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ABSTRACT 
 

 

Cellulose is the main component in plant cell and thus the most abundant biopolymer 

on earth. Cellulase is a group of enzymes that degrade cellulosic materials and belong 

to the O-glycoside hydrolases (EC 3.2.1.x). Endoglucanase (EC 3.2.1.4) is a key 

component in cellulase which has been used in various industries such as textiles, 

detergents, foods and animal feed, pulps and papers and recently in bio-fuel industries. 

Since most of the processes in many industries are carried out at higher temperature 

(above 60°C), the main limitation of cellulase utilization is the lack of enzyme activity 

and stability at higher temperatures. Generally, endoglucanases in glycoside hydrolase 

family 7 (GH 7) have the optimum temperature at 45-55°C and endoglucanase from 

Fusarium oxysporum (EGFO) completely loses activity after heating the enzymes at 

60°C for three hours. In order to design a new thermostable endoglucanase from 

Fusarium oxysporum, molecular dynamics (MD) simulation technique was used to 

find out the dynamics factors responsible for the thermal stability of known 

endoglucanases (EG). Mesophilic endoglucanases from Fusarium oxysporum (EGFO) 

and thermophilic endoglucanase from Humicola insolens (EGHI) with known crystal 

structures and enzyme activitywere used to compare their dynamical behaviors at 

40°C and 60°C using MD simulation in aqueous media. It has been found that the 

Root Mean Square Deviation (RMSD) backbone of EGFO tends to increase more 

rapidly at higher temperatures, whereas the RMSD values for EGHI either remains 

similar or decreases at higher temperature. The RMSD helices of EGFO also have the 

behavior similar to that RMSD backbone. The secondary structure conformation at the 

residues position 225 to 231 of EGFO changes significantly at higher temperature, 

whereas conformation of EGFO at these positions is maintained as the temperature is 

increased. The EGHI shows salt-bridge interactions and hydrophobic interactions in 

these regions. Hence these two factors are crucial for the thermal stability of 

endoglucanase, this information obtained was used to carry out several in silico 

mutations on EGFO with the objective of designing more thermostable endoglucanase 

and found that the dynamic behavior of newly designed  mutants are consistent with 

the conclusions. Therefore, the new quintuple mutant obtained by mutating at the 

positions T224E/G229A/S230F/S231E/N321R is predicted to be more thermostable 

than EGFO. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 OVERVIEW OF STUDY 

Enzyme technology has become a preferred choice of technology in various chemical 

industries. The large-scale production of the variety of products using chemical 

technology generates a lot of hazardous waste, which is a serious problem that has 

severe impact on environment. In order to address this problem, various industries 

attempt to avoid using chemical technology. Cellulose is one of the most important 

industrial cellulosic materials that can be degraded by cellulolytic enzymes known as 

cellulase.  

 Endoglucanase is one of the key components of this complex multi-enzyme 

system (cellulase), which breaks internal bonds in the crystalline structure of cellulose 

and exposes individual cellulosic polysaccharide chains. Cellulase has been used in 

various industries such as textiles (Buchert and Heikinheimo, 1998 and Reily et al., 

2004), detergents (Walsh, 2002), foods and animal feed (Galante et al., 1998 and 

Urlaub, 2002), pulps and papers (Suurnakki et al., 2004), and recently in bio-fuel 

industries (Kumar et al., 2009). One of the main limitations of most cellulase 

utilization is the lack of enzyme activity and stability at high temperatures. Since most 

of the processes in many industries are carried out at high temperatures (above 60°C) 

(Shuyan et al., 2006), it is clear that thermostable enzymes is very important 

requirement in industrial processes using enzyme.  
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Most of the thermophilic cellulolytic enzymes have been widely isolated from 

thermophilic and hyperthermophilic fungi, which displays optimal temperature 

between 50 and 80°C. Some of these enzymes such as endoglucanase from 

Thermotoga neapolitana have very high thermostability, (half lives of 130 min at 

106°C) (Bok et al., 1998). However, the endoglucanase from a thermophilic 

pathogenic plant fungus (Fusarium oxysporum) is found to have an optimum activity 

at not more than 60°C and also lack stability at this temperature. Moreover, it has been 

observed from the literature review that endoglucanase from Fusarium oxysporum is 

not stable at 60°C (Vlasenko et al., 2010). On the other hand, Shuyan et al., (2006) 

have found a novel endoglucanase from Fusarium oxysporum, which has the optimal 

temperature at 75°C but the gene of the enzyme is different from the known endo-1,4-

glucanase from Fusarium oxysporum (Gene bank ID no. AAA65586.1). 

Two different protein engineering approaches to enhance the enzyme 

performance are rational design and directed evolution (Kazlauskas and Bornscheuer, 

2009).  Protein engineering via the directed evolution approach is expensive, while 

protein engineering via the computational mutation (in silico) can be carried out, in 

order to save the cost. Using the computational approach, the scope of mutation can be 

reduced, and it can be narrowed down to a specific point of mutation or region in the 

protein (Noorbatcha et al., 2009). For instance, to carry out a mutation on a structure 

with 400 residues, every single position of residues can be substituted with twenty 

amino acids. Thus, it is tedious to do the random mutations in the laboratory. Hence, 

the computer aided protein design can help in reducing cost of trial-and-error method 

adapted in random mutation. It also provides more insights on the role of various 

residues on the enzyme activity. 
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This study describes the research carried out in designing more thermostable 

endoglucanase from Fusarium oxysporum. Computational studies via the Molecular 

Dynamics (MD) simulation is used to examine the dynamic behavior of the available 

three-dimensional (3D) structures of endoglucanases for which experimental data on 

thermal stability is available (Vlasenko et al., 2010). The comparison of 

endoglucanase structure from two different sources at the different temperatures had 

been done on this research, and the thermostability rules derived from this work are 

applied to design a newly thermostable endoglucanase from Fusarium oxysporum.  

 

1.2 PROBLEM STATEMENT AND ITS SIGNIFICANCE  

In terms of better understanding of cellulase usage in various applications, the 

characteristics of the enzyme (example: thermostable enzymes, enzymes active in 

extreme pH, enzymes using different types of substrates, etc.) are essential. Fusarium 

oxysporum, which is used for the production of endoglucanase, is available in the 

International Islamic University Malaysia (IIUM) laboratory. We have plans to 

produce endoglucanase using this fungus. Endoglucanase from Fusarium oxysporum 

lacks thermal stability at 60°C (Vlasenko et al., 2010). However, temperatures above 

60°C are required in many industrial processes (Shuyan et al., 2006) and hence there 

is a need to improve the thermal stability of this enzyme.  

 As discussed before, a directed evolution process to obtain a thermostable 

enzyme is very time consuming, and hence computer aided design approach is 

selected in this research. Currently, the molecular dynamics simulation is the only 

method, which can be used to simulate behavior of the enzymes at higher 

temperatures, and hence provide a strategy to understand the factors that contribute to 
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the stability of the enzymes at higher temperatures. Hence we have employed the 

molecular dynamics simulation approach to compare dynamics behavior of 

endoglucanase from the glucoside hydrolase family 7 (GH 7) and predict the regions 

and mutation points crucial for thermal stability of endoglucanase from Fusarium 

oxysporum. Thus, the computational studies for increasing the thermostability of the 

enzyme will lead to novel theoretical design models for engineering endoglucanase to 

improve the thermostability of this enzyme.   

 

1.3 RESEARCH OBJECTIVES 

The overall objective of this research is to improve the thermal stability of 

endoglucanase via computational methods. The specific objectives of this study are as 

follows: 

a) To simulate the structure of mesophilic and thermophilic endoglucanase.  

b) To identify structural and dynamic factors responsible for thermostability of 

endoglucanase. 

c) To computationally predict thermostable-mutation in endoglucanase from 

Fusarium oxysporum. 

 

1.4 RESEARCH METHODOLOGY 

This research implements computational methods to achieve the objectives. Several 

methods and tools have been used to study the structural and dynamic properties of 

endoglucanase from GH 7. The mathematical algorithms, including force filed 

calculations and numerical methods are applied in MD simulation. They are used to 
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study the changes and behavior of endoglucanase at different temperatures. The 

stability of enzymes would be related to time dependent displacement of the atomic 

position in the enzyme, which is represented by the Root Mean Square Deviation 

(RMSD) of the atoms and residues in the protein (backbone, beta-sheets, alpha-helix, 

turns, and coils). The radius of gyration of the molecule is also calculated to analyze 

the compactness of the structure at difference temperatures. Moreover, the structure 

conformation changes of endoglucanase during simulation were analyzed to 

understand the reason behind the observed changes.  

 

1.5 SCOPE OF RESEARCH 

This research uses computational methods to study and design a novel thermostable 

endoglucanase from Fusarium oxysporum. MD simulation and computational 

mutation techniques are employed to the selected three-dimensional structures of 

endoglucanase from GH 7. Analysis of the obtained results would provide significant 

static and dynamics factors, and conditions responsible to the thermal stability of 

endoglucanase.  

 

1.6 DISSERTATION ORGANIZATION 

Five chapters of this thesis describe the research work that has been done to study and 

design a novel themostable endoglucanase from Fusarium oxysporum. Chapter 1 

provides a short overview followed by a description of the importance on thermal 

stability of endoglucanase and the ideas on improving thermal stability of 

endoglucanase via computational protein engineering. Furthermore, the research 

objectives, methodology and scope are explained in this chapter.  
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 The previous studies related to this research are described in chapter 2 in the 

form of a literature review. This chapter also provides the information about the 

experimental and computational studies implemented on the thermostability of 

proteins. Moreover, a review on endoglucanase, its applications and several protein 

engineering approaches to design thermostable enzymes are presented in this chapter. 

 Chapter 3 of this thesis records the materials and methods used to perform the 

study. The list of tools and software is pointed out, and this chapter also explains in 

detail, the methodology used in this research. The molecular dynamics simulation 

steps are described in detail to show how the molecular dynamics simulation concept 

can be implemented for studying the themostability of endoglucanase.  

 The results and findings obtained throughout this research are provided in 

chapter 4. This chapter gives a critical analysis and comprehensive discussion on our 

new findings related to the thermostability of endoglucanase. This includes the results 

of the molecular dynamics simulation of endoglucanase from GH 7, RMSD 

comparison, analysis of the number of hydrogen bonds and salt bridges, and analysis 

of radius of gyration of the enzyme.  

 The last chapter of this thesis (chapter 5) presents a summary of the overall 

results and findings of this research and its limitations. Moreover, the 

recommendations for future studies related to the designing of thermostable proteins 

in general and endoglucanase in particular are included in this chapter. 




