DAYLIGHT PENETRATION IN MALAYSIAN HIGH-RISE OFFICE BUILDINGS

BY

ABU NUR MOHAMMAD SHAHRIAR

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

2006

الجامعة السلامية العالمية ماليريا INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA وُنِنْبَرَسِنْتِي إِسْلِارِ ابْتِآرَ ابْجُنْبَا مِلْدُسِنْتِيَ

DAYLIGHT PENETRATION IN MALAYSIAN HIGH-RISE OFFICE BUILDINGS

BY

ABU NUR MOHAMMAD SHAHRIAR

A thesis submitted in fulfilment of the requirement for the degree of Master of Science in Built Environment

Kulliyyah of Architecture and Environmental Design International Islamic University Malaysia

December 2006

ABSTRACT

In our natural environment, there is an abundance of daylight. Before the invention of electric lighting, it was a primary source of interior illuminance. However, in today's office buildings, daylight is being underutilized and dependency on artificial lighting is very common. Daylight use can be an energy saving feature of a building by reducing demand for electric lighting. It is very difficult to provide adequate amount of daylight all through a side lit space. Therefore, the knowledge regarding depth of its penetration is important for its proper utilization. This requires detailed daylight analysis. Standard skies are a very important part of this analysis. Recently, sets of fifteen skies have been adopted by the CIE (Commission Internationale de L'eclairage) as standards for the entire globe. These have not yet been incorporated into daylight simulation software. In order to incorporate these standard skies, the study has analysed the depth of daylight and permanent supplementary artificial lighting for interiors (PSALI) in high-rise office under hot-humid climate of Peninsular Malaysia using an alternative method. The study used 'Daylight Coefficient' to perform daylight calculation. 'Waldram Diagram' has been used to calculate the visible sky needed for the daylight coefficient method. Two experiments were conducted to find the upper and lower limits of daylight penetration throughout the year. The lowest levels have been analysed to determine the limiting depth of daylight while the difference between the lowest and highest penetration was considered for PSALI. The research found the depth of daylight was 3 m and 3.5 m from an adjacent window considering the lower limit for daylight of 500 lux and 300 lux, respectively. It also found that the depth of PSALI is different for different orientations. It is greater in the North-East, East, South-East, South-West, West and North-West directions compared to North and South orientations. This is due to the low solar altitude in the morning and afternoon. The research therefore, concludes that these depths may be taken under consideration in the pre-design phase of an office building in order to take maximum advantage of daylight usage in an office interior environment.

ملخص البحث

في محيطنا الطبيعي، توجد كمية هائلة من الإنارة. حيث كانت قبل اختراع الإنارة الكهربائية، مصدر اللإنارة الداخلية. في المكاتب المعاصرة أصبحت الإنارة مقلصة و متعلقة بالإنارة الإصطناعية التي أصبحت أكثر انتشارا. يعتبر استعمال الإنارة الطبيعية كوسيلة احتياط للحفاظ على الطاقة. إذ يصعب توفير كمية ملائمة من الإنارة الطبيعية في الفضاء. إن لمعرفة مساحة تغطيتها أهمية بالغة لأجل الإستعمال مما يتطلب در اسة تحليلية للإنارة الطبيعية و لمعايير السماء نصيب مهم من هذا التحليل. حاليا توجد مجموعة خمسة عشر سماء إذ تبنتهاالهيئة العالمية للأنارة كمعايير دولية، لكن لم تعتمد في نظام برمجي للإنارة الطبيعية. من أجل اعتماد معايير السماء، قامت هذه الدراسة بتحليل عمق الإنارة الطبيعية الإصطناعية الدائمة في داخل مكاتب البنايات العالية الموجودة تحت رطوبة عالية بجزيرة ماليزيا باستعمال طريقة منتقاة. استعملت الدراسة معامل الإنارة الطبيعية من أجل حساب الإنارة الطبيعية. استعمل مخطط ولدرام لحساب قيمة رؤية السماء التي احتيجت في منهجية معامل الإنارة الطبيعية. أجريت عدة تجارب من أجل إيجاد أعلى حد و أقل حد للإنارة الطبيعية المغطاة خلال السنة. حيث أجري تحليل حول أقل المستويات لإيجاد حد عمق الإنارة الطبيعية إذ أن الفارق بين أعلى و أقل تغطية التي اعتبرت في الإنارة الطبيعية الإصطناعية الدائمة في الداخل. وجد البحث عمق الإنارة الطبيعية بين 3م و3.5م من خلال نافذة تعتبر أقل حد للإنارة الطبيعية هو 500لكس و300لكس. ووجد أيضًا عمق الإنارة الطبيعية الإصطناعية الدائمة في داخل مختلف ومختلف بإتجاهات مختلفة. فهو عال في جهة شمال أمريكا، غرب،جنوب شرقي، جنوب غربي وشمال غربي مقارنة بالشمال و جنوب التوجيهات. وهذا يعود إلى قلة الشمس صباحا ومساء. لهذا، فالبحث لخص الأعماق التي يجب أن تؤخذ بعين الإعتبار في مرحلة ماقبل التصميم لبناية مكاتب من أجل أخذ أقصى كمية من الإنارة الطبيعية لإستعمالها في المحيط الداخلي للمكاتب

APPROVAL PAGE

I certify that I have supervised and read this study and that in my opinion, it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Built Environment.

Zuraini Denan Supervisor

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a thesis for the degree of Master of Science in Built Environment.

Abdul Razak Sapian

Examiner

This thesis was submitted to the Kulliyyah of Architecture and Environmental Design and is accepted as fulfilment of the requirements for the degree of Master of Science in Built Environment.

> Maisarah Ali Deputy Dean (Postgraduate and Research)

This thesis was submitted to the Kulliyyah of Architecture and Environmental Design and is accepted as fulfilment of the requirements for the degree of Master of Science in Built Environment.

.....

Mansor Ibrahim Dean, Kulliyyah of Architecture and Environmental Design

DECLARATION

I hereby declare that this dissertation is the result of my own investigations, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Abu Nur Mohammad Shahriar

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2006 by Abu Nur Mohammad Shahriar. All rights reserved.

DAYLIGHT PENETRATION IN MALAYSIAN HIGH-RISE OFFICE BUILDINGS

No part of this unpublished research may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Abu Nur Mohammad Shahriar.

Signature

Date

ACKNOWLEDGEMENTS

First and foremost I would like to thank the almighty Allah for giving me the strength and perseverance to finish the masters research on time. I would also like to acknowledge my supervisor Dr. Zuraini Denan and co-supervisor Prof. Mohd. Najib Ibrahim for being a great guide to my studies. I am grateful to Br. Roslee and Sis. Hamidah at Dewan Dandaraya Kuala Lumpur (DBKL) for their assistance. The building management people at all the high-rise offices that were surveyed should also be acknowledged. Finally, I want to thank Gregers Raimann for the TRY data, Professor Richard Kittler and Dr. Stanislav Darula from the Slovak Academy of Science for the reference material regarding the CIE Standard General Sky and Ir. Jafar Sadeq for his help with MATLAB. My deepest gratitude goes to my beloved wife for her support and patience during the entire course of my masters studies. Thanks also to my father, mother and sister for their sacrifice.

CONTENTS

Abstract ii		
Abstract in Arabic iii		
Approval Page	. iv	
Declaration Page	v	
Copyright Page	vi	
Acknowledgements	. vii	
List of Tables	xi	
List of Figures	. xiii	
List of Abbreviations	. xvi	
List of Symbols	. xvii	
CHAPTER ONE: INTRODUCTION	. 1	
1.1 Research Background	. 1	
1.2 Research Objectives	. 3	
1.3 Scope of the Research	. 3	
1.4 Significance of the Research	. 4	
1.5 Research Framework	. 4	
1.6 Organization of the Research Report	. 5	
1.7 Terms and Definitions	. 6	
1.7.1 Davlight	6	
1.7.2 Davlight Depth	. 6	
1 7 3 High-rise Building		
CHAPTER TWO: LITERATURE REVIEW	. 7	
2.1 Importance of Davlight	. 7	
2.2 Davlight Provision in Buildings	. 8	
2.3 Davlight Zone and PSALI	. 9	
2.4 Research Gap	. 11	
2.5 Research Questions	. 12	
2.6 Review of Davlight Analysis Methods	. 12	
2 6 1 Lumen Input Method	13	
2 6 2 Davlight Factor Method	14	
2.6.3 Flux Transfer Method	16	
2.6.4 Davlight Coefficient Method	. 10	
2.7 Review of Davlight Analysis Tools	21	
2.7 1 Simplified Analysis Tools	21	
2.7.1 Shiphiled Analysis Tools	. 21	
2.7.1.1 Waldram Diagram	. 25	
2.7.2 Eight Meters	. 25	
2.7.2.2 Scale Model Measurements	. 20	
2.7.2.2 Scale Model Medsulements	. 20	
2.7.5 Computer Software	· 21	
2.6 Neview of Malaysian Lighting Standards	· 20	
2.0.1 Day Lighting Lovala	. 29	
2.0.2 Office Lighting Levels	. 29	
2.9 Summary	. 30	

CHAPTEF	R THREE: DAYLIGHT EXPERIMENT METHODOLOGY	31
3.1	Experiment Methodology	31
	3.1.1Office Model	32
	3.1.2 Sky Luminance Calculation	33
	3.1.2.1 Standard Sky and Date	33
	3.1.2.2 MATLAB Software	34
	3.1.3 Davlight Coefficient Calculation	34
	3.1.3.1 Orientation	34
	3.1.4 Illuminance from Individual Sky Patch	35
	3.1.5 Total Illuminance at Reference Points	35
3.2	Summary	36
CHAPTER	R FOUR: DAYLIGHT CONDITIONS AND OCCURRENCES OF	
	STANDARD SKIES IN MALAYSIA	37
4.1	Malaysian Climate	37
4.2	Daylight Availability	38
	4.2.1 Month of Maximum and Minimum Daylight	38
	4.2.2 Characteristic Days	39
4.3	Daylight Data	39
4.4	Standard Sky	40
	4.4.1 CIE Standard General Sky	40
	4.4.1.1 Gradation and Indicatrix	40
	4.4.1.2 Basic Equation	43
	4.4.1.3 Descriptors of Sky Conditions	44
	4.4.2 CIE Standard Sky Dome Division	45
4.5	Occurrences of CIE Standard General Skies in Malaysia	48
	4.5.1 Turbidity Factor	48
	4.5.2 Diffuse to Extraterrestrial Illuminance Ratio	50
	4.5.3 Global Illuminance	50
4.6	Summary	52
~~~		
CHAPTER	R FIVE: SURVEY OF HIGH-RISE OFFICE BUILDINGS IN	52
5 1	The Study Area	33 52
5.1	The Study Area $\dots$	55
5.2	Method of Study   5.2.1 Instrument Used	54
	5.2.1 Instrument Used	22
	5.2.2 Pilot Survey	22
5.2	5.2.3 Final Survey	22
5.3	The Findings	56
	5.3.1 Building Plan Typology	58
	5.3.2 Floor Plan	58
	5.3.3 Office Depth	59
	5.3.4 Window Parameters	59
	5.3.4.1 Shading Strategy	59
	5.3.4.2 Glazing	60
	5.3.4.3 Sill Height	61
	5.3.5 Office Interior	61
5.4	Summary	63

CHAPTER	R SIX: DAYLIGHT EXPERIMENT AND DETERMINATION OF	
	DAYLIGHT DEPTH	64
6.1	Daylight Experiment	64
	6.1.1 Office Model	64
	6.1.1.1 Reference Points of Daylight Measurement	66
	6.1.1.2 Window Angles	66
	6.1.2 Simulated Sky Luminance	67
	6.1.2.1 Skies on 16 th . March	67
	6.1.2.2 Skies on 11 ^{th.} December	69
	6.1.3 Daylight Coefficients and Illuminance for Sky Patch	71
	6.1.3.1 Sky Patches for Different Window Orientation	71
	6.1.3.2 Daylight Coefficient Calculation	72
	6.1.3.3 Illuminance from Individual Sky Patch	72
	6.1.4 Interior Illuminance on 16 ^{th.} March	73
	6.1.4.1 North Window	73
	6.1.4.2 North-East Window	74
	6.1.4.3 East Window	76
	6.1.4.4 South-East Window	77
	6.1.4.5 South Window	79
	6.1.4.6 South-West Window	80
	6.1.4.7 West Window	82
	6.1.4.8 North-West Window	83
	6.1.5 Interior Illuminance on 11 ^{th.} December	85
6.2	Analysis of Daylight Levels	86
6.3	Depth of Daylight Zone and PSALI	93
	6.3.1 Depth for Exacting Task	93
	6.3.2 Depth for Working Interior	95
6.4	Summary	96
CHAPTEF	R SEVEN: CONCLUSION	97
7.1	Summary of the Research	97
7.2	Research Findings	98
7.3	Further Research	100
BIBLIOG	RAPHY	102
APPENDI	X A: Ratio of Waldram Diagram lines	112
APPENDI	X B: Standard illuminance levels for office work	114
APPENDI	X C: Parameters and descriptors of CIE Standard General Sky	115
APPENDI	X D: Zenith and azimuth angle of CIE standard sky division	119
APPENDI	X E: DISTO laser meter details	120
APPENDI	X F: Case study buildings	121
APPENDI	X G: Simulated sky luminance	134
APPENDI	X H: Daylight Coefficient	141
APPENDI	X I: Calculated illuminance levels from sky patches	145
APPENDI	X J: Visible sky patch at reference points using Waldram Diagram	189
APPENDI	X K: Refereed publications	197
	÷	

## LIST OF TABLES

Table No.	Pa	<u>ge No.</u>
2.1	Recommended lighting levels for office works	29
4.1	Characteristic days for an entire year	39
4.2	Descriptors of CIE Standard General Sky conditions	45
4.3	General information of standard sky dome division	46
5.1	Case study building ID and location	56
5.2	Survey of high-rise office buildings	57
5.3	Building plan typology	58
5.4	Floor plan of office buildings	59
5.5	Building shading strategy	60
5.6	Office window glazing	60
5.7	Frequency of interior surface colour and material	62
5.8	Reflectance of interior surfaces	62
6.1	Window angles for reference points	67
6.2	Solar elevation and simulated zenith luminance on 16 th March	68
6.3	Solar position on 16 ^{th.} March	68
6.4	Solar elevation and simulated zenith luminance on11 ^{th.} December	70
6.5	Solar position on 11 ^{th.} December	70
6.6	Parameters for Daylight Coefficient calculation	72

## Table No.

## Page No.

6.7	Interior illuminance for North facing window	74
6.8	Interior illuminance for North-East facing window	75
6.9	Interior illuminance for East facing window	77
6.10	Interior illuminance for South-East facing window	78
6.11	Interior illuminance for South facing window	80
6.12	Interior illuminance for South-West facing window	81
6.13	Interior illuminance for West facing window	83
6.14	Interior illuminance for North-West facing window	84
6.15	Interior illuminance for North facing window on 11 ^{th.} December	86
6.16	Depths of daylight at 500 lux	95
6.17	Depths of daylight at 300 lux.	96
7.1	Predicted depths of PSALI	98
7.2	Maximum depths of daylight penetration	99

### LIST OF FIGURES

Figure No.	Page No.	
1.1	KUALA LUMPUR SKYLINE	
1.2	FLOW CHART OF RESEARCH ACTIVITIES	2
2.1	DAYLIGHT DESIGN OF BUILDINGS	5
2.2	LIGHTING ZONES FOR A SIDE LIT SPACE	9
2.3	DAYLIGHT DEPTH FOR U.S.A.	10
2.4	THE COMPONENTS OF DAYLIGHT FACTOR METHOD	10
		15
2.5	ILLUMINANCE FROM A POINT SOURCE	17
2.6	ELEMENTS OF DAYLIGHT COEFFICIENT	
		19
2.7	SIMPLIFIED TOOLS FOR DAYLIGHT CALCULATION	
		22

2.8	ELEVATION SCALE CONSTRUCTION FOR WALDRAM	
	DIAGRAM	24
2.9	WALDRAM DIAGRAM FOR GLAZED VERTICAL WINDO	WS
		25
3.1	DAYLIGHT EXPERIMENT PROCESS	32
3.2	EXAMPLE OF STANDARD OVERCAST AND CLEAR SKIE	ES 35
4.1	MONTH OF MAXIMUM, MEAN AND MINIMUM DAYLIG	HT
		38
4.2	REGIONS OF STANDARD GRADATIONS	
		41
4.3	INDICATRIX REGIONS WITH INSET STANDARD CURVE	S
		42
4.4	ANGLES DEFINING THE POSITION OF THE SUN AND SK	Y
	ELEMENT	43
4.5	CIE STANDARD SKY DIVISION	47
4.6	ELEVATION OF SKY BAND CENTRE	47
4.7	ANALYSIS OF TURBIDITY FACTOR FOR SUBANG	
		49
4.8	DIFFUSE TO EXTRATERRESTRIAL ILLUMINANCE RATI	0
	FOR SUBANG	50
<u>FIGURE N</u>	<u>PAGE NO</u>	<u>).</u>
4.9	MATLAB SCRIPT FILE	51
4.10	OCCURRENCE OF CIE STANDARD GENERAL SKIES AT	
	SUBANG	52
5.1	MAP OF KUALA LUMPUR FEDERAL TERRITORY	

5.2	MEASURING INSTRUMENT	
		55
6.1	TYPICAL FLOOR PLANS	
		65
6.2	EXPERIMENT OFFICE MODEL	
		65
6.3	SECTION SHOWING POINTS OF DAYLIGHT	
	MEASUREMENT	66
6.4	WINDOW ANGLES FOR A SINGLE INTERIOR POINT	66
6.5	FLOW CHART OF MATLAB PROGRAM FOR SKY	
	LUMINANCE CALCULATION	69
6.6	VISIBLE SKY PATCHES FOR DIFFERENT ORIENTATIONS	
		71
6.7	WALDRAM DIAGRAM FOR NORTH FACING WINDOW	
		73
6.8	WALDRAM DIAGRAM FOR NORTH-EAST FACING	
	WINDOW	75
6.9	WALDRAM DIAGRAM FOR EAST FACING WINDOW	
		76
6.10	WALDRAM DIAGRAM FOR SOUTH-EAST FACING WINDO	OW
		78
6.11	WALDRAM DIAGRAM FOR SOUTH FACING WINDOW	79
6.12	WALDRAM DIAGRAM FOR SOUTH-WEST FACING	
	WINDOW	81

6.13	WALDRAM DIAGRAM FOR WEST FACING WINDOW

6.14	WALDRAM DIAGRAM FOR NORTH-WEST FACING	
	WINDOW	84
6.15	WALDRAM DIAGRAM FOR NORTH FACING WINDOW ON	1
	11 ^{TH.} DECEMBER	85
6.16	DISTRIBUTION OF DAYLIGHT LEVELS FROM 8 A.M. TO 5 P.M. ON 11 ^{TH.} DECEMBER	; 87
6.17	DISTRIBUTION OF DAYLIGHT LEVELS FROM 8 A.M. TO 5 P.M. ON16 ^{TH.}	;
	MARCH (NORTH AND SOUTH)	88

FIGURE NO	<u>).</u>	PAGE	<u>NO.</u>	
6.18 P.M. ON16	DISTRIBUTION OF DAYLIGHT LEVELS FROM 8	A.M. TO	5	
1.00.00010	MARCH (NORTH-EAST, EAST, SOUTH-EAST)		90	
6.19 P.M. ON 16	DISTRIBUTION OF DAYLIGHT LEVELS FROM 8	A.M. TO	5	
P.M. ON 10	MARCH (SOUTH-WEST, WEST, NORTH-WEST)		92	
6.20	DISTRIBUTION OF MINIMUM DAYLIGHT I	LEVELS	AT	
DIFFEF	FROM THE WINDOW ON 11 ^{TH.} DECEMBER		93	
6.21 DIFFEREN	DISTRIBUTION OF MAXIMUM DAYLIGHT LEVE T DISTANCE	ELS AT		
	FROM THE WINDOW ON 16 ^{TH.} MARCH		94	
7.1	SECTION OF THE EXPERIMENT OFFICE MODEL DEPTH OF	SHOWIN	lG	
	DAYLIGHT ZONE AND PSALI (FOR 300 LUX AND	D 500 LU	X)	99

### LIST OF ABBREVIATIONS

CCA	Central Commercial Area
CIE	Commission Internationale de L'eclairage
CIBSE	Chartered Institute of Building Service Engineers
СОР	Code of Practice
COPE	Cost Effective Open-plan Office Environment
CPA	Central Planning Area
DBKL	Dewan Bandaraya Kuala Lumpur
IEA	International Energy Agency
IES	Illuminating Engineering Society
IESNA	Illuminating Engineering Society of North America
LBNL	Lawrence Barkley National Laboratory
MSG	Malaysian Sheet Glass Berhad
NRC	National Research Council of Canada
PAL	Permanent Artificial Lighting
PSALI	Permanent Supplementary Artificial Lighting for Interiors
SSLD	Standard Sky Luminance Distribution

- SPSS Statistical Package for Social Sciences
- TRY Test Reference Year

### LIST OF SYMBOLS

A	Total room area
av	Luminous extinction
CU	Coefficient of Utilization
$D_{\gamma lpha}$	Daylight coefficient
$D_{v}/E_{v}$	Diffuse to extraterrestrial illuminance ratio
$E_i$	Interior illuminance (lux)
$E_x$	Exterior illuminance (lux)
$E_{SE}$	Sky components
$E_{ERE}$	External components
$E_{IRE}$	Internal components
$E_S$	Interior illuminance from the direct component of daylight
$E_p$	Illuminance at a point
$E_{v}$	Extraterrestrial horizontal illuminance
$G_{v}$	Global horizontal illuminance
$K_b$	Direct/Beam luminous efficacy
$K_d$	Diffuse luminous efficacy
$K_g$	Global luminous efficacy
L	Luminance of the light source
$L_{\gamma lpha}$	Luminance of the sky element
$L_{\gamma lpha}$	Luminance of the arbitrary sky element at elevation $\gamma$ and azimuth $\alpha$
$L_z$	Zenith luminance
т	Optical mass
MF	Maintenance factor

NT	Net transmittance
$P_{v}$	Direct horizontal illuminance
R	Mean room reflectance
$R_{fc}$	Reflectance of floor and lower wall surfaces
$R_{cw}$	Reflectance of ceiling and upper wall surfaces
$R_g$	Mean ground reflectance
$T_{\gamma\alpha}$	Angular transmittance of window glazing
Т	Mean glass transmittance
$T_{\omega}$	Glass transmittance at incident angle $\omega$
$T_{v}$	Turbidity factor
W	Window area
Ζ	Zenith angle of the sky element
V	Window azimuth
ω	Solid angle that the light source subtends at a point
θ	Angle with the downward vertical
γ	Altitude angle
ΔΕ	Fraction of the total illuminance
$\Delta S_{\gamma lpha}$	Angular size of the sky element at altitude $\gamma$ and azimuth $\alpha$
α	Azimuth angles of the vertical plane of the sky element
$\alpha_{\rm S}$	Solar meridian
β	Window azimuth angle
θ	Window elevation angle
$\varphi$	Gradation function
χ	Scattering angle

- $Z_s$  Zenith angle of the Sun
- $\gamma_s$  Solar altitude angle

#### **CHAPTER ONE**

### INTRODUCTION

Daylight is vital for the indoor working environment and hence, it occupies an important consideration in the design of office buildings. In clear sky condition, as much as 80% of the sun's ray reaches the earth surface and heavy cloud cover can reduce this amount to 20%. However, these are average figures and are applicable for the entire globe (Fujinami, 1998). Therefore, in our natural environment there is an abundance of daylight. Before the invention of electric lighting, daylight was a primary source of interior illuminance. Nevertheless, cheap energy cost in some countries of the world, has replaced the use of daylight by artificial light in the office environment.

This study analyses the depth for daylight zone and Permanent Supplementary Artificial Lighting for Interior (PSALI) in high-rise office space under climatic conditions of Malaysia. It intends to provide useful insights into the nature of daylight penetration in office interiors. This chapter introduces the study by providing elaborations on research background. It states the research objectives, scope and research framework.

#### 1.1 Research Background

OVER THE LAST TWENTY YEARS, THERE HAS BEEN A RAPID GROWTH OF OFFICE BUILDINGS IN ALL MAJOR CITIES OF MALAYSIA, ESPECIALLY IN KUALA LUMPUR, WHICH IS THE FEDERAL CAPITAL OF THE COUNTRY. DURING THIS PERIOD, ALTHOUGH A FEW CLIMATE CONSCIOUS

RESEARCHES WERE DONE (ISMAIL, 1996 IN DENAN, 2004), MOST OF THE OFFICE BUILDINGS WERE BUILT WITH LITTLE OR NO REGARD TO THE LOCAL CLIMATIC CONDITIONS, ESPECIALLY DAYLIGHT. ALTHOUGH THE SKYLINE OF KUALA LUMPUR COMPOSES OF A NICE ARRANGEMENT OF HIGH-RISE OFFICE BUILDINGS AS CAN BE SEEN IN FIGURE-1.1, LITTLE CONSIDERATIONS WERE GIVEN TO DESIGN THEM ON THE PRINCIPLE OF ENERGY EFFICIENCY.



FIGURE 1.1: KUALA LUMPUR SKYLINE (SOURCE: THE AUTHOR)

IN AN OFFICE BUILDING, ENERGY CONSUMPTION CAN BE DIVIDED INTO TWO MAIN PARTS – (A) CONSUMPTION OF ENERGY FOR ARTIFICIAL LIGHTING; AND (B) CONSUMPTION OF ENERGY FOR AIR CONDITIONING (RAMATHA, 1994 IN DENAN, 2004). IN ADDITION TO THIS, EXTRA ELECTRIC ENERGY IS CONSUMED FOR COMPUTER USES AND OTHER MACHINERIES, I.E. FOR LIFTS, WATER SUPPLY. THEREFORE, COMBINING DAYLIGHT WITH ARTIFICIAL LIGHT IN OFFICE ENVIRONMENT IS EXPECTED TO HAVE ENERGY SAVING IMPLICATIONS.

Daylight use can be an important energy saving feature of a building by partially replacing electric lighting demand. Studies have shown that as much as 10% of energy consumption in a building can be reduced just by proper window and shading designs (Azni Zain, 2000). It not only can reduce energy usage but also can reduce peak hour power demand for energy. This is due to the fact that the power

consumption for other utilities is at their peak corresponding to the time when daylight is most available e.g. during mid-day (Illuminating Engineering Society of North America [IESNA], 1993).

It is a well-known fact that savings due to daylight can be greater than the extra cooling loads that arise due to the additional solar radiation (Department of Standards, 2001). There is no doubt that daylight has energy saving implications, especially in Malaysia because of its tropical climate. The country lacks any major wind flow throughout the year. This reduces the possibility of natural ventilation reducing the cooling loads of a building and leaves daylight as the most practical option for energy savings (Woods, 2004). The use of daylight as a supplement to electric lighting deserves further considerations due to the ever-rising fuel costs that the entire globe is currently experiencing.

#### **1.2 RESEARCH OBJECTIVES**

THE MAIN OBJECTIVES OF THE RESEARCH ARE AS FOLLOWS,

- I. TO STUDY THE DEPTH OF DAYLIGHT ZONE AND PERMANENT SUPPLEMENTARY ARTIFICIAL LIGHTING FOR INTERIORS (PSALI) IN A GENERALIZED HIGH-RISE OFFICE INTERIOR OF MALAYSIA.
- II. TO ESTABLISH ACCEPTABLE DEPTH OF SUCH ZONES FOR THE ENTIRE YEAR BASED ON LIGHTING LEVELS SUITABLE FOR DIFFERENT TYPES OF OFFICE WORKS.

#### **1.3 SCOPE OF THE RESEARCH**