COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DEVELOPMENT OF A COMPUTATIONAL METHOD TO ESTIMATE FLUID FLOW RATE IN OIL WELLS WITH AN ELECTRICAL SUBMERSIBLE PUMP

BY

TAREK AL-ARBI O. GANAT

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering International Islamic University Malaysia

SEPTEMBER 2016

ABSTRACT

A significant challenge in the oil and gas industry is the simultaneous measurement of commingled gas, oil and water streams, using the three phase test separator or multiphase flow meter (MPFM). The major issue in the application of using either test separator or MPFM in oil field is the uncertainty of the measurements, due to different process and operations conditions. To date, there are no sets of rules proving the technique for comparison between the test separator and the multiphase flow meter. Hence, there is a need for more accurate and reliable methods to be adapted as alternatives to the current flow rate measurements techniques, which must be capable of working at any fluid composition and production flow environment conditions. At first, this thesis will show, through an experimental study, wide variations of the liquid rate measurements between the conventional test separator and MPFM at several periods of time. Then, it proposes a new computational method to estimate the electrical submersible pump (ESP) oil well flow rates. The research idea is to close the wellhead wing valve as the ESP is kept running normally, and the wellhead flowing pressure before well shut-in and the build-up of wellhead flowing pressure after the well shut-in is measured. The total shut-in time period is recorded, and it is dependent on the individual oil well production conditions. Explicit physics concepts for estimations of the multiphase fluid flow rate in a vertical pipe were employed. The formulas deal with changes of fluid flow parameters along the vertical pipe in the well, as a function of pressure and temperature variations with depth. A Microsoft visual basic program was also developed based on the oil mechanistic and empirical equations that can estimate oil rate for ESP oil wells. The new method was applied on 48 ESP oil wells in North African oil fields and lead to very reliable estimation results, which have about a +/-10% relative error. As a result, a regression correlation equation was developed based on the computational results. OLGA software has been used to make comparison with multiphase flow model available in the OLGA software against each nominated ESP oil well parameters obtained from measured field data. The objective was to verify the obtained shut-in wellhead pressure after closing the choke wing valve (WHPa) from the measured field data with the obtained shut-in wellhead pressure valve from the simulation model. The simulation results showed that the estimated WHPa are in agreement with the measured WHPa. The relative errors for individual oil field are within accuracy standard specification (typically +/- 5%). The overall relative errors are low and within acceptable uncertainty range, where the aggregate relative error for all wells was less than +/-4%. Therefore, the results have demonstrated that the new computational method can be applied to all fluid types and under any production conditions. Generally, the results show that the new computational approach is more accurate when compared with test separator measurement within the specified range of accuracy.

خلاصة البحث

التحدي الكبير في صناعة النفط والغاز هو عملية القياس المتزامنة لتدفق الغاز والنفط والمياه في آن واحد ,وذلك بأستخدام محطة العزل للسوائل المنتجة (Test Separator) أوباستخدام عدادات ذات خاصية قياس التدفق للسوائل المتعددة (MPFM). هناك العديد من عدادات قياس السوائل التي تم تطويرها مند مطلع سنة 1980م بواسطة مراكز الأبحاث والشركات المنتجة للنفط والغاز. هناك بعض الدراسات التي أظهرت نتائجها اختلافا كبيرة في نتائج قياسات السوائل مابين الطريقتين على فترات زمنية مختلفة. إلى اليوم لاتوجد قواعد اساسية لضبط عملية المقارنة بين النظامين, لذالك دعت الحاجة إلى ضرورة إيجاد طرق أكثر أعتماداً وذقةً لحساب تدفق السوائل المنتجة. هذة الأطروحة تقترح طريقة حسابية جديدة لتحديد معدل تدفق إنتاج النفط من الأبار التي تعمل بأستخدام المضخة الكهربائية الغاطسة (ESP). فكرة البحث تعتمد أساسا على غلق صمام رأس البئر النفطي مع ترك المضخة تعمل بصورة طبيعية ويتم قياس ضغظ رأس البئر (WHPb) قبل قفل الصمام أثناء عملية الأنتاج وبعد قفل الصمام (WHPa), (على الأقل يزداد ضغظ رأس البئر50 رطل أخرى عن ضغط رأس البئر قبل القفل), وتسجيل الفترة الزمنية الكلية لعملية قفل الصمام. تم أستخدام المعادلات الفيزيائية والمعادلات المعملية اللازمة في حسابات خصائص السوائل المتدفقة عند حدوث أي تغير في الضغط ودرجة الحرارة على طول عمق البئر العمودي. في هذا الأطروحة أيضا تم أستخدم برنامج مايكروسوفت (Visual Basic) لبناء العمليات الحسابية للطريقة الجديدة. الطريقة طبقت على عدد 48 بئر نفطى يستخدم المضخة الكهربائية الغاطسة لحقول نفط في شمال أفريقيا. الطريقة الجديدة أظهرت نسبة الخطاء النسبي حوالي +/-10%. ونتيجة لذلك، تم تطوير معادلة الأنحدار على أساس النتائج الحسابية المتحصل عليها. هذا البحث أستخدم أيضا برنامج النموذج الرياضي (OLGA) وذلك لحساب ضغط صمام رأس البئر أثناء القفل (WHP_a) المتحصل عليها من النموذج الرياضي ومقارنتة مع ضغظ قفل صمام رأس البئر المتحصل عليها من القياسات الحقلية لكل بئر. النتائج كانت جيدة أيصا حيث أن نسبة الخطاء النسبي كانت +/-5% لكل بئر. وبالنظر الى الخطاء النسبي لجميع الأبار مجتمعة كانت حوالي 4%. لذا أعتبرت ذقة نتائج التي أظهرتها الطريقة الحسابية الجديدة مقبولة ويمكن الأعتماد عليها كطريقة جديدة يمكن تطبيقها على جميع الأبار التي تستعمل المضخة الكهربائية الغاطسة وتحت أي ظروف عملية و أنتاجية.

APPROVAL PAGE

The thesis of Tarek Al-Arbi Omar Ganat has been approved by the following:

Meftah Hrairi Supervisor

M.N.A. Hawlader Co-Supervisor

Osman Farj Field Supervisor

Sher Afghan Khan Internal Examiner

Abdulrahman Hamid Nour External Examiner

> Rahmat Mohsin External Examiner

Noor Mohammad Osmani Chairman

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Tarek Al-Arbi Omar Ganat

Signature Date

COPYRIGHT PAGE INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

DEVELOPMENT OF A COMPUTATIONAL METHOD TO ESTIMATE FLUID FLOW RATE IN OIL WELLS WITH AN ELECTRICAL SUBMERSIBLE PUMP

I declare that the copyright holders of this dissertation are jointly owned by the student and IIUM.

Copyright © 2016 (Tarek Al-Arbi Omar Ganat) and International Islamic University Malaysia. All rights reserved.

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below

- 1. Any material contained in or derived from this unpublished research may be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieved system and supply copies of this unpublished research if requested by other universities and research libraries.

By signing this form, I acknowledged that I have read and understand the IIUM Intellectual Property Right and Commercialization policy.

Affirmed by Tarek Al-Arbi Omar Ganat

Date

Signature

ACKNOWLEDGEMENT

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I have been extremely lucky to have supervisors who cared so much about my work, and who responded to my questions and queries so promptly. I would therefore like to offer my sincere thanks to all of them.

I would like to express my heartfelt thanks to my supervisor, Associate Professor Dr. Meftah Hrairi for all his tremendous help, advice and recommendation. Without his support and guidance, this dissertation would not have come to fruition.

I would also like to express my deepest gratitude to my co-supervisor Dr. M.N.A. Hawlader, my cordial thanks for accepting me as a PhD student, your warm encouragement, excellent guidance, critical comments, and correction of the thesis.

I want to express my deep thanks to my field supervisor Dr. Osman Farj from PETRONAS Company for the trust and support, the insightful discussion, offering valuable advice, for his support during the whole period of the study, and especially for his patience and guidance during the writing process.

There are no proper words to convey my deep gratitude to Mr. Eghbal Motea from PETRONAS Company and I would also like to thank him for his support, guidance and comments on my thesis during the long process of evaluating the research results.

A very special word of thanks goes to my parents; they bore me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis. Thanks also to my brothers and sisters, for supporting me physically and spiritually throughout my life. They were always encouraging me with their best wishes.

Finally, I would especially like to thank my family. My wife has been extremely supportive throughout this entire process and has made countless sacrifices to help me get to this point. My children, Mohamed, Heba, Abdurrahman, my baby boy Abdul Malik, who have been the light of my life and they give me the extra strength and motivation to get things done.

TABLE OF CONTENTS

Abstractii
Abstract in Arabiciii
Approval Pageiv
Declarationv
Copyright Pagevi
Acknowledgementvii
Table of contentsviii
List of Tablesxi
List of Figures
List of Abbreviationsxvii
List of Symbolsxx
CHAPTER ONE: INTRODUCTION1
1.1 Multiphase Flow Measurements1
1.1.1 Research Ground Work
1.2 Problem Statement and Significance of the Study
1.3 Research Philosophy
1.4 Research Objectives
1.5 Research Methodology
1.6 Research Scope
1.7 Thesis Outline
CHAPTER TWO: LITERATURE REVIEW13
2.1 Introduction
2.2 Review of Previous Work13
2.2.1 Flow Measurement Devices
2.2.2 Multiphase Flow Measurement
2.2.2.1 Liquid Flow Measurement by Test Separator Meters15
2.2.2.2 Fluid Flow Measurement by Multiphase Flow Meters 17
2.2.3 Multiphase Flow Simulation
2.2.4 Uncertainty Analysis of Multiphase Flow Measurements
2.3 Summary
CHAPTER THREE: MULTI-PHASE FLOW MODELLING
3.1 Overview
3.2 Fundamentals of Multi-phase Flow in the Petroleum Industry
3.2.1 Conservation Equations
3.2.2 Mass Conservation Equation
3.2.3 Momentum Conservation Equation
3.2.4 Energy Conservation Equation
3.2.5 Three Phase Flow Regimes in Vertical Pipes
3.2.5.1 Pipe Friction
3.2.5.2 Pressure Loss
3.2.5.3 Pressure Loss Correlations 57
3.2.5.4 Multiphase Friction Component 58
cizier interspinese riterion componenting and the

3.2.5.5 Multiphase Hydrostatic Component	59
3.2.5.6 Superficial Velocities	60
3.2.5.7 Liquid Holdup Effect	61
3.2.5.8 In-situ Volume Fraction (Liquid Holdup)	61
3.2.5.9 Input Volume Fraction	62
3.2.5.10 Mixture Velocity	63
3.2.5.11 Mixture Viscosity	63
3.2.5.12 Mixture Density	63
3.2.5.13 No-Slip Density	64
3.2.5.14 No-Slip Viscosity	64
3.2.5.15 Gas Volume Factor (GVF)	65
3.3 OLGA Simulations Modeling	65
3.3.1 The Simulation Parameter Structure	67
3 3 2 OLGA Simulation Results	69
3 3 3 Simulation Visualization Results	70
3 3 4 Sensitivity Analysis	72
3.4 The Basic Equations Used to Solve the New Computational	
Approach in this Research	74
3 5 Summary	76
5.5 Summary	
CHAPTER FOUR: EXPERIMENTS	77
4 1 Experimental Design	78
4.1 Experimental Eacility	79
4.2 Experimental Latenty	80
4.2.1 Wedstrement Devices	82
4.2.2 Test Separator Facility	83
4 3 Reliability of Analysis of Multiphase Flow Measurement in	
different Oil Fileds	84
4 3 1 Case Study 1: Middle Fast Regions	85
4.3.1.1 Oil field #1	
4.3.1.2 Oil field #2	85
1.3.2 Case Study 2: Mediterranean Region	00 02
4.3.2 Case Study 2: Neutrenancial Region	
4.5.5 Case Study 5. Southeast Asia Region	95
4.3.3.1 OII field #1	,95 07
4.5.5.2 On Field #2	
4.3.4 Case Study 4. North Africa Region	100
4.5.5 Observations	100
4.4 The Description of the New Method	103 107
4.5 Experimental Trocedures	107
4.0 Meenanistic and Empirical Equations Oscu in the Computional	110
Approach	110
4.0.1 Ods Defisity	, 113 114
4.0.2 Water Vapour Density	114 11 <i>1</i>
4.0.5 Total Oas Delisity	114 11 <i>1</i>
4.0.4 OII Delisity	114,
4.0.3 Liquiu Density	113 11 <i>5</i>
4.0.0 WIXIUE DEISILY	113 115
4.0.7 Uas viscosity	115 11 د
4.0.8 MIXIUTE V1SCOSILY	110

4.6.9 Superficial Mixture (Liquid and Gas) Velocity	116
4.6.10 Gas Ccompressibility Factor	117
4.6.11 Gas Formation Volume Factor (shrinkage factor)	118
4.6.12 Oil Formation Volume Factor	118
4.6.13 Oil Gas Ratio	119
4.6.14 Liquid Holdup (H _L)	119
4.6.15 Reynolds Number	121
4.6.16 Friction Losses	121
4.6.17 Total Pressure Losses in the Vertical Pipe	121
4.6.18 The Frictional Pressure Loss In Pipe Flow	121
4.6.19 Cross Section Area of the Pipe	122
4.6.20 Flow Rate	122
4.7 Verification and Validation Data	
4.8 Uncertainty Consideration	124
4.9 Experimental Strength Analysis	126
4.10 Summary	126
CHAPTER FIVE: RESULTS AND ANALYSIS	
5.1 Introduction	
5.2 Validation and UNcertainty Quantification	
5.2.1 Comparison Results between New Method and Convention	nal
Method (Test Separator)	147
5.3 New Correlation for Oil Rate Estimation	
5.3.1 Sensitivity Analysis	
5.4 Algorithm, Flowchart and Program Design	157
5.5 Analysis of Olga Simulation Modeling	157
5.6 Summary	165
CHAPTER SIX: CONCLUSION AND FUTURE WORK	
6.1 Conclusions of the Present Work	
6.2 Contributions	
6.3 Recommendation for Future Work	169
REFERENCES	171
LIST OF PUBLICATION	177
APPENDIX A	178
APPENDIX B	
APPENDIX C	

LIST OF TABLES

	Page No.
Table 2-1 Comparison of Popular Flow Measurement Devices	14
Table 3-1 MPFM Classification According to the Flow Pattern	66
Table 4-1 Onsite Field Experiments of the Independent Measurements variables	79
Table 4-2 Summary of the Final Oil, Gas, and Water Results of Well Tests of the First Study in the Middle East Region Conducted Using MPFM and Conventional Test Separator	87
Table 4-3 Summary of the Final GOR and WC Results of Well Tests of the First Study in the Middle East Region Conducted Using MPFM and Conventional Test Separator	88
Table 4-4 Summary of the Final Oil and Gas Results of Well Tests of the Second Study in the Middle East Region Conducted Using MPFM and Conventional Test Separator	90
Table 4-5 Summary of the Final GOR and WC Results of Well Tests of the Second Study in the Middle East Region Conducted Using MPFM and Conventional Test Separator	91
Table 4-6 Summary of the Final Oil, Gas and Water Results of Oil WellTests of the Case Study in the Mediterranean Region ConductedUsing MPFM and Conventional Test Separator	94
Table 4-7 Summary of the Final GOR and WC Results of Oil Well Tests of the Case Study in the Mediterranean Region Conducted Using MPFM and Conventional Test Separator	94
Table 4-8 Summary of the Final Oil and Gas Results of Oil Well Tests of the Second Study in the Southeast Asia Region Conducted Using MPFM and Conventional Test Separator	98
Table 4-9 Summary of the Final GOR and WC Results of Oil Well Tests of the Second Study in the Southeast Asia Region Conducted Using MPFM and Conventional Test Separator	98
Table 5-1 Validation Oil Rate Results of G Oil Field	131
Table 5-2 Validation Oil Rate Results of W Oil Field	131
Table 5-3 Validation Oil Rate Results of D Oil Field	132

Table 5-4 Descriptive Statistics	132
Table 5-5 Descriptive Statistics	133
Table 5-6 Descriptive Statistics	133
Table 5-7 Validation Water Rate Results of G Oil Field	136
Table 5-8 Validation Water Rate Results of W Oil Field	137
Table 5-9 Validation Water Rate Results of D Oil Field	137
Table 5-10 Descriptive Statistics	138
Table 5-11 Descriptive Statistics	138
Table 5-12 Descriptive Statistics	139
Table 5-13 Validation Gas Rate Results of G Oil Field	142
Table 5-14 Validation Gas Rate Results of W Oil Field	142
Table 5-15 Validation Gas Rate Results of D Oil Field	143
Table 5-16 Descriptive Statistics	144
Table 5-17 Descriptive Statistics	144
Table 5-18 Descriptive Statistics	145
Table 5-19 Partial Regression Coefficients	152
Table 5-20 Validation of Measured Oil Flow Rate Verses Predicted Oil Flow Rate Using Regression Correlation Equation.	155
Table 5-21 Comparison of WHPa Between the Experimental Data and Simulation Data for Wells in G Oil Field	160
Table 5-22 Comparison of WHPa Between the Experimental Data and Simulation Data for Wells in W Oil Field	160
Table 5-23 Comparison of WHPa Between the Experimental Data and Simulation Data for Wells in D Oil Field	161

LIST OF FIGURES

	Page No.
Figure 1-1 General Overview of the Research Methodology	10
Figure 3-1 Compressible Multiphase Pipe Flow	37
Figure 3-2 Gas-Liquid Flow Regime in Vertical Pipes	53
Figure 3-3 Typical Vertical Flow Regime Map	54
Figure 3-4 OLGA Input Fields Board Tabs	68
Figure 3-5 OLGA Well Structure Model	68
Figure 3-6 Well Casing and Tubing Design Profile	69
Figure 3-7 PVTI Simulation Model	69
Figure 3-8 2D Vertical Well Cross Section Pipe Using OLGA Viewer Profile	71
Figure 3-9 3D Flowing Vertical Well image Shows Bubble Point Location Depth	71
Figure 3-10 Average Liquid Rate as a Function of the Number of Time Steps	72
Figure 3-11 CPU Time as a Function of the Number of Time Steps	73
Figure 3-12 The Histogram Shows the Frequency of the Total Number of Wells Verses Total Number of Time Step Used.	74
Figure 4-1 well Testing Profile Using Test Separator System	80
Figure 4-2 Pressure Gauges	80
Figure 4-3 Wing Valve	80
Figure 4-4 (a) and (b) Temperature Gauges	81
Figure 4-5 Digital Watch	81
Figure 4-6 Standard Test Separator	82
Figure 4-7 Cross Section test Separator Profile	83
Figure 4-8 (a), (b) and (c) Liquid Flow Meters	83

Figure 4-9 (a) and (b) Multiphase Flow Meter (MPFM) on Well Site	84
Figure 4-10 Cross Plot of Oil Flow Rate for the First Study in the Middle East Region	88
Figure 4-11 Cross Plot of Oil Flow Rate of the Second Study in the Middle East Region	91
Figure 4-12 Oil and Gas Relative Error Comparison Plot of MPFM Readings Compared to the Separator Readings of the Second Study in the Middle East Region	91
Figure 4-13 Cross Plot of Oil Flow Rate for the Case Study in the Mediterranean Region	95
Figure 4-14 Liquid, Oil, and Gas Relative Error Comparison Plot of MPFM Readings Compared to the Separator Reading for the Case Study in the Mediterranean Region	95
Figure 4-15 Observation of Oil Rate vs. Time Using MPFM for the First Study in the Southeast Asia Region	96
Figure 4-16 Oil Relative Error for the First Study in the Southeast Asia Region	97
Figure 4-17 Liquid, Oil, and Gas Relative Error Comparison Plot of MPFM Readings Compared to the Separator Reading for the Second Study in the Southeast Asia Region	99
Figure 4-18 Observation of Oil Rate vs. Time Using Test Separator for the Case Study in the North Africa Region	100
Figure 4-19 Oil Relative Error for the Case Study in the North Africa Region	100
Figure 4-20 Well Diagram Shows Stages of the New Method Before and After Shut-in the Well Valve	105
Figure 4-21 Well Schematic Shows Bubble Point Location Depths for Both Steps Before and After Closing the Wellhead Wing Valve	105
Figure 4-22 New Computational Method Process Diagrams	107
Figure 4-23 Microsoft Visual Basic Program for Estimation of Oil Rate in ESP Oil Wells	111
Figure 4-24 Flow Chart of New Computational Method	112
Figure 4-25 Well Schematic	113
Figure 4-26 Data Validation Process	124

Figure 4-27 Experimental Strength Analysis Diagram	126
Figure 5-1 G Oil Field: Oil Flow Rate Cross Plot	132
Figure 5-2 W Oil Field: Oil Flow Rate Cross Plot	133
Figure 5-3 D Oil Field: Oil Flow Rate Cross Plot	133
Figure 5-4 G Oil Field: Oil Flow Rate Measurement Accuracy	134
Figure 5-5 W Oil Field: Oil Flow Rate Measurement Accuracy	134
Figure 5-6 D Oil Field: Oil Flow Rate Measurement Accuracy	134
Figure 5-7 G Oil Field: Water Flow Rate Cross Plot	138
Figure 5-8 W Oil Field: Water Flow Rate Cross Plot	138
Figure 5-9 D Oil Field: Water Flow Rate Cross Plot	139
Figure 5-10 G Oil Field: Water Flow Rate Measurement Accuracy	139
Figure 5-11 W Oil Field: Water Flow Rate Measurement Accuracy	140
Figure 5-12 D Oil Field: Water Flow Rate Measurement Accuracy	140
Figure 5-13 G Oil Field: Gas Flow Rate Cross Plot	143
Figure 5-14 W Oil Field: Gas Flow Rate Cross Plot	144
Figure 5-15 D Oil Field: Gas Flow Rate Cross Plot	145
Figure 5-16 G Oil Field: Gas flow Rate Measurement Accuracy	145
Figure 5-17 W Oil Field: Gas flow Rate Measurement Accuracy	146
Figure 5-18 D Oil Field: Gas flow Rate Measurement Accuracy	146
Figure 5-19 Test Separator Measurement Accuracy for Oil Wells in North African	149
Figure 5-20 Test Separator Measurement Accuracy for Oil Wells in Middle East	149
Figure 5-21 Accuracy of the New Computational Method	149
Figure 5-22 Block Diagram of Regression Process	150
Figure 5-23 Sensitivity Analysis of Independent Parameters	153
Figure 5-24 Uncertainty Scatter Plane Results	154

Figure 5-25 Estimated Oil Rate Versus Measured Oil Rate Plot for A Oil Wells.	All ESP 156
Figure 5-26 Oil Rate Relative Error for All ESP Oil Well.	156
Figure 5-27 Flow Chart of the Simulation Model Structure	158
Figure 5-28 Comparison Cross Plot Between the Experimental WH Simulation WHPa for Wells in G Oil Field.	Pa and 161
Figure 5-29 Comparison Cross Plot Between the Experimental WH Simulation WHPa for W Oil Field	Pa and 162
Figure 5-30 Comparison Cross plot Between the Experimental WH Simulation WHPa for D Oil Field	Pa and 162
Figure 5-31 Experimental WHPa Accuracy for G Oil Field	163
Figure 5-32 Experimental WHPa Accuracy for W Oil Field	164
Figure 5-33 Experimental WHPa Accuracy for D Oil Field	164
Figure 5-34 Overall Relative Error Histogram for All ESP Wells.	165

LIST OF ABBREVIATIONS

API	Oil specific gravity
А	Pipe cross-sectional area, sq ft
Bg	Gas formation vol. Factor, res. cf/scf
Bo	Oil formation vol. Factor, res. bbl/stb
Bob	Oil formation volume at bubble point pressure, bbl/STB
Cnt	Count
d	Inside pipe diameter, ft
dp/dz	Total pressure gradient (friction pressure loss is considered).
f	Friction losses factor
FVF	Formation Volume Factor
g	Gravity
HG	Gas holdup
HL	Liquid holdup
H1	Bubble point pressure location depth before closing the wellhead valve, ft
H2	Bubble point pressure location depth after closing the wellhead valve, ft
mt	Mass flow rate, lb/day
N_{Lv}	Liquid velocity number
N_{gv}	Gas velocity number
NL	Liquid viscosity number
Nd	Pipe diameter number
NCL	Correction for viscosity number coefficient
q _o	Oil flow rate stb/day

q_{w}	Water flow rate stb/day
q_{g}	Gas flow rate stb/day
q_L	Liquid flow rate stb/day
qm	Measured flow rate stb/day
QC	Quality Check
Р	Average pressure, psia
Pb	Bubble point pressure, psia
Pr	Pseudo-critical pressure of gas mixture, psia
Psc	Pressure at standard conditions, psia
PSD	Pump setting depth
SGG	Specific gravity of gas
STB	Stock tank barrel
rw	Wellbore radius, ft
Rs	Solution gas-oil ratio, scf/stb
Rsb	Solution gas at bubble point pressure, (cf/scf)
Re	Reynolds number
Т	Average temperature, °F
t	Shut-in time, min
Tr	Pseudo-critical temperature of gas mixture, psia
Tsc	Temperature at standard condition, °R
Tr	Reservoir temperature, °F
VR	Gas volume at down-hole conditions, ft3
Vsc	Gas volume at standard condition, ft3
VSL	Superficial liquid velocity, ft/sec
VS_{g}	Superficial gas velocity, ft/sec
V _m	Mixture velocity, ft/sec

- WHP_a Wellhead pressure after closing the well, psia
- WHP_b Wellhead pressure before closing the well, psia
- WC Water cut (non-dimensional)
- WHT Wwellhead temperature, °F
- W Water vapour density
- Z Gas compressibility factor

LIST OF SYMBOLS

ΔP	Drawdown pressure, psia
HL/ψ	Holdup factor correlation
γο	Oil gravity
γw	Water gravity
γg	Gas gravity
σ	Surface Tension
ΔH	The differences between bubble point pressure location depth before
	and after closing the wellhead valve, ft
$ ho_o$	Oil density lbm/ cu ft
$ ho_{g}$	Gas density lbm/ cu ft
$ ho_{w}$	Water density lbm/ cu ft
ρ_L	Liquid density, Ib/cu ft
$ ho_m$	Mixture density, Ibm/ cu ft
μ_{o}	Oil viscosity, cp.
μ_{g}	Gas viscosity, cp.
$\mu_{\rm L}$	Liquid viscosity, cp

Subscripts

gs	Gas at standard condition
h	Hydrostatic
L	Liquid
m	Mixture of liquid and gas

- o Oil
- sc Standard condition
- w Water

CHAPTER ONE INTRODUCTION

1.1 MULTIPHASE FLOW MEASUREMENTS

The problem of how to meter oil-water-gas mixtures has been of interest to the petroleum industry since the early 1980's. A number of such meters have been developed by research organizations, manufacturers, oil and gas production companies, and other interested parties (Benlizidia, 2009). Different technologies and various combinations of technologies have been employed to produce prototypes which are dissimilar in form and function. While some lines of development have been abandoned, a number of meters have become commercially available, and the number of applications and users is rapidly increasing (Corneliussen et al., 2005). Gas/oil flow rate of production well is an important parameter for evaluating oilfield production (Nian, 2015). Oil producers used three-phase test separators or Multiphase Flow Meters (MPFM) to measure the total volume of fluids produced by individual wells in a large upstream production field.

Traditionally, metering of the multiphase flow is carried out by utilizing two or three phase test separators using single-phase flow meters installed at the outlets of the oil, water and gas legs. These have an acceptable accuracy limit, depending on operator's skills, maintenance work and various other factors such as fluid properties variation (Hosseini et al., 2011). The test separators are practical and the accuracies acceptable during the early production stages. However, the test separator accuracy is highly dependent on changes in Gas Oil Ratio (GOR) and Water Cut (WC) which yield to changes in the flow regime and fluid characteristics. Besides, test separators are expensive, occupy valuable space on a production platform and require a long time to monitor each well because of the stabilized flow conditions required. In addition, test separators cannot be used for continuous well monitoring.

During the late 1980's, the oil and gas industry started to realize that the availability of multi-phase flow meters could have a large economic impact on the infrastructure of oil and gas developments (Scheers and Wee, 2011). Multiphase flow meters (MPFM), on the other hand, do not rely on separation (100%) of the fluid and operate under various conditions for flow measurement, but these are also considered as unreliable measurement tools at high GOR and high WC. In addition, Multiphase flow meters are also very expensive to install. Hence, there is a need to adopt more accurate and reliable methods as alternatives to the current flow rate measurements techniques, and it must be capable of working in any fluid composition and production flow environment conditions (Falcone et al., 2009). In practice, down-hole measurement devices in the tubing string are not available due to the complication of fluid properties and conditions in terms of multiphase flow (Wee and Skjaeldal, 2009).

This research work proposes a new computational method to estimate the hydrocarbon fluid flow rate of the ESP oil wells. It is based on the estimations of multiphase fluid flow parameter variations along the vertical pipe in an oil well as pressure and temperature changes with depth, using principles of multiphase flow mechanistic equations and empirical correlations. A Microsoft visual basic program was also developed based on the oil mechanistic and empirical equations that can estimate oil rate for ESP oil wells. Besides, OLGA simulation model was used to verify the field input data used with the simulation model results.

1.1.1 Research Ground Work

This research work proposes a new method by which to determine fluid flow rate from the ESP oil well. It is based on the computation of fluid properties variation as a function of pressure and temperature changes with depth, in the vertical well pipe. This method is used in oil wells through an artificial-lift technique such as Electrical Submersible Pump (ESP). A sample of 48 ESP oil wells from G, W, and D oil fields in North Africa were chosen to apply the new approach.

This new method is applied by keeping the oil pump running, and by closing the wellhead pressure wing valve for a few minutes (depending on the individual oil well condition) to build up the wellhead pressure to at least 50 psi. The mechanism of calculation is based on the difference in gas volume at different bubble point pressure location depths, before and after closing the wellhead wing valve. From this incremental buildup of measured pressure, a new method will be developed to compute the hydrocarbon fluid flow of the ESP oil wells. The new method can be applied to different fluid flow composition and flow regime.

The algorithm program was developed using a Microsoft visual basic program (Evangelos, 2008) to estimate the fluid flow of the ESP oil wells through specific algorithm codes. The algorithm program is a diagrammatic representation of the steps used in solving the computational method using multi-physics equations (Keyes et al., 2013) and (Anders, 2015). The program identifies all the major steps and sub-steps in a process. In this algorithm, the initialization step is run to obtain the bubble point pressure location depth, before and after closing the wellhead wing valve. Based on the verification and validation of the new computational approach outputs, a new estimation oil flow rate regression equation was developed. A mathematical procedure for finding the best-fitting curve was used to measure and estimate data points by