COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

SOUND ABSORPTION COEFFICIENT OF CARVED WOOD PANEL WITH ISLAMIC GEOMETRIC PATTERNS

BY

AHMED OMAR ALI

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Building Services Engineering)

Kulliyah of Architecture and Environmental Design

International Islamic University Malaysia

AUGUST 2010

ABSTRACT

The use of Islamic geometric pattern is very common in mosques, and very often, the patterns are carved on wood, but because of unavailability of their sound absorption coefficients, these carved wood panels are not used for the acoustic design of the mosque although they contribute to sound Absorption. This research finds sound absorption coefficients of Islamic geometric patterns carved on wood using acoustical simulation software BEASY. This research finds common geometric patterns to find sound absorption coefficient of a representative pattern that can be carved on wood using acoustical package of simulation software BEASY. BEASY is used to simulate sound emitted from a source in front of a wood panel carved with Rub el Hizb to find sound intensity in front of the panel, and then using sound intensity technique sound absorption is calculated. Sound absorption coefficients are found by three methods, in the first method an anechoic room with a wood panel carved with Rub el Hizb inside it is simulated, sound source in this method is a point source. The second method simulates only the wood panel carved with Rub el Hizb in an infinite space with a point source. The third method simulates the panel in an infinite space with a sphere object as the source of sound.

ملخص البحث

إن إستخدام الزخارف الهندسية الاسلامية شيء شائع جدا في المساجد، وكثيرا ما تكون هذه النقوش محفورة على الخشب، ولكن بسبب عدم وجود جداول معامل امتصاص الصوت للزخارف الهندسية الاسلامية، فان هذه الزخارف لا تستخدم في التصميم الصوتي للمساجد بالرغم من ألها تساهم في الامتصاص الصوتي. هذا البحث يجد معامل الامتصاص الصوتي للزخارف الاسلامية المحفورة على الخشب باستخدام برنامج محاكاة الصوت (BEASY). استخدم (BEASY) في محاكاة انتشار الصوت امام لوح خشبي محفور عليه واحد من الزخارف الشائعة وتم قياس شدة الصوت امام اللوح، وبعدها وباستخدام تقنية شدة الصوت تم قياس معامل امتصاص الصوت. واستخدم في هذا البحث ثلاثة طرق لايجاد معامل الزخارف الشائعة وتم قياس شدة الصوت امام اللوح، وبعدها وباستخدام تقنية شدة الصوت امتصاص الصوت. تمت في الطريقة الاولى محاكاة اللوح الخشبي المحفور عليه الزخارف الاسلامية في غرفة قياس الصوت مع كون مصدر الصوت نقطة. في الطريقة الثانية تمت الاسلامية في غرفة قياس الصوت مع كون مصدر الصوت نقطة. في الطريقة الثانية تمت الصوت نقطة. وفي الطريقة الزائرف الاسلامية في الفضاء ولكن مع كون الصوت نقطة. وفي الطريقة الزخارف الاسلامية في فضاء لامنتهي مع كون مصدر الصوت نقطة. وفي الفرية الثالاة تمت محاكات اللوح الخشبي في الفضاء ولكن مع كون الصوت نقطة. وفي الطريقة الثالات تمت عاكات اللوح الخشبي في الفضاء ولكن مع كون الصوت نقطة. وفي الطريقة الثالاة تمت محاكات اللوح الخشبي في الفضاء ولكن مع كون

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of (Building Services Engineering)

MD Najib Ibrahim Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of (Building Services Engineering)

Mohd Sharifuddin Ibrahim —— Internal Examiner

This dissertation was submitted to the Department of Building Technology and Engineering and is accepted as a partial fulfilment and is accepted as a partial fulfilment of the requirements for the degree of Master of of Science (Building Services Engineering)

Puteri Shireen Jahn Kassim Head, Dept. of Building Technology and Engineering

This dissertation was submitted to the Kulliyah of Architecture and Environmental Design and is accepted as a partial fulfilment of the requirements for the degree of Master of of Science (Building Services Engineering)

Mansor Ibrahim Dean, Kulliyyah of Architecture and Environ mental Design

.....

DECLARATION

I hereby declare that this dissertation is the result of my own investigation, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Ahmed Omar Ali

Signature

Date.....

.

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2010 by Ahmed Omar Ali. All rights reserved.

SOUND ABSORPTION COEFFICIENT OF CARVED WOOD PANEL OF ISLAMIC GEOMETRIC PATTERN

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Ahmed Omar Ali

Signature

Date

ACKNOWLEDGMENT

All praise and thanks are due to Almighty Allah, Who in His infinite mercy and grace enabled me to complete this dissertation. I bow my head with all submission and humility by way of gratitude due to Almighty Allah.

First and foremost, I would like to express my greatest gratitude to my supervisor Professor Dr. Najib Ibrahiem for offering me this research opportunity, and more importantly for his guidance, advice, patience and endless understanding throughout this research. I am deeply and forever indebted to him for his exceptional help.

I wish to express my gratitude to Dr. Ngasri for his advice and valuable comments. To Dr. Mukhtar for his kind advices. I also thank sister Dhalia for teaching me how to use BEASY.

My deep appreciation goes to all my teachers in KAED. To all my classmates in Master in Building Services Engineering. To brother Mustafa (my host in UTM). To all my friends in IIUM.

TABLE OF CONTENTS

Abstract	•••••		ii
Abstract in	Arabic		iii
Approval I	Il Page iv		
Declaration	Declaration Pagev		
Copyright	vi		
Acknowled	Acknowledgement		
Table of C	ontents		viii
List of Tab	les		xi
List of Fig	ures		xii
List of Abl	oreviati	ons	xiv
List of Equ	ation .		xvi
CHAPTE	R ONE	: INTRODUCTION	1
1.1	Proble	m Statement	1
1.2	Aim a	nd Objectives of Study	1
1.3	Signif	icance of the Study	2
1.4	Metho	odology	2
CHAPTE	R TWO): ISLAMIC GEOMETRIC PATTERNS	3
2.1	Geom	etric Pattern in the Islamic Art	3
2.2	Defini	tion of Islamic Pattern	5
2.3	Chara	cteristics of Islamic Patterns	6
2.4	Comn	non Shapes in Islamic Art	7
	2.4.1	Rub el Hizb	7
	2.4.2	The Derivations of <i>Rub el Hizb</i>	9
CHAPTE	R THR	EE: SOUND ABSORPTION AND SOUND ABSORPTI	ON
PANELS.		-	10
3.1	Intord	uction	10
3.2	Dissip	ation of Sound	10
3.3	Sound	Absorption	10
3.4	Metho	ds of Measuring Sound Absorption Coefficient	
	3.4.1	Reverberation Method	
	3.4.2	Impedance Tube Method	12
	3.4.3	Tone Burst Method	
	3.4.4	Sound Technique Method	
3.5	Types	of Sound Absorbers	16
	3.5.1	Mid/high Frequencies Absorbers	16
	3.5.2	Low Frequencies Absorbers	17

	3.5.3	Diaphragmatic Absorbers	17
	3.5.4	Polycylindrical Absorbers	
	3.5.5	Helmholtz Resonators	19
	3.5.6	Perforated Panels	20
СНАРТЕ	P FOI	TD. SIMILI ATION SOFTWADES	
		N. SIMULATION SOFT WARES	
4.1	Class	function	23
4.2		Bilication of Acoustic simulation Techniques	
	4.2.1	A 2 1 1 Jacob a second and the 1	
		4.2.1.1 Image source method.	
	422	Waya Bagad Algorithm	
	4.2.2	4.2.2.1 Finite Element Mathed	
		4.2.2.1 Finite Element Method	
1 2	DEA	4.2.2.2 Doundary Element Method	
4.5	DEA	51	28
	D DIX		-
CHAPTE	R FIV	E: MODELING AND SIMULATION USING BEASY	
5.1	Intro	duction	30
5.2	Fund	amentals of BEASY	31
	5.2.1	Patches	
	5.2.2	Elements	32
	5.2.3	Zones	32
	5.2.4	Material properties	
	5.2.5	Internal points	
	5.2.6	Boundary Conditions	
5.3	Meth	ods of Finding Sound Absorption Coefficient	
	5.3.1	The First Method	
	5.3.2	The Second Method	
	5.3.3	The Third Method	
	5.3.4	Reasons for Using More than One Method	٥٤ ۱۵
5.4	Mode	Cling	42
	5.4.1	Steps of Modelling a Panel Carved with <i>Ruo Al Hizo</i>	45
		5.4.1.1 Creating the Basic Unit	
	510	5.4.1.2 Repeating the Basic Unit to Form the Faller	
	5.4.2	5.4.2.1 Creating the Anachoic Room	
		5.4.2.1 Creating the Alteriore Room	46
		5.4.2.2 Messing Massurement Points (internal Points)	48
		5.4.2.3 Creating Measurement Fonts (Internal Fonts)	
		Conditions	49
		5.4.2.5 Simulation of the Panel in the Anechoic Room	
		5.4.2.6 Modeling Anechoic Room Only	
		5 4 2 7 Simulation for Anechoic Room Only	
	5 4 3	Modeling for the Second Method	51
	J. T .J	5 4 3 1 Modelling the Panel in an Infinite Zone	51
		5 4 3 2 Simulation of the Panel in an Infinite Zone	53
		5 4 3 3 Modelling a Reflective Plate	53
		5 4 3 4 Simulation of the Reflective Plate	54
	544	Modelling for the Third Method	54
	r		

	5.4.4.1	Modelling the Panel and the Source Sphere in the Infinite Zone
	5.4.4.2	Simulation of the Panel with the Sphere in an Infinite
	5.4.4.3	Modelling and Simulation for Incident Sound Intensity55
CHAPTER	SIX: ANAL	YSIS AND RESULTS56
6.1	Introduction	
6.2	Results of the	e First Method56
6.3	Results of the	e Second Method60
6.4	Results of the	e third Method61
CHAPTER FUTURE V	SEVEN: CO	NCLUSION AND RECOMMENDATION FOR
7.1	Conclusion .	
7.2	Recommend	ations for Future Work64
BIBLOGR	АРНҮ	65
APPENDIX		
	ΚΑ	

. .

LIST OF TABLES

<u>Table No.</u>	<u>.</u> <u>Pa</u>	age No.
5.1	Quarter wave length for the standard frequencies	47
5.2	Properties of medium used for simulation	48
5.3	Simulation time taken for each frequency for the first method	50
5.4	Simulation time taken for each frequency for the Second method	53
6.1	Sound intensity at internal points for 250Hz for the first method	57
6.2	Sound intensity at internal points for 500Hz for the first method	
	with the incorrect measurements	59
6.3	Correcting measurements of 500Hz obtained using the first method	61
6.4	Correcting measurements of 1000Hz obtained using the first method	63
6.5	Correcting measurements of 2000Hz obtained using the first method	65
6.6	Sound absorption coefficient using the first method	67
6.7	Sound absorption coefficient using the second method	68
6.8	Sound intensity at internal points for 250Hz using the second method	69
6.9	Sound intensity at internal points for 500Hz using the second method	70
6.10	Sound intensity at internal points for 1000Hz using the second method	d 71
6.11	Sound intensity at internal points for 2000Hz using the second method	d 72
6.12	Sound intensity at internal points for 4000Hz using the second method	d 73
6.13	Sound absorption coefficient using the Third method	74
6.14	Sound intensity at internal points for 250Hz using the third method	76
6.15	Sound intensity at internal points for 500Hz using the third method	77
6.16	Sound intensity at internal points for 1000Hz using the third method	78
6.17	Sound intensity at internal points for 2000Hz using the third method	79
6.18	Sound intensity at internal points for 4000Hz using the third method	80

xi

LIST OF FIGURES

Figure N	<u>o.</u>	<u>Page No.</u>
2.1	Basic shape of Rub el Hizb	8
2.2	A derivation of Rub el Hizb	9
3.1	Impedance tube	12
3.2	Components of a sound wave impinging on an object	14
3.3	The variation in sound intensity in front of an object	16
3.4	Polys mounted on the ceiling of an auditorium	19
3.5	Sound absorption coefficient for four perforated panels with air gap	of
	10cm filled with 5cm thick fibrous absorber	22
3.6	Sound absorption coefficient for four perforated panels with air gap	of
	20cm filled with 10cm thick fibrous absorber	22
4.1	Methods of Acoustic modeling	23
5.1	The location of Majid Usama Bin Zaid from Google Earth	30
5.2	Rub el Hizb carved on the partition wall of Masjid Usama Bin Zaid	31
5.3	Rub el Hizb	31
5.4	Measuring net sound intensity for the first method	35
5.5	Measuring incident sound for the first method	35
5.6	The second method	36
5.7	Measuring net sound intensity for the third method	38
5.8	Measuring incident sound intensity for the third method	38
5.9	The sketch of the problem of a point source in an infinite space with	i a plate
	and a display surface	39
5.10	Sound pressure level contours for a point source	40

5.11	Resultant sound intensity contours for a point source	40
5.12	The sketch of the Second problem	41
5.13	Sound pressure level contour for an object source	41
5.14	Resultant sound intensity contour for an object source	42
5.15	The basic unit of Rub el Hizb drawn by Autocad	43
5.16	Steps of drawing the basic unit	44
5.17	A horizontal strip of 8 repeated basic units	45
5.18	The completed panel	45
5.19	Anechoic room created in front of the panel	46
5.20	The outlines of the patches of the completed anechoic room	46
5.21	Internal points placed on a plane in front of the panel	48
5.22	The source point with arrows indicating radiation out of the point	49
5.23	Quarter panel with Quarter anechoic room	50
5.24	Anechoic Room with only internal pints and point source inside	51
5.25	The front face and the back face of the panel are connected together	52
5.26	The second method	52
5.27	The reflective plate for measuring incident sound for the second method	54
5.28	The sphere with the boundary conditions indicating the radiation of sound	1
	from it	55
5.29	The sphere in front of the panel in an empty space	56

LIST OF ABBRIVIATIONS

α	, Sound absorption coefficient
α_n	, Normal sound absorption coefficient
Ei	, Incident sound energy
Er	, Sound energy reflected from objects.
E_{f}	, Sound energy lost by friction action with objects
E _t	, Transmitted sound Energy through the wall
Ea	, Absorbed sound Energy
In	, Net sound intensity at quarter wave length from the acoustical material
Ii	, Incident sound intensity at quarter wave length from the acoustical
	material
f	, Sound frequency
f_{\circ}	, Frequency of resonance
m	, Surface density of diaphragmatic absorber, $\mathrm{N/m}^2$ of panel surface
d	, Depth of air space in meters behind a diaphragmatic absorber
FEA	, Finite element analysis
BEM	, Boundary element method
RC	, Reflection coefficient
Z	Impedance of a medium
	, impedance of a mourant
λ	, Wave length.
λ c	, Wave length. , Speed of sound
λ c SP	 , Mave length. , Speed of sound , Sound intensity in front of the panel

- SE , Sound intensity in the empty room
- CSP , Corrected sound intensity in front of the panel

LIST OF EQUATIONS

Equation No.

<u>Page No.</u>

•

(3.1)
$$E_i = E_r + E_f + E_t a$$
 14

(3.2)
$$\alpha = \frac{Absorbed sound energy}{Incident sound Energy}$$
15

(3.3)
$$E_a = E_f - E_f = E_f + E_t$$
 15

(3.4)
$$\alpha = \frac{E_i - E_r}{E_i} = \frac{E_f + E_t}{E_i}$$
 15

(3.5)
$$\alpha = \frac{E_i - E_r}{E_i} = \frac{I_n}{I_i}$$
 16

(5.1)
$$RC = \frac{Z_1 - Z_2}{Z_1 + Z_2}$$
 36

(5.2)
$$\alpha = \frac{E_i - E_r}{E_i} = 1 - \frac{E_r}{E_i}$$
 37

(6.1)
$$\alpha = \alpha_n = \frac{E_i - E_r}{E_i} = \frac{E_a - E_t}{E_i} = \frac{I_n}{I_i}$$
 56

(6.2)
$$SP = E_i + E_r$$
 58

(6.3)
$$E_r = SP - SE = (E_i + E_r) - E_i$$
 58

(6.4)
$$I_n = CSP = SE - (SP - SE) = E_i - ((E_i + E_r) - E_i) = E_i - E_r$$
 60

CHAPTER ONE

INTRODUCTION

1.1 PROBLEM STATEMENT

Sound absorption panels are used for acoustical design of buildings to improve the acoustics of the building by achieving the most suitable reverberation time for speech (Everest, 1994). There are many types of sound absorption panels; one of them is perforated panels. Perforated panels are aesthetically accepted and they improve the acoustic of the building by absorbing sound. Islamic patterns on carved wood are used as a decoration for buildings especially in mosques, but until now they are used as decoration panels only and we do not know anyone published sound absorption coefficients of wooden panels carved with Islamic patterns to be in hand for acoustic engineers.

This research determines the sound absorption coefficients of wooden panels carved with Islamic geometric patterns using acoustic simulation software (BEASY). This will inspire acoustic engineers to use these panels as sound absorbers in buildings, and it will facilitate the improvement of the acoustic design of mosques and buildings that have these panels by calculating their contribution to sound absorption.

1.2 AIM AND OBJECTIVES OF THE STUDY

- i. To study the Islamic geometric pattern used on carved wood panels in mosques.
- ii. To find a reliable and easy method for calculating sound absorption coefficients of carved panels using numerical simulation softwares, which

1

will enable acoustic engineers calculate the contribution of any panel exist in their design without ignoring it.

iii. To determine sound absorption coefficient of a typical Islamic geometric pattern carved on a wood panel.

1.3 SIGNIFICANCE OF THE STUDY

The prophet Mohammad (PBH) says "if someone of you was in the prayer, then he is talking with his Lord, so pay attention to what you say in your prayer, and don't loud your voice with Quran so you do not harm the believers" (Sahih Bukhari). From this Hadith we see the importance of keeping mosques quiet and a place for Muslims to meditate and supplicate their creator. This research determines the sound absorption coefficient of direct pierced carved wood panel with Islamic patterns, which will help to use the wooden ornaments in the mosques as sound absorbent panels. This research is a step for reviving the Islamic art by introducing tables of sound absorptions coefficients of panels of wood carved with Islamic patterns to be in hand for architects to use them in acoustic design

1.4 METHODOLOGY

- i. Conduct a literature review on Islamic geometric patterns.
- ii. Determine common geometric pattern for simulation
- iii. Install the software and test it.
- iv. Perform the modeling of the geometric pattern.
- v. Determine normal sound absorption coefficient (α_n) of the sample.
- vi. Analyze the results and improve them.

CHAPTER TWO

ISLAMIC GEOMETRIC PATTERNS

2.1 GEOMETRIC PATTERN IN THE ISLAMIC ART

Geometric patterns make up one of the three non figural types of decoration in Islamic art, which also include calligraphy and vegetal patterns. Geometric patterns are usually attributed to Islamic art; Muslim artists used the geometrical shapes like the circles, squares, triangles and other geometrical shapes to create some complex and sophisticated ornamentation unknown previously. These shapes were interlaced, intertwined, and repeated in a regular pattern to form ornaments. These ornaments were used to adorn all types of surfaces, like walls of Muslim monuments, textiles, carpets, door frames, pulpits, screensetc. Geometric patterns come in two ways; either combined with other ornamentations like calligraphy and floral pattern or they come alone where only geometric shapes are used in a creative way to form an aesthetic pattern that gives beauty and solemnity.

Geometric patterns were used by other ancient cultures like Romans, Greek and Chinese, but under the Islamic state geometric patterns blossomed and reached a pinnacle in beauty and complexity (The Metropolitan Museum of Art 2004). Muslim artists took key elements from classical and traditional art of the previous civilizations, but they elaborated upon what they took and they invented their own style. Islamic geometric patterns are characterized by unity, logic and order (Abas and Amer, 1995). The unique style of Islamic patterns comes from the contributions of Islamic astronomers, mathematicians and other scientists whose ideas and technical advances are indirectly reflected in the artistic tradition.

3

The reason behind the extensive use of geometrical patterns in Islamic art is the ban that Islam puts on the figurative art. It is narrated that the prophet Muhammad said "The makers of these pictures will be punished on the Day of Resurrection, and it will be said to them, 'Give life to what you have created' (i.e., these pictures)". When he saw a cushion with some pictures on it, and then the Prophet added, "The Angels of (Mercy) do not enter a house in which there are pictures" (Sahih Bukhari 3:34:318). Many nations before Islam ended worshipping idols after being monolithic, when pious men died, their people erected statues in honor of them at their gathering places, they thought that those statues would remind them to do good, but later their successors gradually moved to worship those images of the pious men their predecessors made. This is how prophet Noah's people worshipped idols, the names of idols that are mentioned in Quran in Surat Noah; (Wad, Swaa, Yagoth, Yaook and Nasr) are the name of some monolithic pious men. There are some other reasons that Muslims used geometrical ornaments beside the ban on figurative art, the science of astronomy was the most passionate intellectual activity in the Islamic world. Muslims had to know the five times of prayers a day by the position of the sun in the sky; they had to know when is Ramadan to fast and when is the month of Thul Hijja to go for pilgrimage. Three out of five pillars of Islam are related to the moon and the sun, and the environment of Arabs who lived in the desert required knowledge about the stars and their positions in the sky to guide them to the roads in the desert and the direction of Qiblah at night, God says "And by the stars, they find the way" (Quran, Al Nahl, 16). All these made Muslims very attached to astronomy and made stars and constellations one of the main characteristic of Islamic art (Abas and Amer 1995).

It is true that the figurative art does exist in Islamic art, but it was mainly used in books for the purposes of education like in anatomy books, or for history recording purposes like recording the events of battles of the Muslim armies. However, the abstract art and especially the geometric art remains one of the most distinct features of Islamic art, especially the decorative art of Muslim monuments.

2.2 DEFINITION OF ISLAMIC PATTERNS

An extensive discussion of Islamic patterns was given by Abas and Amer (1995). Islamic pattern does not mean that the pattern have any religious significance, or that it was invented to serve the Islamic faith or even it was created by a Muslim artist. There are many definitions of Islamic art (Islamic patterns is the major part of Islamic art because of the ban Islam put on figural art). Some scholars limit the Islamic art to that one which was created between 900 A.D and 1500 A.D in a place where the majority of the population where Muslims or at least the ruling element professed the faith of Islam. They limit it to that date because the Islamic art only acquired its distinct personality in the 10th century.

In order to give the opportunity for the Islamic art to grow and to encourage the creation of new Islamic pattern Abas and Amer (1995) give the following definition to Islamic patterns:

An Islamic pattern is one which satisfies one or more of the following criteria:

- 1- The pattern is transcribed with Arabic calligraphy from the Quran.
- 2- The pattern was invented between 900 A.D. and 1500 A.D. and was used to decorate architectural surfaces or other works of art for Muslims, in a

culture where the majority of the population, or at least ruling element, professed the faith of Islam.

3- The pattern is derived from one or more patterns, which satisfy criterion2, and is such that the characteristic shapes from the original (or originals) are recognizable.

2.3 CHARACTERISTICS OF ISLAMIC PATTERNS

Islamic geometric patterns consist of small, repeating geometric shapes. The design radiates symmetrically from a central point and is constructed from a pattern of circles, equilateral triangles, squares, hexagons and/or six-pointed stars. The pattern is not designed to fit within a frame, because each unit is just one small part of an overall pattern that would cover a wall, floor or roof. Most of the patterns are created by repeating the basic unit over a grid. There are two types of grids that are most frequently used; the triangle grid and the square grid, a hexagon grid also is used for some patterns. The basic unit is repeated therefore its left side must coincide with the right side and the top with the bottom.

They are made from simple basic geometric shapes; which are triangles, squares, circles and polygons. These shapes are combined, duplicated, interlaced and arranged in intricate combinations to form some most beautiful and complex geometrical ornaments. The most complex ornaments can be disintegrated to its basic shapes.

The prominence of symmetric shapes that resemble stars and constellation is one of the most striking characteristic of geometrical patterns. Patterns without geometrical shapes are very few and are not complex. The most frequent stars are stars with six, eight, ten, twelve and sixteen rays, but there are also stars with other number of rays, particularly in multiples of eight up to ninety six. The prominence of stars may be due to the contribution of Muslim astronomers to geometric patterns (Abas and Amer 1995).

The geometrical ornaments consist of layers, where there is the background and foreground. This feature of placing a pattern over another pattern gives the impression that the ornament has a depth, sometimes the two layers weave over and under each other in alternate to emphasize the foreground decoration. When the two patterns are different in size, i.e. one is fine the other is big in its element size, the fine one can be observed from a close distance where the observer can't see the other layer, but when it is seen from a far distance the observer will only see the big pattern, this feature is suitable for the façades of buildings.

They have a remarkable freedom, the repetition of the basic unit gives the possibility of infinite growth and they can accommodate to incorporate other types of ornamentation as well, Muslim artist used geometric patterns combined with floral pattern or with calligraphy (Ahmad M. and Ebad 2003).

2.4 COMMON SHAPES IN GEOMETRIC PATTERNS

There are many common strategies in drawing the Islamic patterns and there are many famous Islamic monuments that are adorned with Islamic patterns but Abas and Amer (1995) mention two of the most frequent shapes, the two shapes are described in what follows:

2.4.1 Rub el Hizb:

It is also called Khatam Sulemani or the eight point star. Rub el Hizb is an Islamic symbol which is found on a number of Islamic emblems and flags. Rub in Arabic means quarter and Hizb means party or group. This symbol was initially used in Quran, where each chapter (*Juz*) of Quran is divided into two Hizbs, and each Hizb is divided into quarters, therefore this symbol was used to indicate the beginning of the quarters of Hizb to facilitate reciting and memorizing Quran. If we are forced to choose on shape that charctarize Islamic geometric patterns then it will be Rub el Hizb, it is an eight point star which can be drawn by drawing two identical squares one inclined by 45 degrees with respect to the other one, as shown in Figure. 2.1

Figure 2.1 Basic shape of Rub el Hizb

It is the most ubiquitous shape in Islamic art; it can be spotted as commonly in Samarkand as in Sahara. This shape was chosen by the former prime minister of Malaysia Dr. Mahathir Muhammad to be the cross section of the twin towers to give an Islamic influence on the design but latter they added extra circular sectors to increase the total floor space.

This shape is used in Masjid Usama Bin Zaid on the carved wood around the Haram of the Masjid, therefore I chose this shape to be simulated for sound Absorption.