in future wireless 
networks. It was proposed as a solution to the indoor propagation problems and to 
increase the indoor bandwidth. However, many challenges need to be addressed before 
deployment of femtocells. One of the most important challenges are assessing and 
mitigating the interference. In order to calculate the Signal to Interference plus Noise 
Ratio (SINR), an accurate path loss model is required. Most of the studies in the open 
literature considered a two dimensional scenarios where the femtocell has specific 
location and uniformly distributed in the network. On the contrary, this research will 
consider more practical scenarios where the femtocell is randomly distributed in a 
three Dimensional (3-D) environment to accommodate interference from cells spaced 
horizontally on a terrestrial access or stacked vertically as in the case for office or 
residential towers. The vertical interference is still not considered in the open literature 
yet. The most important parameter that should be considered once calculating the 
interference is the path loss. Since femtocell is installed in an indoor environment, this 
thesis addresses only the indoor propagation channel. Most of the available 
propagation models are for long range communication networks like macro and micro 
cellular networks. Models for femtocell networks, where the effects of walls and floors 
are considered, appeared to be necessary. In this research six different models of 
indoor propagation were studied and compared with measured data. Comprehensive 
measurements were conducted in a four storey building using most popular 
frequencies for Long-Term Evolution (LTE) networks of 1.8 and 2.6 GHz. Three 
different scenarios with different numbers of penetrated walls and floors were 
considered. The results were analyzed statistically using linear and non-linear 
regression methods. Further, a three dimensional path loss model based on two 
distance concept is proposed for indoor femtocells. In this model, the path loss 
intercept is made equal to the free space losses. Two path loss exponents were 
proposed. The first one is the vertical exponent that equals 7.62, and was inferred 
based on the vertical propagation measurements. The second path loss exponent is the 
horizontal one (variable) and it is found to be a function of transmitter and receiver 
heights. This model is found to be suitable for applications in LTE wireless networks 
and maybe applied in both LTE and LTE-Advanced (LTE-A) system level simulators. 
In addition, path loss has been evaluated in terms of various antenna aspects such as 
polarization and directivity. Finally a three dimensional system level simulator is 
developed and integrated into the famous Vienna LTE simulator in order to help the 
researcher in LTE femtocell field to analyze and investigate more real scenarios of 
femtocell deployment. The developed simulator allows the researcher to locate a 
multi-storey building in the region of interest, choose the number of floors, determine 
the ceiling height, and allocate the position of the femtocell inside the house. The 
proposed three dimensional indoor propagation model is implemented in the simulator 
and is used to assess and model interference. Different parameters such as Signal to 
Interference plus Noise Ratio (SINR), and throughput, were studied especially for 
vertically stacked femtocells. Results indicate the validity of the proposed 3-D model 
and confirm that it is a more realistic tool for assessment and model of femtocell 
interference.      
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  خلاصة البحث
ABSTRACT IN ARABIC 

تصالات من التقنيات المهمة والواعدة في مجال الإ )Femtocell( تصالات المنزلية المسماةتعتبر محطة الإ

مع ذلك، هناك العديد  .تصال داخل المنزلالإشارة إقتراحها لحل مشكلة ضعف إحيث تم . سلكيةاللآ

هم هذه التحد�ت هي مشكلة أومن . من التحد�ت التي يجب التغلب عليها قبل تطبيق هذه التقنية

مر يتطلب وجود نموذج دقيق لحساب هذا التداخل بشكل دقيق فان الأ. شارةالتداخل الحاصل في الإ

غالبية الدراسات السابقة بسطت . من المرسل للمستقبلشارة نتقال الإإلحساب الخسائر الناتجة عن 

على العكس من ذلك، �دف هذه الدراسة . بعاد بين المرسل والمستقبلعتماد نموذج ثنائي الأالموضوع �

بعاد بين المرسل والمستقبل وبفرض توزيع عشوائي لمحطة عتماد محيط ثلاثي الأكثر واقعية �أ أمثلةلدراسة 

)Femtocell(   التطبيق كون . لم يتم التطرق للتداخل العمودي سابقا. هو الواقع في البنا�ت السكنيةكما

. ماكن الداخلية فقطفانه سيتم التطرق للنماذج الخاصة �لأ اخل البنا�تدسيكون  )Femtocell(لمحطة 

قتراحها لمسافات طويلة بين المرسل والمستقبل ولكن هذا الوضع مختلف لمحطة إغالبية النماذج السابقة تم 

)Femtocell( في . سقفكون المسافة قصيرة بين المرسل والمستقبل وقد يتخللها بعض الجدران الداخلية والأ

قعية تم نماذج سابقة لتوقع الخسائر بين المرسل والمستقبل ومقارنتها مع بيا�ت وا 6هذا البحث تم دراسة 

تمت عملية القياس على الترددات . طوابق وبتقسيمات داخلية مختلفة 4مباني مكونة من  3قياسها في 

تم تحليل البيا�ت . غيغاهيرتز 1.8و  2.6وهي  )LTE(ستخداما في شبكات الجيل الرابع إكثر الأ

سائر بين جديد لحساب الخقتراح نموذج إوبناء عليه تم . حصاء الخطية وغير الخطيةستخدام طرق الإ�

المسافة العمودية (موذج المقترح يعتمد على المسافة غير المباشرة بين المرسل والمستقبلالن. المرسل والمستقبل

فقي ويعتمد أخر والآ 7.62قداره محدهما عمودي و أقتراح معاملي ميل إوبناء عليه تم ). فقيةوالمسافة الأ

ثير تغيير قطبية الهوائي ومدى توجيهه على افة لذلك تم دراسة �ض�لإ. رتفاع المرسل والمستقبلإعلى 

كثر واقعية بحيث يمكن للباحث دراسة أمثلة أخيرا، تم تطوير بر�مج محاكاة أو . شارةالخسائر �لمتوقعة للإ

ضافة محطة إكثر من طابق و أضافة مبنى مكون من إبحيث يمكن . بعاد كما الحياة الواقعيةثلاثية الأ

)Femtocell( � رتفاع السقف ومكان المحطة ودراسة مدى التداخل بين هذه في كل طابق والتحكم

ضافة النموذج المقترح الى إبعد . ثير ذلك على المستخدمينالمحطات بعضها ببعض والمحطة والرئيسية و�

 )SINR( كثر من معامل خاص �لشبكات مثل نسبة التداخلأالبر�مج المطور يمكن للباحث دراسة 

      كثر واقعية خاصةأمثلة ظهرت مدى فعالية البر�مج المقترح لأأالنتائج . والفعالية ونسبة التغطية

      .)Femtocell(بمحطة 
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WCDMA  Wideband Code Division Multiple Access 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

The rapid development of smart phones and tablet PCs has transformed cellular 

networks from being essentially voice networks to becoming mostly data networks. 

This has led to unpredictable growth in global mobile and internet data traffic rate. In 

consequence, it is expected that monthly global mobile and tablet data traffic will 

exceed 30.6 Exabyte in 2020 (Cisco, 2016). Moreover, the attenuation of cellular 

signal inside buildings reduces the signal strength and causes the signal not to be 

available in some regions, since the macrocell signals do not penetrate walls. Thus, to 

overcome the rapid increase in the traffic data and to solve the indoor coverage 

problem, small cells called femtocells are introduced.  

 
 

 
Figure  1.1 Femtocell network architecture (Small cell forum, 2008).  

 
 
 

Femtocell is a small range (10-30 m), low-power access point (10-100 mW) 

that can be installed by end users to connect them to a network via the internet as 

shown in Figure 1.1 (Airvana, 2007; Small cell forum, 2008). Millions of femtocells 

are already deployed in all over the world. Since January 2012, eight of the top 10 
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mobile operator groups have provided femtocell services (Informa Telecoms & 

Media, 2011; Small cell forum, 2012). Femtocell shipment is expected to increase 

from 4 million femtocells in 2016 to nearly 10 million femtocells by 2020 (Small cell   

forum, 2016).  

Femtocell has been introduced as a solution to the indoor coverage problems, 

since it increases the network’s coverage and capacity, and reduces both cost and 

power. Reducing the transmission distance improves the link capacity, and saves the 

mobile battery.  Moreover, the deployment of femtocells in an existing macrocell 

scenario reduces the indoor traffic, thus the network capacity and reliability will 

improve.  However, there are many challenges that face the success of deployment of 

femtocell. One of the most important challenges is the interference assessment, 

modelling and mitigation. In order to achieve that, realistic propagation models that 

capture the Three Dimensional (3-D) stacking of femtocells so mitigation techniques 

can be applied, is of paramount importance. There are two types of interference in 

femtocell networks; the first one is interference between femtocell and macrocell 

which called cross-layer interference; and the other one is the interference between 

femtocell and other femtocells that are deployed in the coverage of the main 

macrocell, this type of interference is called co-layer interference. Both type of 

interference should be considered when designing femtocell networks.  

Next section presents the statement of problem that is going to be addressed 

and solved in this research. 

 

1.2 PROBLEM STATEMENT 

Several challenging issues must be addressed and resolved before femtocell 

technology becomes a reality. One of the most important challenges is assessing and 
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mitigating the interference. Therefore, interference management is necessary and a 

practical interference mitigation method is a must. As stated in the open literature 

review, most of the proposed schemes assumed specific locations and uniform 

distributions for the femtocells in the network. On the contrary, in practical scenarios, 

the femtocells are randomly distributed in a dense 3-D environment. Such distribution 

is required in order to study interference effect not only from cells spaced horizontally 

on a terrestrial access, but also stacked vertically as in the case for office or residential 

towers. Few research has considered the vertical interference. Therefore, developing a 

3-D System Level Simulator (SLS) is required.  

In addition, most of the available propagation models in the literature are for 

long range wireless networks. Hence, indoor propagation channel needs to be 

investigated in short range environment. According to Saunders (1999) and recent 

studies (Valcarce & Zhang, 2010; Zhao et al, 2013; Degli-Esposti et al, 2013), the 

available indoor path loss models may not be suitable for femtocell networks and 

require further improvements in order to predict the indoor propagation more 

accurately.   

Furthermore, the antenna directivity and polarization effect on the path loss 

and interference level need to be studied, especially, for 3-D environment.  None of 

the previous studies investigated these two parameters on users stacked vertically at 

different floors of the transmitter. 

 
 

1.3 RESEARCH PHILOSOPHY 

Femtocells are promising technology to increase the capacity, efficiency and the 

coverage of the cellular networks (Chandrasekhar et al., 2008; Zhang  & De la Roche, 

2010). Due to their low cost, they can be deployed as consumer equipment, reducing 
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the capital load and operating expenses of the host network. However, in order to 

implement femtocell in real advantage for network operator and consumer, several 

challenging issues must be addressed first and resolved before this technology 

becomes a reality. Path loss and Interference management are considered key 

challenging issues for this promising technology to become real. Since most of the 

available indoor path loss models are developed based on two dimensional (2-D) 

measurements for long range networks, those do not reflect the vertical femtocell 

environment. Therefore, the philosophical approach followed in this thesis, to address 

the issues of path loss and management of interference in 4G femtocells, is based on a 

3-D concept. Empirical model based on comprehensive measurements in a practical 

multi-storey building with different scenarios can reflect the femtocell accurately. 

Empirical models can be further enhanced by integrating antenna directivity and 

polarization effects on interference.  Not only a 3-D path loss model is proposed, but 

also a 3-D SLS is developed to handle the 3-D deployment scenarios.  

 
 
1.4 RESEARCH OBJECTIVES 

The main objectives of this research are:  

1- To conduct indoor recieved signal strength measurements campaign for   

2-D and 3-D Environments.  

2- To propose a 3-D path loss model for indoor femtocell networks. 

3- To develop a 3-D Long-Term Evolution (LTE) SLS. 

4- To evaluate, verify and compare the performance of the proposed model 

and the developed SLS using the measurement campaign. 
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1.5 RESEARCH SCOPE 

The scope of this research is to model the interfernce for Orthogonal Frequency 

Division Multiple Access (OFDMA) indoor femtocells, which use LTE. Moreover, 

OFDMA works as a multi-access technique and exploits channel variations in  

frequency domain and time domain to avoid interference (Lopez-Perez et al, 2009). 

The access mode that will be considered is the Closed Subscriber Group (CSG), where 

the worst scenario occured. A four storey building with all possible indoor scenarios is 

considered in the measurement. A maximum of 20 dBm transmit power is used during 

measurements. Two types of antenna directional and omnidirectional are used during 

measurements. Three different polariztion, namly Vertical-Vertical (VV Transmitter 

(Tx) is vertical and Receiver (Rx) is vertical), Horizontal-Horisontal (HH), and 

Horizontal-Vertical (HV) are used. The frequencies considered in this research are 1.8 

and 2.6 GHz. Far field distance is d > 2D2/λ is considereed only, where D is the 

maximum antenna dimension and λ is the wavelength (Nikitin et al., 2007). Therefore, 

it is assumed throughout this study that the signal is propagating through far field 

region. The simulator is developed based on MATLAB platform and then integrated 

into the famous Vienna simulator. 

 

1.6 RESEARCH METHODOLOGY 

The research methodology is based on a combination of three different approaches. 

The first approach is experimental, where real measurements were conducted to 

evaluate the available indoor path loss models. The second approach is mathematical, 

where regression methods were applied to fit the measured data and proposed a new 

empirical model for 3-D indoor environment. The last approach is to develop a 3-D 


