COPYRIGHT[©] INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DETERMINATION OF RESERVOIRS' RELATIVE EFFICIENCY AND A WAY TO OPTIMIZE INEFFICIENT ONES: APPLICATION OF DATA ENVELOPMENT ANALYSIS AND RESERVOIR SIMULATION MODEL

BY

SLAMET RIYADI

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Business Administration

Graduate School of Management International Islamic University Malaysia

MARCH 2018

ABSTRACT

The current practice measuring oil reservoir efficiency uses ratio analysis from cumulative oil production to oil initially in place. It does not mention any input parameters that contribute to the output. There is no explanation which input is in excess to generate output, and which oil reservoirs are measured on an individual basis, leaving no indication of efficient input targets from inefficient ones. This research measures relative efficiencies of oil reservoirs and identifies the inefficient ones. The efficiency is measured as a distance between the input and output quantity of a decision making unit (DMU) and the input and output quantity defined as a frontier line. A slack improvement is used to modify the input to optimise an inefficient DMU. Started with performing optimisation of each DMU for no further action (NFA) stage and enhanced oil recovery (EOR) process by utilizing a reservoir simulation model (RSM), then efficiency of each DMU is measured using DEA method. Utilising this method, the efficient input target from inefficient ones is estimated to measure a slack improvement to modify the RSM inefficient inputs before rerunning the model. To this end, 12 oil reservoirs as DMUs operating in NFA and EOR development stages are analysed. The constant return to scale (CRS) input-oriented model is selected to measure the efficiency. The first case shows that DMU8 has 100% efficiency and DMU11 is found to be the least one and therefore it is selected for optimisation. The efficient input target generated by the DEA model is to recalculate the output using RSM. By rearranging the well locations, RSM can produce the same output as the initial input. The number of producers could be reduced from 21 to 5 wells to get the same level of output. Similar for the EOR case, we reduce the number of producers from 21 to 12 wells and injectors from 6 to 4 wells to get the same level of output. The contributions of the research include methodological and practical contributions. The methodological contribution includes developing an integrated DEA model and RSM to improve an inefficient DMU to become an efficient one and developing a framework optimization model to maximize oil recovery. The practical contribution includes assigning an oil reservoir as a DMU in the DEA model for measuring its efficiency with multiple inputs and outputs. The other practical contribution is providing a solution to improve a project economic by reducing its cost to get the same output.

خلاصة البحث

تستخدم الممارسة الحالية لقياس كفاءة خزان النفط في تحليل نسبة من إنتاج النفط التراكمي إلى النفط في البداية في المكان. وهو لا يذكر أي معامل المدخلات التي تساهم في الناتج. ولا يوجد أي تفسير للمدخلات الزائدة لتوليد الناتج، وتقاس خزانات النفط على أساس فردي، دون ترك أي مؤشر يميز بين أهداف المدخلات الفعالة عن تلك التي لا تتسم بالكفاءة. ويقيس هذا البحث الكفاءات النسبية لخزانات النفط ويحدد الكفاءات غير الفعالة. كما تقاس الكفاءة على أنما مسافة بين كمية المدخلات والمخرجات لوحدة صنع القرار (د.م.و)، وكذلك كمية المدخلات والمخرجات المعرفة كخط حدودي. ويستخدم تحسين الركود لتعديل المدخلات لتحسين دمو غير فعالة. بدأت مع أداء الأمثل من كل وحدة دمو لمرحلة مزيد من العمل (ن.ف.أ) وتعزيز عملية استرداد النفط (ي.و.ر) من خلال الاستفادة من نموذج محاكاة الخزان (ر.س.م)، ثم يتم قياس كفاءة كل وحدة د.م.و باستخدام طريقة د.ي.أ. وباستخدام هذه الطريقة، يقدر أن الهدف الفعال من المدخلات غير الفعالة لقياس التحسن في الركود لتعديل المدخلات غير الفعالة في نظام رسم قبل إعادة تشغيل النموذج. ولتحقيق هذه الغاية، يتم تحليل 12 خزانا نفطيا كـ د.م.و تعمل في مراحل تطوير ال ن.ف. و أ.و.ر. يتم اختيار نموذج العودة إلى مقياس ثابت (س.ر.س) المدخلات لقياس الكفاءة. وتبين الحالة الأولى أن DMU8 لديها كفاءة 100٪، في حين وجد DMU11 أن يكون أقل، وبالتالي يتم الاختيار للتحسين. يهدف الإدخال الفعال الذي تم إنشاؤه بواسطة نموذج د.ي.أ. هو إعادة حساب الناتج باستخدام ر.س.م. من خلال إعادة ترتيب مواقع البئر، يمكن أن تنتج ر.س.م نفس الناتج المدخلات الأولية. ويمكن تخفيض عدد المنتحين من 21 إلى 5 آبار للحصول على نفس مستوى الإنتاج. وعلى غرار حالة اليورانيوم الموسع، نخفض عدد المنتجين من 21 إلى 12 بئرا، وعدد الحقن من 6 إلى 4 آبار للحصول على نفس المستوى من الإنتاج. وتشمل مساهمات البحث مساهمات منهجية وعملية. وتشمل المساهمة المنهجية تطوير منوذج متكامل من نموذج د.ي.أ. ور.س.م. من أجل تحسين كفاءة د.م.و لتصبح وحدة فعالة وتطوير نموذج تحسين الإطار لتعظيم استخلاص النفط. وتشمل المساهمة العملية تخصيص خزان نفطي باعتباره وحدة د.م.و في نموذج د.ي.أ. لقياس كفاءته مع المدخلات والمخرجات المتعددة. والمساهمة العملية الأخرى هي توفير حل لتحسين المشروع الاقتصادي عن طريق خفض كلفته للحصول على نفس الناتج.

APPROVAL PAGE

The thesis of Slamet Riyadi has been approved by the following:

Rafikul Islam Supervisor

Wan Rohaida Wan Husain Internal Examiner

Ramayah Thurasamy External Examiner

Muhammad Madi Bin Abdullah External Examiner

> Saim Kayadibi Chairperson

DECLARATION

I hereby declare that this dissertation is the result of my own investigation, except where otherwise stated. I also declare that it has not been previously or concurrently submitted as a whole for any other degrees at IIUM or other institutions.

Slamet Riyadi

Signature

Date

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

DECLARATION OF COPYRIGHT AND AFFIRMATION OF FAIR USE OF UNPUBLISHED RESEARCH

DETERMINATION OF RESERVOIR' RELATIVE EFFICIENCY AND A WAY TO OPTIMIZE INEFFICIENT ONES: APPLICATION OF DATA ENVELOPMENT ANALYSIS AND RESERVOIR SIMULATION MODEL

Copyright © 2018 by Slamet Riyadi. All right reserved.

No part of this unpublished research may be produced, stored in retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder except as provided below.

- 1. Any material contained in or derived from this unpublished research may only be used by others in their writing with due acknowledgement.
- 2. IIUM or its library will have the right to make and transmit copies (print or electronic) for institutional and academic purposes.
- 3. The IIUM library will have the right to make, store in a retrieval system and supply copies of this unpublished research if requested by other universities and research libraries.

Affirmed by Slamet Riyadi.

Cionatura

Signature

Date

DEDICATION

I dedicate this thesis to my wife Ningrum, my daughters Noerma, Fatimah, Hamidah, and my son Zaky for their supports.

Also, I dedicate this thesis to my sister Suratmi who takes care of our parents for more than 10 years.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful. Praise be to Allah, the Cherisher and Sustainer of the worlds. May Allah bless always Rosululloh (peace be upon him), his family, companions and the followers.

First, my appreciation towards all my professors who have shared their knowledge during the DBA classes: Advanced Finance (Prof. A. Kameel and Prof. M. Azmi Omar), Advance Economic (Prof. Mansor Ibrahim), Advanced Accounting (Prof. Manaf), Advanced Marketing Management (Prof. M. Ismail A.), Corporate Governance (Prof. Arief), Leadership in Organization (Prof. Aahad), Business Strategy and Risk Management (Prof. M. Sulaiman), Management Science (Prof. Rafikul Islam and Prof. Moussa Larbani), IT Policies (Prof. M. Raman and Prof. Saravanan), Quantitative and Qualitative Methods (Prof. A. L. Kraus and Prof. S. Wok), Advanced Statistical and Multivariate Methods (Prof. Mansor Ibrahim). May these knowledge become good deed. Special thanks to Dr. Sharifah Raihan, Head of DBA, and Sr. Hawati, DBA administration staff who make the DBA program was running very well.

Special appreciation to my supervisors, Prof. Dr. Mousa Larbani and Prof. Dr. Rafikul Islam for their guidance and encouragement in completing the research. My special thanks to Prof. Dr. Rafikul Islam who has guided me on solving issues for his precious time during the weekends and weekdays for such period of times. Special thanks to Ass. Prof. Dr. Wan Rohaida Wan Husain, Prof. Dr. Ramayah Thursamy, Prof. Dr. Muhammad Madi bin Abdullah for providing inputs and corrections during the viva. May their sincere guidance will get rewards from Allah.

Special appreciation also to my office supervisor, Dr. Nasir Hj Darman, Head of Group Research and Technology (GR & T), PETRONAS, for allowing to complete my consultation work on the topic of Well Cost Optimisation at PETRONAS. Also many thanks to PETRONAS to use the primary data which be combined with secondary data to complete my thesis. Hopefully my thesis will contribute to the company on optimizing the assets.

Many thanks to my classmates, Masripan, Kabian, Loqman, Ismet, Halim, Anshar, Sheikh and others for having wonderful and fruitful discussion during class assigned. Special thanks to Br. Masripan and Br. Kabian who consistently encourage us to provide positive feedback on issues and suggestions.

I would appreciate deeply to my wife who has patiently faced the hard time during my study with no proper weekends. I would like to apologize for not fulfilling of the obligation properly.

Lastly, I would appreciate to those who contribute to my study which I cannot mention here. May Allah reward them for their contributions.

TABLE OF CONTENTS

Abstract	ii
Abstract in Arabic	iii
Approved Page	iv
Declaration Page	v
Copyright Page	vi
Dedication	vii
Acknowledgements	viii
List of Tables	xiii
List of Figures	xvii
List of Abbreviations	xxiii
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Research Problem	4
1.3 Research Questions	6
1.4 Research Objectives	9
1.5 Scope of the Study	9
1.6 Significance of the Study	10
1.7 Organization of the Study	11
CHAPTER 2: LITERATURE REVIEW	13
2.1 Introduction	13
2.1.1 Definition of Productivity, Effectiveness and Efficiency	14
2.1.2 Review of Efficiency Measurement	14
2.1.3 Technical, Allocative and Overall Efficiency	16
2.1.4 Techniques of Productivity Management	17
2.2 DEA	19
2.2.1 Understanding of DEA	19
2.2.2 Basic DEA Formulation	21
2.3 Recovery Factor of Oil Reservoir	22
2.3.1 Stages of Field Development	22
2.3.2 Measuring Efficiency of Oil Reservoir	24
2.3.3 Cumulative Production	26
2.3.4 Recovery Factor	27
2.4 Application of DEA in Oil Industry	29
2.4.1 Application of DEA in Energy	29
2.4.2 Application of DEA in Oil Reservoirs	30
2.4.3 DEA Model Selection	33
2.4.4 Input and Output Design	34
2.4.5 Mathematical Formulation	38
2.5 Reservoir Simulation Model	38
2.5.1 Development of RSM	39
2.5.2 Model Validation	41
2.5.3 Prediction of Development Cases	42
-	

2.5.4 Development of Model	43
2.6 Conclusion	45
CHAPTER 3: RESEARCH METHODOLOGY	47
3.1 Introduction	47
3.2 Methodological Approach	49
3.2.1 Optimisation Approach for Individual DMUs	50
3.2.2 Measuring Relative Efficiency of DMUs	52
3.2.2.1 Objective Function and Constrains	54
3 2 2 2 Sample Selection	54
3 2 2 3 Data Collection	56
3.2.2.5 Data Concerton	60
3.2.2.5 Model Formulation	60
3.2.2.6 Relative Efficiency of DMUs	62
3.2.2.7 Slack Analysis	63
3.3 Optimisation of Relative Inefficient DMU	64
3.4 Research Instruments	68
3.4 Research instruments	00
CHAPTER 4: OPTIMISATION METHODOLOGY FOR	70
MATURED OIL RESERVOIRS	
4.1 Optate the Schedule and Validation Process of the Reservoir	71
Simulation Model	/1
4.2 Identify Problem of the Matured Off Reservoir	72
4.2.1 Remaining OII Saturation Distribution	12
4.2.2 Porosity / Permeability Distribution	/8
4.2.5 Reservoir Pressure Performance	8U 01
4.2.5 Sink source Design	01
4.2.5 Shirk-source Design	82 84
4.2.6 Summary of Existing Issues and Developing Opportunity	84
4.5 A Sensitivity Framework to Optimise a Matured Off Reservoir	84 95
4.5.1 Independent Variable	8J 96
4.5.1.1 Injector	80 86
4.5.1.2 workover 4.2.1.2 is fill Wells	80 97
4.5.1.5 Infill Wells	8/
4.3.1.4 Facility Constraints	88
4.3.1.5 Combination Independent Variables	88 00
4.5.2 Dependent variables	88
CHAPTER 5: DATA ENVELOPMENT ANALYSIS	90
5.1 Introduction	90
5.2 DEA Models	91
5.2.1 CCR Model	91
5.2.1.1 CCR Input-Oriented Model	92
5.2.1.2 CCR Output-Oriented Model	94
5.2.2 BCC Model	96
5.2.2.1 BCC Input-Oriented Model	96
5.2.2.2 BCC Output-Oriented Model	98
5.2.3 Additive Model	100
5.2.4 Slack-Based Model	102

 5.3.1 Return to Scale Frontiers 5.3.2 Return to Scale Models 5.3.2.1 RTS Envelopment Models 5.3.2.1 1 Input-oriented Envelopment Model 	102
5.3.2 Return to Scale Models 5.3.2.1 RTS Envelopment Models 5.3.2.1 1 Input-oriented Envelopment Model	103
5.3.2.1 RTS Envelopment Models 5.3.2.1 J Input-oriented Envelopment Model	105
5 3 2 1 1 Input-oriented Envelopment Model	105
5.5.2.1.1 input offented Envelopment Woder	105
5.3.2.1.2 Output-oriented Envelopment Model	106
5.3.2.2 RTS Multiplier models	106
5.3.2.2.1 Input-oriented Multiplier Models	107
5.3.2.2.2 Output-oriented Multiplier Models	107
5.3.2.3 RTS Measure-specific DEA Models	108
5.3.2.3.1 Input-oriented Measure-	
specific DEA Model	108
5.3.2.3.2 Output-oriented Measure-	
specific DEA Model	109
5.3.3 Most Productive Scale Size	110
5.4 Applications of DEA	112
5.4.1 Data Selection	114
5.4.2 Problem Formulation	115
5.4.3 Results Analysis	117
5.4.4 DEA Software	117
CHAPTER 6. RESULTS AND DATA ANALYSIS	119
6 1 Introduction	119
6.2 Data Collection	119
6.2.1 Decision Making Unit 1 (DMU1)	120
6.2.2 Decision Making Unit 2 (DMU2)	122
6.2.3 Decision Making Unit 3 (DMU3)	123
6.2.4 Decision Making Unit 4 (DMU4)	125
6.2.5 Decision Making Unit 5 (DMU5)	126
6.2.6 Decision Making Unit 6 (DMU6)	128
6.2.7 Decision Making Unit 7 (DMU7)	129
6.2.8 Decision Making Unit 8 (DMU8)	131
6.2.9 Decision Making Unit 9 (DMU9)	132
6.2.10 Decision Making Unit 10 (DMU10)	134
6.2.11 Decision Making Unit 11 (DMU11)	135
6.2.12 Decision Making Unit 12 (DMU12)	137
6.3 Data and Model Validation	138
6.3.1 Oil Production Data	138
6.3.2 Reservoir Simulation Model	141
	145
6.4 One Input and One Output Data – The NFA Development Stage	146
6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection	147
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 	
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 	151
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 6.4.4 Estimating Efficient Targets of Inputs and 	151
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 6.4.4 Estimating Efficient Targets of Inputs and Outputs for Each DMU 	151 152
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 6.4.4 Estimating Efficient Targets of Inputs and Outputs for Each DMU 6.4.5 Optimisation an Inefficient DMU Using RSM 	151 152 155
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 6.4.4 Estimating Efficient Targets of Inputs and Outputs for Each DMU 6.4.5 Optimisation an Inefficient DMU Using RSM 6.4.6 Running the New Data Input from the RSM in the DEA Model 	151 152 155 163
 6.4 One Input and One Output Data – The NFA Development Stage 6.4.1 Data Selection 6.4.2 Measuring Relative Efficiency 6.4.3 Interpretation of the Results 6.4.4 Estimating Efficient Targets of Inputs and Outputs for Each DMU 6.4.5 Optimisation an Inefficient DMU Using RSM 6.4.6 Running the New Data Input from the RSM in the DEA Model 6.5 Multiple Inputs and One Output Data – The EOR Development Stage 	151 152 155 163 166

6.5.2 DEA Model Formulation	168
6.5.3 Measuring Relative Efficiency of the Field Performance	
for the EOR Development Case	169
6.5.4 Optimisation an Inefficient DMU of the Field Performance	
after Implementing the EOR Development Case	173
6.5.4.1 Identify Opportunity	174
6.5.4.2 Develop a Sensitivity Framework	178
6.5.4.3 Result from RSM	186
6.5.4.4 Run the New Data Input from the RSM	
in the DEA Model	187
CHAPTER 7: DISCUSSIONS AND CONCLUSION	190
7.1 Introduction	190
7.2 Recapitulation of Study	190
7.3 Summary of Results	194
7.3.1 Single Input and Single Output (NFA case)	194
7.3.2 Two Inputs and Single Output (EOR case)	197
7.4 Discussion of Results	200
7.4.1 The Results of DEA Model	200
7.4.2 The Results of the RSM	205
7.4.3 The Integration Process of DEA Model and RSM	208
7.4.4 Comparing the Study Approach to the Existing	
Measuring Efficiency	211
7.4.4.1 NFA Development Stage	212
7.4.4.2 EOR Development Stage	216
7.5 Answering Research Questions and Contribution of the Research	220
7.5.1 Research Question #1	220
7.5.2 Research Question #2	223
7.5.3 Research Question #3	226
7.5.3.1 Updating the Schedule and Validating the RSM	227
7.5.3.2 Identifying Opportunity	227
7.5.3.3 Developing a Sensitivity Framework	228
7.5.3.4 Running Sensitivity Analysis	229
7.5.3.5 Results	229
7.5.4 Contribution of the Research	230
7.6 Implications and Limitations of the Research	232
7.6.1 Implication of Research to Theory	232
7.6.2 Implication of Research to Practice	233
7.6.3 Implication of Research to Policy	233
7.6.4 Limitations of the Study	234
7.7 Suggestions for Future Research	235
7.8 Conclusions	238
BIBLIOGRAPHY	240

LIST OF TABLES

<u>Table No.</u>	Page No
1.1 Oil recovery efficiencies as of % of OOIP from different stages of oil recovery.	5
2.1 Evolution of the efficiency concept of organization.	15
2.2 Top 20 most influential journals in the DEA field	30
2.3 Application of DEA in oil and gas industry	31
2.4 Model selection and related cases	33
2.5 Input and Output of decision making unit (DMU) for no further action (NFA) case	37
2.6 Input and Output of decision making unit (DMU) for optimisation case	37
3.1 Sampling selection	55
3.2 Data collection of each oil reservoir (DMU) as the base case	58
3.3 Data collection of each oil reservoir (DMU) for optimisation	59
3.4 Data for single input-output	61
3.5 Alternatives of inputs and outputs for optimizing case	61
3.6 Research instruments	68
5.1 Commercial DEA and academic DEA software	118
6.2.1 Input and output alternatives of DMU1 for different cases	121
6.2.2 Input and output alternatives of DMU2 for different cases	122
6.2.3 Input and output alternatives of DMU3 for different cases	124
6.2.4 Input and output alternatives of DMU4 for different cases	125
6.2.5 Input and output alternatives of DMU5 for different cases	127
6.2.6 Input and output alternatives of DMU6 for different cases	128

6.2.7 Input and output alternatives of DMU7 for different cases	130
6.2.8 Input and output alternatives of DMU8 for different cases	131
6.2.9 Input and output alternatives of DMU9 for different cases	133
6.2.10 Input and output alternatives of DMU10 for different cases	134
6.2.11 Input and output alternatives of DMU11 for different cases	136
6.2.12 Input and output alternatives of DMU12 for different cases	137
6.4.1 Alternatives of input and output data	146
6.4.2 Selected single input and single output case	149
6.4.3a Determining DMU efficiencies of single input and single output case	150
6.4.3b Input and output slacks of each DMUs	150
6.4.3c Estimating efficient input target and output target of each DMU for single input and single output case.	151
6.4.4 Summary of the DEA model calculation for single input and single output case	155
6.4.5 Performance of DMU11 at initial stage and alternative solutions from the RMS model.	164
6.4.6a Measuring non-fraction number of the efficient input target of the DMU11 to get an efficient output target of the alternative 3	165
6.4.6b Measuring non-fraction number of the efficient input target of the DMU11 to get an efficient output target of the alternative 4	165
6.4.7 Performance of DMU11 at initial stage and alternative solutions from the RMS model	166
6.5.1 Alternatives of input and output data of the field performance which include EOR development cases	167
6.5.2 Selected input and output data of field development performance for the EOR development case.	170
6.5.3 Measuring relative efficiency of DMUs for field performance with the EOR development case	171
6.5.4 Input and output slacks of measuring relative efficiency of	172

DMUs for field performance with the EOR development case	
6.5.5 Efficient input and output target of DMUs for field performance with the EOR development case.	172
6.5.6 Dominant issues and alternatives solution to solve the registered issues	177
6.5.7 Qualitative performance of vertical and horizontal well at different injection processes and sand qualities	181
6.5.8 New input data (number of producers and injectors) of the DMU11 from the optimisation process	187
6.5.9 Measuring relative efficiency of the DMU11 with new input data from the optimisation process	188
6.5.10 New slacks of the DMU11 with new input data from the optimisation process	188
6.5.11 Efficient input target of the DMU11 with new input data from the optimisation process	189
7.3.1 Summary of the DEA model calculation for single input and single output case	195
7.3.2 Relative efficiency of DMU11 and optimisation results	196
7.3.3 Summary of the DEA model calculation for the field EOR development stage	198
7.3.4 Summary of the rerun DEA model calculation (non-fraction number of the inputs) for the field EOR development	199
7.4.1a Summary of the DEA model calculation for single input and single output case	200
7.4.1b Rerun the DMU11 for the non-fraction number of the input data to get a new efficient output target	202
7.4.2a Summary of the DEA model calculation for two inputs and single output case	203
7.4.2b Rerun the DMU11 for the non-fraction numbers of the input data to get a new efficient output target	204
7.4.2c Rerun the DEA model for the efficient output target with the non-fraction number of the efficient input targets for the two inputs and single output case	204

7.4.3 The integration results between the DEA model and RSM	210
7.5.1 Efficiency input target and input slack improvement for the case of NFA development stage	224
7.5.2 Efficiency input targets and input slack improvements for the case of EOR development stage	225

LIST OF FIGURES

Figure No.	Page No
1.1 Shares of primary energy	1
1.2 Oil discoveries as a function of time	2
2.1 Technical, allocative and overall efficiency	17
2.2 Matrix of oil and gas value chain all stages of oil recovery	24
2.3 Cross section of a reservoir	25
2.4 Oil rate and oil cumulative.	27
2.5 Stages of oil reservoir development and its range recovery factor	28
2.6 A set of oil reservoirs as decision making units (DMUs)	32
2.7 Radial flow model	35
2.8 Capability of reservoir simulation model through time	40
2.9 Size development of reservoir simulation model	40
2.10 Workflow of developing a reservoir simulation model	41
2.11 Integrated DEA, AHP and simulation model	44
3.1 Methodology of optimising inefficient and maximizing efficient DMUs	47
3.2 Methodology for optimizing inefficient DMUs	49
3.3 Methodology for optimizing an individual DMU	51
3.4 Step by step methodology for measuring relative efficiency DMUs	53
3.5 Sample of a 3-D RSM realisation	56
3.6 Example of the relative efficiency DMU based on one input and one output data	62
3.7 Example of the relative efficiency DMU based on one input and one output data. Indicate slack improvement of the relative	

inefficient DMU	63
3.8 Integrated framework between the RSM model and DEA method to optimise a relative inefficient DMU	65
3.9 Mapping of input scenario for optimizing individual DMU using the RSM	66
3.10 Example of the relative inefficiency of DMU has been optimised from point F to point F'	67
4.1 Methodology to optimise an inefficient reservoir unit	70
4.2 NFA performance of oil reservoir (DMU5)	73
4.3 Areal view of the relative mobile oil saturation distribution at current condition (DMU5)	74
4.4 X-section of the relative mobile oil saturation (DMU5)	74
4.5 Oil relative permeability and water saturation of DMU5	75
4.6 Areal view of the oil saturation distribution at current condition (DMU5)	75
4.7 X-section of oil saturation distribution	76
4.8 Comparison of different approaches to identify the remaining oil saturation	77
4.9 X-section of porosity and permeability (DMU5)	78
4.10 Value of initial oil saturation at the initial condition and at the current condition	79
4.11 Average reservoir pressure performances function with time	80
4.12 Areal reservoir pressure performances at the current condition	80
4.13 Phase behavior of black oil system	82
4.14 Existing wells and current active wells at the relative mobile oil saturation	83
4.15 A sensitivity methodology to optimise matured oil reservoir	85
5.1 Basic DEA mode classification for envelopment models	90
5.2 Example DMUs mapped at the XY coordinates	91

5.3 Projection to frontier line for the CCR input-oriented model	92
5.4 Projection to frontier line for the CCR output-oriented model	94
5.5 Surface of envelopment in the BBC input-oriented model	97
5.6 Surface of envelopment in the BBC output-oriented model	98
5.7 The additive model	101
5.8 Return to scale frontiers	103
5.9 Non-increasing return to scale (NIRS) frontiers	104
5.10 Non-decreasing return to scale (NDRS) frontiers	104
5.11 Most productive scale size (MPSS)	110
6.2.1 Well locations of DMU1	121
6.2.2 Well locations of DMU2	123
6.2.3 Well locations of DMU3	124
6.2.4 Well locations of DMU4	126
6.2.5 Well locations of DMU5	127
6.2.6 Well locations of DMU6	129
6.2.7 Well locations of DMU7	130
6.2.8 Well locations of DMU8	132
6.2.9 Well locations of DMU9	133
6.2.10 Well locations of DMU10	135
6.2.11 Well locations of DMU11	136
6.2.12 Well locations of DMU12	138
6.3.1 Flow chart of oil allocation production process for each reservoir	140
6.3.2 Technical approval processes to update the static model	142
6.3.3 Technical approval processes to update the static and dynamic models and prediction	143

6.3.4 A field level example of history match results for the DMU5	144
6.4.1 Number of wells and cumulative oil recovery of the DMUs and the frontier line	148
6.4.2 Efficient input and output targets of each DMU (the CCR model input-oriented) and its present performance	154
6.4.3 DMU efficiencies of single input and single output data case	156
6.4.4 Reservoir quality index (RQI) and oil saturation of DMU11 for the upper and lower sands	157
6.4.5 Existing well design with 21 vertical wells at the oil saturation	158
6.4.6 Performance of the existing 21 vertical wells case – Oil rate and cumulative oil, reservoir pressure, GOR and water cut	159
6.4.7 Variables for the experiment to conduct the optimisation.	159
6.4.8 Creaming curves of different well location performance with no injection at DMU11	160
6.4.9 Sensitivities of the different well design with no injection at DMU11	161
6.4.10 Solution alternative well design with 5 horizontal wells at the oil saturation map	162
6.4.11 Cumulative oil and reservoir pressure at different well type; one case is vertical well and the other case is horizontal well	163
6.5.1 Relative efficiency of DMUs for the EOR development case	173
6.5.2 Well performance of the 20 producers and 6 injectors case	174
6.5.3 Gas production rate of vertical well at the channel and non-channel sands	175
6.5.4 Different oil rate and cumulative oil performance from different development drive mechanisms process.	176
6.5.5 Independent variables to conduct sensitivity experiments	178
6.5.6 Well performance of vertical well and horizontal well of the DMU11's upper sand at the channel sand distribution	179
6.5.7 Well performance of vertical and horizontal wells of the DMU11's lower sand at the channel sand distribution	180

6.5.8 Performance of vertical and horizontal wells at the non-channel sand	181
6.5.9 Water and gas injection rate sensitivities at different locations	182
6.5.10 Creaming curve vertical wells of the WAG injection with 6 injector	183
6.5.11 Sensitivity results of different parameters from the DMU11 RSM for the WAG injection case	184
6.5.12 Well locations of the 21 producers and 6 injectors case	185
6.5.13 Well locations of the 12 producer and 4 injectors case	185
6.5.14 Oil rate and cumulative oil performance for the 21 producers6 injectors case and the 12 producers 4 injector case	186
7.3.1 Well design of DMU11 before optimisation (a) and after optimisation (b)	197
7.4.2 Well locations for (a) the 21-producer 6-injector case and(b) the 12-producer 4-injector case	199
7.4.1a Efficient input target of DMU11	201
7.4.1b Efficient input target of DMU11 for the non-fraction input number	201
7.4.2a Cumulative oil results from different input scenarios for the NFA development stage	206
7.4.2b Location of 4 wells taken from the creaming curve C2	206
7.4.3a Oil rate and cumulative oil performance for the 21-producer 6-injector case and the 12-producer 4-injector case	207
7.4.3b Well locations of the 21-producer 6-injector case (a) and the 12-producer 4-injector case (b)	208
7.4.4 Integrated framework methods between RSM and DEA method to optimise a relative inefficient DMU	209
7.4.5a Cumulative oil recovery and oil initial in place (STOIIP) for the NFA development stage	212
7.4.5b Optimisation of DMU11 for the NFA development stage	213
7.4.5c Recovery factor and relative efficiency of DMU11 before	215

and after conducting optimisation.

7.4.6a Cumulative oil recovery and oil initial in place (STOIIP) for the EOR development stage	217
7.4.6b Recovery factor performance of DMUs at different development stages	218
7.4.6c Recovery factor and relative efficiency performance of DMUs and optimisation performance of DMU11	219
7.5.1 Relative efficiency performances of DMUs for the case of NFA development stage	221
7.5.2 Relative efficiency performances of DMUs for the case of EOR development stage	222
7.7.1 Optimisation of input and output to achieve efficient DMUs and optimum output	237

LIST OF ABBREVIATIONS

ASP	Alkaline-surfactant-polymer
AE	Allocative efficiency
AHP	Analytic hierarchy process
BCC	Banker, Charnes and Cooper
B/C	Benefit to cost ratio
BHP	Bottom hole pressure
CCR	Charnes, Cooper and Rhodes
CRS	Constant returns to scale
DEA	Data envelopment analysis
DEAP	Data envelopment analysis program
DMU	Decision making unit
DRS	Decreasing return to scale
E & P	Exploration and production
EMS	Efficiency measurement system
EOR	Enhanced oil recovery
GOR	Gas oil ratio
HMQI	History matching quality indicator
HCPV	Hydrocarbon pore volume
IRS	Increasing return to scale
LGR	Local grid refinement
MPI	Malmquist productivity index
MPSS	Most productive scale
NDRS	Non-decreasing return to scale
NFA	No further action
NIRS	Non-increasing return to scale
NPV	Net present value
NW	North West
OIP	Oil in place
OIIP	Oil initial in place
OWC	Oil water contact
P&L	Profit and loss
PI	Profitability index
PIR	Profit to investment ratio
POP	Put on production
PSC	Production sharing contract
RF	Recovery factor
RMP	Reservoir management process
ROE	Return on expenditures
RQI	Reservoir quality index
RSM	Reservoir simulation model
RTS	Returns to scale
SAGD	Steam-assisted gravity drainage
SPE	Society of petroleum engineer
STOIIP	Stock tank oil initial in place

TE	Technical efficiency
VRS	Variable return to scale
WAG	Water-alternating-gas
WC	Water cut