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ABSTRACT OF THE THESIS

Though many techniques for analyzing transient exponential signals have been
reported in the literature, however, deconvolution based procedures are preferred and
often commonly used because the signal parameters of interest are displayed
graphically. This thesis discusses three deconvolution techniques for the analysis of
transient exponential signals, namely conventional inverse filtering, optimally
compensated inverse filtering and homomorphic deconvolution which are
implemented by a MATLAB-based algorithm. All the three techniques are based on
the Gardner transformation which is needed to convert the exponential signal into a
convolution model. Interpolation algorithm is used for the proposed MATLAB
algorithm to process data acquired from real physical system. The deconvolved data is
generated from either the above techniques. The deconvolved data from cither the
conventional or optimally compensated inverse filtering is further analyzed using the
discrete Fourier transform (DFT) processing via the fast Fourier transform (FFT)
algorithm or the singular value decomposition (SVD)-based autoregressive moving
average (ARMA) modeling technique. The efficiency of the proposed algorithm in
estimating the real-valued decay rate is evaluated by the Cramer-Rao lower bound
(CRLB). The proposed algorithm is used to analyze both the simulated data and the
data acquired from real physical system. Results from the simulation studies and real-
time implementation show that the homomorphic deconvolution is the most
computationally efficient but it produces inaccurate estimates of the signal parameters.
Indeed, the optimally compensated inverse filtering with ARMA modeling technique
is the best technique amongst the three as it produces accurate estimates of the signal

parameters even thongh it involves laborious and complex computations.
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CHAPTER 1: INTRODUCTION

1.0 Introduction

According to Karrakchou et al. (1992), basic solution to a large variety of
problems that arises in many engineering disciplines can be written as a sum of
exponentials. This type of solution arises from many mathematical equations such as
linear differential equations, linear differential-difference equations, systems of linear
differential equations and systems of differential-difference equations. Amongst these
solutions is the analysis of multicomponent decaying transient signals with real
exponential constants. This analysis was first introduced by Gardner et al. (1959) in
the study of first order chemical kinetics and some order-disorder transitions in solid

state physics.

The analysis of multicomponent decaying transient signals is very important in
many areas of scientific disciplines such as the study of nuclear magnetic resonance
(NMR) in medical diagnosis (Cohn-Sfetcu et al. 1975), relaxation kinetics of
cooperative conformational changes in biopolymers (Provencher 1976), solving
system identification problems in control and communication engineering (Prost and
Goutte 1976), fluorescence decay of proteins (Karrakchou et al. 1992), kinetics of
isotropic exchange (Karrakchou et al. 1992), analysis of reaction rates (Sohie et al.
1990) and electromagnetic problems (Yu 1990). Recently, the mmulticomponent
transient signal analysis has found its applications in deep-level transient spectroscopy
(DLTS) for characterization of semiconductor materials (Sohie et al. 1990) and in the

estimation of the pulmonary capillary pressure (Karrakchou et al. 1992) and the list of

problems could continue.



1.1 Thesis objectives
The main objectives of this thesis are:

a) to test the performance of the proposed algorithm in estimating the number of
components and the real-valued decay rate either from the simulation studies or
from the real-time implementation,

b) to compare the efficiency of the proposed algorithm in estimating the real-valued
decay rate by using the Cramer-Rao lower bound, and

c) to see the effect of interpolation algorithm on the performance of the proposed

algorithm,

1.2 Problem statement
The multicomponent exponential signal can be represented by a linear

combination of exponentials of the form
M

8(r)= Y 4, exp(~A,7) +n(7), [¢R))
k=l

where M is the number of components, 4; and A; respectively cormrespond to the
amplitude and real-valued decay rate constants of the kth component and #(7) is the
additive white Gaussian noise with variance o;’. It is insufficient according to
Gardner et al. (1959) for a function to merely approximate the measured data, S(7)
closely but these signal parameters need .to be accurately estimated by the function.
The exponentials in equation (1.1) are assumed to be separated and unrelated. That is
none of the components is produced from the decay of another component. Therefore,
it is desirable to obtain the signal parameters, M, 4 and A; from equation (1.1). The
estimation of signal parameters is a difficult problem due to the nonorthogonal nature

of the exponential signals. This leads to an ill-posed problem, making it difficult to



accurately estimate the signal parameters. Nevertheless, the analysis of
multiexponential signals is very important because these signals arise in many

scientific areas as mentioned above,

1.3 Significance of the problem
The above problem arises in many scientific areas. The significance of the
problem is illustrated by the following examples taken from many disciplines of

science and engineering.

a) Analysis of biological NMR relaxation data

The early experiments on the analysis of NMR data according to Kroeker and
Henkelman (1986) were the measurements of the relaxation time in water and other
homogeneous liquids. These early experiments showed that the regrowth and decay of
magnetization in homogeneous samples are exponential. Calculation of data in these
experiments was not difficult because the sample under study and the conditions
affecting the samples were well understood. In contrast, the measurements of complex
biological samples are very difficult due mainly to the lack of understanding of the

conditions that affect the decay time.

Several techniques are introduced for the analysis of NMR data according to
Kroeker and Henkelman (1986) such as one-component exponential model, two-

component exponential model and continuum technique.



b) Analysis of multiexponential transient spectroscopy (METS) signals
The general formula for a set of samples generated from a certain time-

constant distribution, g(z) which is given by Marco et al. (2001) as

s@) = fg(r)e—[gdr. 12

The underlying g(7) is going to be determined from this equation. The inverse Laplace
transform of the signal is taken for solving the problem of any exponential analysis.
This operation is possible if the analytical expression of s(f) is known. Unfortunately,
this is not the case with multiexponential transient spectroscopy (METS) signals.
Therefore, another approach termed an improved spectroscopic technique is applied to

the analysis of METS signals.

¢) Analysis of “discrete specira” problem in biophysics
Signals from a variety of experiments are represented by an integral over an

exponential kernel (Provencher 1976), that is
S(z)= f e s(A)dA. (1.3)

It is desirable to determine the spectrum, s(2) as accurately as possible from equation
(1.3). The most common form of this problem in biophysics involves “discrete
spectral’. This problem is still difficult in biophysics because of the unknown
mechanism or appropriate model that will be determined. Therefore, a technique that

produces good estimates of the signal parameters is needed to obtain good results.



d) Other types of analysis
Recently, the analysis of multiexponential signals has found its application in
deep-level transient spectroscopy (DLTS) and characterization of semiconductor

materials according to Sohie et al. (1990).

1.4 Previous techniques of analysis
Several techniques have been proposed for solving the above mentioned
problem and these techniques are divided into two categories, namely time-domain

and frequency-domain methods.

During 1950s, the most common time-domain technique for solving a decay
curve into its components was the graphical or peeling approach according to Gardner
et al. (1959). This technique is the easiest to perform but it often gives inaccurate
estimate of the signal parameters; also this procedure can be painstakingly laborious

and only a skilled person can perform it successfully.

Prony suggested a time-domain technique for modeling data of equally
samples by a linear combination of -exponentials (Kay and Marple 1981). This
technique is called Prony’s method or linear least squares technique (Osborne and
Smyth 1995). Unfortunately, this technique performs poorly even for a slightly
contaminated signal. A modified Prony technique was described by Osborne and
Smyth (1995) to overcome this difficulty. This modified technique provides improved
performance but still gives inaccurate estimates of X especially when ¥ is closely

related to each other, Apart from that, these two techmiques require a prioti

information about M.



A nonlinear least squares technique is used in the iterafive technique for
computing the signal parameters according to Marquardt (1963). The solution of this
iterative technique will converge if the starting values of the unknown parameters are
appropriately determined. This technique is less attractive to many researchers due to

the problems of multiple convergence as well as being computationally inefficient.

The discussed time-domain techniques have the disadvantage of producing
incorrect results eifer when the data is noisy or the number of components, M is
unspecified. The main reason for the poor performance of the time-domain techniques

is the nonorthogonal nature of the transient signals as mentioned before.

The drawbacks of the time-domain techniques can be alleviated by using the
frequency-domain methods. One of the earliest frequency-domain techniques is the
Gardner transformation by Gardner et al. (1959). This technique is suitable for
analyzing signal with low noise since signal with large noise will result in
performance degradation. It is possible to obtain a high resolution without any a priori

knowledge of the signal parameters and the number of components, M.

'The main disadvantage of the Gardner transformation at that time was due fo
the difficulty in performing fast numerical integration by Fourier transform. Apart
from that, results of the analysis are affected by error ripples. These error ripples are

caused by a variety of factors such as integration error, data error, data perturbation

and truncation error.



The numerical integrals encountered in using the Gardner transformation can
be replaced by the discrete Fourier transform according to Schiesinger (1973). This
discrete Fourier transform can be easily calculated using the FET algorithm, which is
available during early 1970s. Therefore, the original Gardoer transformation is
improved by the FFT algorithm. Unfortunately, the implementation of this FFT
algorithm fails to solve the problems of error ripples and poor resolution display in

frequency-domain.

Another improvement over Schlesinger (1973) technique is given by Cohn-
Sfetcu et al. (1975). This improvement is based on the introduction of the Gaussian
filtering. The high frequency noise is reduced by this filter so that the signal-to-noise
ratio (SNR) of the deconvolved data is improved. This improved technique is sensitive
to noise because deconvolution and nonlinear change of variable enhance the noisiest
part of the data. Therefore, this technique needs data with high accuracy, which is
rarely possible in real-time implementation. This technique also suffers from longer
computational time due to the increased number of points in the FFT computation in
order to improve the resolution. A need for highly accurate data is eliminated by
Provencher (1976) with the introduction of a convergence parameter as well as an

amplitude equalization parameter into the existing FFT technique.

Swingler (1977) improved this FFT technique using a simple first-order
difference procedure by introducing an alternative starting point instead of forming
the usual product of &* S (). The alternative starting point is done by the formation of
the x-derivative, $°(e"). The advantages of this improved FFT technique are that it

a) yields outputs whose peaks are proportional to the amplitude, 4; directly,





