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ABSTRACT 
 

 

 

 

As the integration of IoT devices with SCADA systems increases, concerns about cyber 

security have become significant. This thesis addresses the challenge of data imbalance 

in developing an effective intrusion detection system (IDS) for SCADA systems. To 

tackle this issue, we employ the DeepInsight package in Python to convert traffic data 

into grayscale images. Four publicly available SCADA datasets are analyzed using 

exploratory data analysis (EDA) and principal component analysis (PCA). Our research 

evaluates two detectors: the first utilizes the Hurst parameter to differentiate between 

normal and attack image data, while the second employs a state-of-the-art CNN-LSTM 

algorithm—the Hurst Detector leverages self-similarity to identify abnormal network 

traffic data in conjunction with the CNN-LSTM model. For feature extraction, we 

propose a CNN and PCA approach applied to the converted grayscale images of the 

Morris Power dataset. The model includes input, hidden, and output layers with 

activation functions, while the RNN LSTM modifies the LSTM, dense, and output 

layers by incorporating appropriate activation functions. Additional layers for Batch 

Normalization (BN) and dropout enhance the model's performance. The performance 

of the detectors is evaluated using standard metrics, including accuracy, precision, 

recall, and F1-score. Results indicate that the combination of self-similarity Hurst index 

and Deep Learning (DL) achieves a detection accuracy of 98.2% for attacks, while the 

combined detectors utilizing CNN-LSTM achieve an accuracy of 99.92%. These 

findings provide valuable insights for security researchers and practitioners seeking to 

enhance cyber security in SCADA systems. Through an enhanced approach, this DL 

model has the potential to strengthen SCADA system security and effectively mitigate 

cyber attacks. 
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 ملخص البحث 
 
 

، أصبحت المخاوف المتعلقة بالأمان  SCADAمع زيادة تكامل أجهزة الإنترنت من الأشياء مع أنظمة  
بشكل كبير.   مهمة  نظام كشف  تالسيبراني  تطوير  أثناء  البيانات  التوازن في  الأطروحة تحدي  هذا  تناول 

( الفعّال  لأنظمة  IDSالاختراق   )SCADA  حزمة نستخدم  المشكلة،  هذه  لمواجهة   .
DeepInsight    في لغة البرمجةPython    لتحويل بيانات حركة المرور إلى صور باللون الرمادي. يتم

(  EDA)  ستكشافيمتاحة للعموم باستخدام تحليل البيانات الإ  SCADAتحليل أربع مجموعات بيانات  
: الأول يستخدم معامل هيرستPCAوتحليل المكونات الأساسية ) للتمييز    (. يقوم بحثنا بتقييم مُكتَشِفَيْن

خوارزمية   الثاني  يستخدم  بينما  والهجوم،  العادية  البيانات  يستفيد    CNN-LSTMبيْ  عصرية. 
-CNNمكتشف هيرست من التشابه الذاتي لتحديد بيانات حركة المرور غير العادية بالتعاون مع نموذج  

LSTM  بالنسبة لاستخراج الميزات، نقترح نهجًا يعتمد على .CNN    وPCA    يطُبَّق على صور
بيانات   مجموعة  من  المحولة  الرمادي  الإدخال  Morris Powerاللون  طبقات  النموذج  يتضمن   .

تعديلًً    LSTMالخفية والإخراج بوظائف التنشيط، بينما يعُد نموذج الشبكات العصبية العميقة  الطبقات  و 
ت الإضافية  والكثافة والإخراج باستخدام وظائف التنشيط ذات الصلة. تعزز الطبقا  LSTMلطبقات  

( وإسقاط القيمة الزائدة من أداء النموذج. يتم تقييم أداء المكتشفيْ باستخدام  BNللتوحيد التسلسلي )
. تشير النتائج إلى أن توحيد مؤشر  1قياسية، بما في ذلك الدقة والصحة والاستدعاء ونسبة الف  عاييرم

% للهجمات، بينما يحقق المكتشفان  98.2التشابه الذاتي للهيرست والتعلم العميق يحقق دقة كشف بنسبة  
دمَجان باستخدام  

ُ
%. تقدم هذه النتائج رؤى قيمة للباحثيْ  99.92دقة بنسبة    CNN-LSTMالم

أنظمة   السيبراني في  تعزيز الأمان  . من خلًل نهج محسَّن، يتمتع هذا  SCADAوالممارسيْ في مجال 
 .بشكل كبير SCADAالنموذج التعلم العميق بالقدرة على تعزيز أمان نظام 
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CHAPTER ONE 
 

INTRODUCTION 
 

 

 

 

1.1 BACKGROUND 

A general term for various control system types, Industrial Control System (ICS) 

includes Supervisory Control and Data Acquisition (SCADA) systems, distributed 

control systems (DCS), and other control system configurations like Programmable 

Logic Controllers (PLC), which are frequently found in critical infrastructures and the 

industrial sector. Using specialized control systems like a Master Terminal Unit (MTU) 

and Remote Terminal Unit (RTU), SCADA systems are systems that a) monitor and 

control properties across a large geographic region and b) automate and control 

operations in the industrial sector (Riis, 2016). SCADA systems are used in various 

industries, including power generation, manufacturing, water treatment, and 

transportation. They are essential for many critical infrastructure systems' efficient and 

safe operation.  

Internet of Things (IoT) devices are being integrated into current SCADA 

systems considering Industry 4.0, leading to Industrial IoT (IIoT). These technologies 

enable the operator to continuously monitor the machine's status and provide immediate 

feedback and changes. Additionally, integrating IoT into SCADA systems can enable 

the use of advanced analytics and machine learning algorithms to analyze data from the 

system and identify trends and patterns that can help optimize the industrial process. 

This can help organizations make more informed decisions and improve their overall 

operations. As a result, it can help industries that use a variety of electrical machinery, 

particularly induction motors, run more efficiently (Tran, 2021). Integrating IoT into 
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SCADA systems can bring many benefits. Still, it is essential to carefully consider the 

potential security risks and implement appropriate measures to protect the system. 

SCADA systems are mainly composed of control centers and a variety of 

decentralized remote-field types of equipment, such as remote terminal units (RTUs), 

programmable logic controllers (PLCs), and Machine Interfaces (HMI), all of which are 

linked to a specific form of communication (Rezai, 2013). Figure 1.1 illustrates how 

these components work together in the SCADA architecture. Modernized SCADA 

systems are complex, complicated, and reliant on sophisticated technological systems.  

SCADA systems are vulnerable to security threats. These threats can come from 

various sources, including hackers, malware, and insider threats. As a result, it is 

essential to implement strong security measures to protect SCADA systems from these 

threats. Using open standard protocols improves the productivity and profitability of 

SCADA systems. SCADA architecture significantly improves data access and is cost-

effective, adaptable, adjustable, accessible, and scalable (Teixeira, 2018).  

 

Figure 1.1 SCADA layered architecture. 
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SCADA system performance is vital for industries such as electricity, water, and 

transportation, where data collection, monitoring, and control are critical (Cherdantseva 

et al. 2016). SCADA systems perform monitoring, data logging, alarming, and 

diagnostic duties, as well as improve operational efficiency, reduce costs, and consume 

less energy. 

Cyber security solutions for information technology sectors are well-developed 

and robust, but the work on cyber security for industrial control systems has been 

limited. The CIA triad, or confidentiality, integrity, and availability, is designed to drive 

information security practices within an organization. The top concern in the IT industry 

is confidentiality, while the absolute priority in the SCADA sector is availability. 

SCADA systems lack a cyber security culture, making them increasingly vulnerable to 

cyber attack vectors as they become more digital. Applications and standards in the 

SCADA domain are customized in SCADA, HMI, and DCS, whereas email, internet, 

video, and so on are already standardized in the IT domain. SCADA networks have 

inconsistencies in security policies and standards, and Industrial IoT IIoT/OT security 

still needs much work (Barracuda, 2022).  

Historically, SCADAs have been used at remote sites. The traditional type of 

SCADA focuses on system functionality. Its design did not take data and network 

security into account. This concept, however, has proven too expensive to distribute, 

maintain, and run remotely. With the advancement of Information and Communications 

Technology (ICT) and functional needs, more SCADAs have transitioned from isolated 

systems to a public network for remote management and oversight of facilities (Asghar 

et al. 2019). The advancements of the SCADA systems resulted in new threats and 

vulnerabilities (Ten, 2008). This is highlighted again by other researchers 
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(Cherdantseva, 2016), indicating that the rapid evolution and automation, as well as 

real-time continuous operation and decentralized, multi-component design, are driving 

the increase of cyber attacks on SCADA systems. (Maglaras, 2018) noted that using the 

internet for communications in SCADA systems has contributed to the situation's 

complexity and severity.  

SCADA systems have adopted several cyber-security strategies and devices 

from the information technology sector to address these challenges. Some standard 

security measures for SCADA systems include: 

• Encrypting communications between the central computer, the sensors, and 

other devices in the system. 

• Implementing strong authentication and access control measures to prevent 

unauthorized access to the system. 

• Regularly applying security patches and updates to the system to fix 

vulnerabilities. 

• Conducting regular security assessments and audits to identify and address 

potential vulnerabilities. 

• Implement robust backup and disaster recovery plans if the system is 

compromised or fails. 

The technique of observing and analyzing activities in Critical Infrastructure 

(CI) to detect evidence of security concerns is known as intrusion detection. To secure 

networks from cyber threats, the Intrusion Detection System (IDS) can be implemented 

with other security measures, such as access control, authentication protocols, and 

encryption methods. There are three broad categories: miss-used, anomaly-based, and 

hybrid. The misuse-based approach can easily detect intrusions that fit at least one 

dataset signature and have a low false-positive rate (Maglaras, 2018).  
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The rising prominence of intrusion detection methods has opened an exciting 

study topic in security and has enhanced the recognition of anomalies in SCADA 

systems. A more practical method of analyzing intrusion detection threats is using Deep 

Learning (DL) techniques, which have concentrated more on the exploits of typical IT 

vulnerabilities in SCADA. Artificial Intelligence (AI) offers various computing 

methods. One such method is ML techniques, which are suitable for Intrusion detection 

and can help humans detect and prevent increasing cyber-crimes (Perez et al. 2018). 

While some studies have been undertaken to date to review ML and Data Mining (DM) 

techniques for intrusion detection or malware detection, only a few of them included an 

overview of DL methods for intrusion detection. At the same time, there is no survey 

of DL techniques for malware detection or phishing detection (Ferrag et al., 2020). 

 

1.2 PROBLEM STATEMENT  

SCADA serves as the foundation for implementing cyber security solutions in ICS. The 

use of open standard protocols increased the productivity and profitability of the 

SCADA systems. SCADA architecture significantly enhances data access and is cost-

effective, flexible, configurable, accessible, and scalable (Teixeira, 2018). However, 

these advancements created new threats and vulnerabilities (Ten, 2008). Cyber security 

solutions for information IT, like firewalls, intrusion detection, and intrusion protection 

systems, are ineffective for SCADA vulnerabilities. Current IDSs are trained using 

outdated SCADA datasets, which causes the issue of overfitting. This is due to the 

SCADA suppliers' concern about disclosing vulnerabilities in their infrastructure. 

Despite security precautions, there have lately been constant attacks on civilian and 

military SCADA infrastructures such as nuclear power stations, water treatment 

facilities, industrial facilities, and oil and gas operations, to mention a few. Furthermore, 
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due to the sensitivity and criticality of industrial assets, the industry hesitates to share 

proprietary and sensitive functional data for public study.  

The existing limitation of the lack of real-time datasets encouraged us to improve 

current algorithm efficiency and accuracy by investigating and proposing a DL model 

that can accommodate dataset imbalance. Dataset imbalance refers to a situation in 

which the dataset used to train the IDS contains a disproportionate number of examples 

of one class of data (e.g., normal behavior) compared to another (e.g., malicious 

behavior). Traditional ML algorithms may detect cyber attack anomalies. Still, the main 

challenge with present ML methods is that they cannot retrieve the essential features 

from network packets required to detect the complex nature of zero-day attacks. There 

has been little research on the advantages of integrating DL algorithms in SCADA 

systems. Security researchers should look at the potential of novel DL techniques for 

anomaly detection in SCADA systems. 

DL models have been trending in recent years due to their ability to classify 

attacks accurately with low false alarms. A Deep Belief Network (DBN) and 

Probabilistic Neural Network (PNN) intrusion detection technique is proposed by 

(Zhao, Zhang, and Zheng 2017), (Wu, Chen, and Li 2018) presented a Convolutional 

Neural Network (CNN) method for malware classification by converting the network 

traffic data into images, and in (Su et al. 2020), a BLSTM-RNN model is proposed for 

intrusion detection. 

This research focuses on improving anomaly detection in SCADA IDSs by 

addressing the influence of dataset imbalance. To address the issue, we used a DL CNN 

approach with image classification and a Recurrent neural network RNN LSTM (Long 

short-term memory) DL method for detecting abnormalities in SCADA datasets. 

CNNs are a type of artificial neural network that is often used in the field of 
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computer vision. They are particularly well-suited to tasks such as image classification 

and object detection. They have been applied to various applications in fields such as 

healthcare, security, and robotics. In protecting SCADA (Supervisory Control and Data 

Acquisition) systems, CNNs could be used in several ways. For example, CNN could 

be trained to detect anomalies in the data collected by the SCADA system, such as 

sudden spikes in temperature or pressure. This could help identify potential system 

malfunctions, allowing operators to respond quickly to prevent more severe problems. 

Additionally, a CNN could be used to monitor the network traffic of the SCADA 

system, looking for patterns or characteristics indicative of a cyberattack. This could 

help identify potential security threats in real time, allowing organizations to take 

appropriate action to protect the system. While CNNs are not a complete solution for 

protecting SCADA systems, they can be a valuable tool for detecting anomalies and 

identifying potential security threats.  

LSTM-RNNs are a type of artificial neural network well-suited to tasks 

involving sequential data. They can retain information about previous inputs in the 

sequence and use it to make more accurate predictions or decisions. An LSTM-RNN 

could be trained on network traffic data from the SCADA system to identify typical 

communication patterns between different devices in the system. The network could 

then monitor current traffic and identify anomalies or suspicious communication 

patterns that may indicate a cyberattack. 

Self-similarity refers to the property of a time series data in which its statistical 

properties remain constant across different time scales. The Hurst parameter is a 

numerical measure of self-similarity in time series data. In anomaly detection, the Hurst 

parameter can provide additional information about the underlying structure of the data 

and help distinguish between normal and abnormal behavior. For example, in time 
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series data generated by a stable system, the Hurst parameter is expected to be close to 

a constant value, whereas, in the presence of an anomaly, the Hurst parameter may 

change significantly. Incorporating the Hurst parameter into an anomaly detection 

model can improve its ability to detect subtle and complex anomalies that may not be 

easily visible from the raw data. 

In this thesis, we propose an enhanced DL model for cyber security in SCADA 

systems. The proposed model is based on a combination of CNNs and LSTM networks 

for anomaly detection. The critical contribution of this research is the addition of self-

similarity, represented by the Hurst parameter, to the CNN-LSTM model. The Hurst 

parameter provides insight into the persistence of trends in the data and helps detect 

anomalies in time series data. By incorporating the Hurst parameter into our model, we 

aim to enhance its ability to detect subtle and complex anomalies in SCADA systems. 

 

1.3 RESEARCH OBJECTIVES 

The primary goal of this research is to improve the CNN-LSTM algorithm for more 

reliable and efficient SCADA IDSs. This can be accomplished by pursuing the sub-

goals listed below.: 

1. To investigate the suitability of existing public datasets for detecting and 

mitigating cyber attacks in SCADA systems. 

2. To enhance DL algorithms with CNN and RNN LSTM neural network 

models by addressing the datasets imbalance issue, using BN, dropout 

layers, and the addition of self-similarity represented as Hurst parameter to 

detect and classify the cyber attacks in the SCADA datasets. 

3. To evaluate and benchmark the performance of the proposed CNN-LSTM 

DL algorithm with balanced and imbalanced SCADA datasets. 
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1.4 RESEARCH METHODOLOGY 

The below methods are followed in the thesis to achieve the mentioned objectives: 

1. Examine the theoretical foundations of SCADA systems and the availability 

of public datasets containing industrial security vulnerabilities. 

2. Investigate current and previous research on the constraints of publicly 

available datasets in developing DL algorithms with IDS. 

3. Conducting several experiments using industrial datasets to investigate the 

impact of dataset imbalance on the development of a resilient SCADA 

Intrusion Detection System. 

4. Using under-sampling techniques to balance the dataset before training the 

DL model for the feature extraction process. 

5. Improving the CNN method for detecting and identifying abnormalities in 

SCADA datasets. The data is converted into images for the utilization of 

CNN feature extraction. The CNN model comprises input, hidden, BN to 

reduce the impact of changing input distributions during training, dropout 

layer to reduce the risk of overfitting, and output neurons, each with its 

activation function developed with the DeepInsight library and Python. 

6. Calculation of Hurst parameter for each image.  

7. We use the RNN LSTM algorithm with the Principal Component Analysis 

(PCA) for the classification model.  

8. Evaluated and examined the performance matrix criteria of the enhanced 

DL algorithms against others' conventional traditional DL algorithm 

outcomes and other researchers' DL algorithms. 

The research methodology stages are shown below in Figure. 1.2. 
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Figure 1.2  Research Methodology Stages 

 

 

 

1.5 RESEARCH SCOPE 

The research directions are restricted to the scope of this research listed below: 

1. This research focuses on IDS in SCADA systems; other control systems are 

not discussed. This research may cover topics such as the challenges of 

developing IDS for SCADA systems, different types of IDS that can be used 

in SCADA, and the impact of dataset imbalance on the performance of these 

systems.  

2. The CNN-LSTM method will be enhanced in the Python environment for 

intrusion detection rather than intrusion prevention. 

•Examine the theoretical foundations of SCADA systems and the availability
of public datasets containing industrial security vulnerabilities.

•Investigate current and previous research on the constraints of publicly
available datasets in the development of DL algorithms with SCADA IDSs.

Stage 1

•Conducting several experiments using industrial datasets to investigate the
impact of dataset imbalance on the development of a resilient SCADA IDS.

•Using under-sampling techniques to balance the dataset before training the
DL model for the feature extraction process.

Stage 2

•Calculate Hurst values for each image and use it a threshold for the anomaly
detecti

•Improving the CNN method for detecting and identifying abnormalities in
SCADA datasets. The data is converted into images for the utilization of
CNN-feature extraction. The CNN model is composed of input, hidden, BN,
dropout and output neurons, each with its own activation function developed
with the DeepInsight library and Python.

•Utilizing the RNN LSTM algorithm with the PCA for the classification
model.

Stage 3

•Evaluated and examined the performance matrices criteria of the enhanced
DL algorithms against others' conventional traditional DL algorithm outcomes
and other researchers' DL algorithms.

Stage 4
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3. The effectiveness of the DL algorithms presented in this research will likely 

be evaluated using performance measures such as accuracy, precision, 

sensitivity, and f1-score.  

 

 

1.6 THESIS ORGANIZATION 

This thesis is structured into five main chapters that detail the essential components of 

DL algorithms as they were built, developed, and evaluated during the research. These 

chapters begin with a summary of the field of research, an overview of SCADA and 

their applications, and the main reason to improve the CNN-LSTM algorithm. It also 

states the study's aims, problem statement, and scope of this research. The second 

chapter includes a brief history of SCADA systems and a discussion of different cyber 

attacks and DL/ML methods. Furthermore, it provides a theoretical examination of the 

DL/ML algorithms in intrusion detection for SCADA, as well as the characteristics of 

the techniques and the drawbacks of publicly accessible industrial datasets in the 

SCADA field. The output of Chapter Three is to define, discuss, and examine the 

research methodology. It also presents the DL parameters under study and explains the 

performance parameters. Chapter four discusses the implementation of the enhanced 

DL algorithms and thoroughly compares the study findings to previous publications in 

the field. Chapter Five discusses the future possibilities for DL algorithms, and 

conclusions are formed, see Figure. 1.3, which illustrates the thesis organization. 

 

 
 

Figure 1.3 Thesis Organization

Chapter 1  
(Introduction)

Chapter 2 
(Literature 

Review)

Chapter 3 
(Methodology)

Chapter 4 
(Results & 
Discussion)

Chapter 5 
(Conclusio

n)
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CHAPTER TWO 
 

LITERATURE REVIEW 
 

 

 

 

2.1 INTRODUCTION 

The Fourth Industrial Revolution, Industry 4.0, combines digital and physical 

technologies to allow responsive, networked operations. Businesses use AI, robotics, 

edge computing, and the cloud to make educated, timely decisions across the supply 

chain and intelligent manufacturing. Industrial Internet of Things (IIoT) solutions use 

connected sensors and edge devices in real time to improve product quality and overall 

operational efficiency. Many sectors use SCADA, including electric, water and 

wastewater, oil and natural gas, chemical, pharmaceutical, pulp and paper, food and 

beverage, and discrete manufacturing (automotive, aerospace, and durable goods) 

(Jamil, Ur Rahman, & Fawad, 2022). A SCADA system generally comprises control 

components (such as electrical, mechanical, hydraulic, and pneumatic) that work 

together to accomplish an industrial goal. The incorporation of IoT in SCADA systems 

improved communication between different components and provided a more efficient 

method of monitoring and data collecting. However, these improvements come at a 

cost: they break the isolation of SCADA systems, exposing them to cyber threats. This 

chapter provides a thorough introduction to the field of SCADA system security. 

 

2.2 SCADA SYSTEMS 

Data collection, communication systems, and Human Machine Interface (HMI) 

software are combined in the SCADA System to act as a centralized control and 

monitoring system for processing multiple inputs and outputs. The data obtained in the 
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field is transmitted to the computer-based control center, where it is displayed textually 

or visually via HMI. SCADA systems are made up of both software and hardware. The 

hardware includes the control center's MTU. Communication facilities such as phone 

lines, radio, satellite, cable, and RTUs or PLCs are dispersed across sizeable 

geographical field locations to monitor sensors and operate actuators (Pliatsios, 

Sarigiannidis, Lagkas, & Sarigiannidis, 2020). The RTUs or PLCs control the local 

actions of the sensing devices, while the MTU analyzes and stores the data from the 

RTU's inputs and output. Information flows to and from the MTUs and RTUs via 

communication devices. The software defines when, what to monitor, the allowable 

parameter ranges, response style, etc. 

 

2.3 SCADA VULNERABILITIES 

More SCADA facilities are converting to an Internet Protocol (IP) architecture for wide-

area communication, following the newest trend of employing standardized protocols. 

Standard protocols also increased system upgradeability by leveraging system 

implementation costs among providers. These developments, however, result in new 

threats and vulnerabilities. The increasing reliance on Internet-based communication 

has added to the issue's complexity and severity (Suaboot et al., 2020). Current SCADA 

networks are dispersed, networked, and rely on open internet protocols, making them 

vulnerable to global cyber-terrorism (H. Kim, 2012). There are mainly two categories 

of SCADA systems: a) the threat of unauthorized access to the control software and b) 

the risk that packets can access SCADA devices in host computers. The effects of a 

SCADA failure may be catastrophic and include financial loss due to machinery and 

environmental harm to the loss of life (Coffey et al., 2018). 

SCADA systems are vulnerable to a range of security threats. These threats can 
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come from various sources, including hackers, malware, and insider threats. Some 

common vulnerabilities of SCADA systems include: 

• Outdated software and hardware: SCADA systems often use older software 

and hardware that may be vulnerable to security threats. These systems may 

not be able to receive regular security updates and patches, leaving them 

open to attack. 

• Lack of encryption: Many SCADA systems do not use encryption to protect 

the data they transmit, making it easy for attackers to intercept and 

manipulate it. 

• Weak authentication and access control: Many SCADA systems have weak 

authentication and access control measures, making it easy for attackers to 

gain unauthorized access to the system. 

• Insufficient monitoring and detection: SCADA systems may not have 

adequate monitoring and detection capabilities, making it challenging to 

identify potential security threats promptly. 

• Poor security practices: Many organizations that use SCADA systems may 

not have robust security practices in place, making it easy for attackers to 

exploit vulnerabilities in the system. 

 

2.3.1 SCADA Cyber Attack Types 

 

Cyber-physical systems protection is a concern for every nation globally due to the 

enormous number of electronic devices linked through communication networks. A few 

types of attacks that target SCADA systems are discussed below (Nasser et al., 2018). 
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• Worm: It is like viruses with no network guidance from attackers in their 

transmission. Unlike viruses, no intervention with the user is required in 

worms to enable their attempt to spread. 

• Trojan: This is a type of software where disruptive functionality is applied 

to the original system. 

• Virus: A virus is described as a code typically attached to another software, 

and while the program is running, it will run with it. 

• DDoS: Coordinated assaults on the availability of a target device service or 

network implicitly launched via a series of corrupt computer devices. 

• Targeted Attack: Refers to a malicious attack targeting a specific person, 

software, system, or organization. It could obtain data, interrupt activities, 

or delete data on the targeted device. 

• Denial of Service: This attack is designed to prevent a network or a device 

from performing usual services. It is generally triggered when access to a 

network or computer resource is deliberately degraded or blocked because 

of another person's malicious behavior. 

 

2.3.2 SCADA Latest Attacks 

 

The launch of the first cyber weapon, identified as Stuxnet, marked a tipping point in 

the evolution of cybersecurity in June 2010. It targeted the Iranian nuclear facility at 

Natanz. Stuxnet was much more sophisticated than any other malware before. Still, it 

also took a different path that was no longer compatible with traditional confidentiality, 

integrity, and the principle of availability. More than 60,000 computers were infected 

by Stuxnet (Farwell & Rohozinski, 2011). The actual attack was not directed at SCADA 

software. Instead, it targeted the industrial controllers at the nuclear plant (Alladi, 
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Chamola, & Zeadally, 2020). Likewise, in December 2014, hackers targeted a German 

steel plant, taking control of the production system and causing significant structural 

damage to the factory's manufacturing line (Lee, Assante, & Conway, 2014). The City 

of Atlanta, Georgia, and the Colorado Department of Transportation were targeted by 

SamSam ransomware in 2018. Cyber-attacks are often employed for reconnaissance 

and attacking critical infrastructure in the ongoing Russian-Ukrainian conflict.  

 

2.4 SCADA-INTRUSIONS DETECTION SYSTEM 

Through network traffic analysis, an IDS detects malicious attack activities. It strives 

to classify network packets as benign or malicious using rules, ML-based or DL-based 

models. It is successful, attracting the curiosity of many security researchers (Gu & Lu, 

2021). An IDS can be deployed at the network's perimeter to safeguard all traffic 

entering the network; it is a hardware device known as a NIDS. Another typical device 

is the HIDS, a software IDS used to secure individual machines (see Figure 2.1). They 

are critical components of network security design (Mahdavifar & Ghorbani, 2019). 

The IDS might be signature-based, anomaly-based, or a combination.  

Typically, the signature-based IDS is the standard for detecting SCADA attacks. 

It detects unique traffic data trends for identifying malicious activity, which can be 

applied as regulation rules in IDS applications such as Snort. One of the disadvantages 

of the signature-based approach is that it cannot detect zero-day attacks (C. Wang, 

Wang, Liu, & Qu, 2020). The anomaly-based approach creates a baseline for normal 

network behavior. Then, it identifies attacks by measuring the observed behavioral 

differences. Zero-day attacks can be discovered using the anomaly detection approach 

(Xu, Shen, Du, & Zhang, 2018). This is because it needs only normal operating 

conditions to learn the typical behavioral profile (Najafabadi et al., 2015). Several 
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anomaly detection methods have been deliberately designed for ICS. However, despite 

significant advancements in IDS design, this field remains a work in progress (Hassan, 

Gumaei, Alsanad, Alrubaian, & Fortino, 2020). Data imbalance is one of the difficulties 

that security researchers face while constructing an ML/DL model. If the dataset used 

to train the SCADA IDS is imbalanced, it can negatively impact the performance of the 

IDS. For example, suppose the dataset contains many more examples of normal 

behavior than malicious behavior. In that case, the IDS may become biased toward 

recognizing normal behavior and may have difficulty identifying instances of malicious 

behavior. This can result in many false negatives (instances of malicious behavior that 

the IDS does not detect) and reduced overall system accuracy. 

 

 

 

Figure 2.1 Network IDS (NIDS) vs. Host IDS (HIDS). 

 

 

2.5 ML-BASED SCADA IDS TECHNIQUES 

ML is a branch of AI, often overlapping with computational statistics, concentrating on 

making predictions. ML focuses on classification and regression based on the known 
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features learned from training data. ML's pioneer, Arthur Samuel, described ML as a 

field of study that allows computers to learn without being explicitly programmed (Xin 

et al., 2018). ML methods are commonly used in many fields because of their computing 

power, and this section will discuss their applications. These methods focus primarily 

on classification, clustering, and regression based on previously learned characteristics 

from the training phase (Xu et al., 2018). To detect different attacks, ML can help the 

network administrator take effective action to avoid intrusion. Some of the most popular 

ML algorithms are the Support Vector Machine (SVM), K-nearest neighbor, and 

Decision Tree. SVM is an ML technique that has been applied for classification 

applications (see Figure 2.2), such as (Zolfi, Ghorbani, & Ahmadzadegan, 2019), where 

the authors constructed a model for cyber-crime classification (Aytug Onan & 

KorukoGlu, 2017)—presented a Naive Bayes and K-nearest neighbor model to classify 

texts (Abokifa, Haddad, Lo, & Biswas, 2019), designed an anomaly detection model to 

identify and classify attacks against cyber-physical systems. Unlike DL algorithms, 

which automate feature extraction, ML algorithms provide explicit steps to support a 

reached decision.  

The primary issue with present ML (ML) algorithms is that they cannot extract 

the essential information from network packets for identifying the complicated nature 

of new attacks (Khraisat, Gondal, Vamplew, Kamruzzaman, & Alazab, 2019). 

Similarly, conventional feature extraction approaches, such as statistical and 

mathematical aspects, are insufficient for detecting intrusions that are ingeniously 

masked in plant data. In the SCADA networks, the amount of data generated is 

enormous, the IDS is expected to perform with low false alarms, and the percentage of 

malicious data is relatively small compared to the ordinary operation data (dataset 

imbalance). These challenges motivate the use of DL methods in developing IDSs. 
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Figure 2.2 An example of ML Classification with the Support Vector Machine (SVM)  

 

 

2.6 DL-BASED METHODS SIGNIFICANCE IN SCADA IDS 

DL is an area of ML that simulates human brains for analytical learning. It mimics the 

human neural network mechanism for processing data such as images, sounds, and 

texts. It also has two learning methods: supervised and unsupervised. The essential 

characteristic that distinguishes DL from ML is the feature extraction process. DL 

solutions have achieved excellent results in various ML applications, including voice 

recognition, computer vision, and natural language processing (Najafabadi et al., 2015; 

Xu et al., 2018).  

DL solutions have achieved excellent results in various applications, including 

voice recognition, computer vision, and natural language processing. The expanded use 

of DL techniques in the cyber security domain is the most extensive development, and 

researchers have recently identified the vast potential of deploying DL in the SCADA 

anomaly intrusion detection domain (Mulay, Devale, & Garje, 2010), Figure 2.3 

provides the DL algorithms used in SCADA to detect intrusions.  

The main difference between DL and ML is that a) DL requires a larger size of 

training data, b) the training time is longer in DL compared to ML methods, c) proper 
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training in DL would benefit from a GPU, and d) the result is typically numerical in ML 

while DL results can be a voice, images, or numbers. 

 

 

Figure 2.3 DL algorithms used in SCADA IDSs 

 

 

2.7 DL ALGORITHMS – DBN, AUTOENCODER, CNN, AND RNN 

 

Deep Belief Networks (DBNs) were created to address difficulties experienced while 

training deep-layered models with typical neural networks. These problems are the 

learning process is slow, manual parameter selection results in classification with the 

same local minima, and requires many training datasets. The DBN comprises multiple 

Restricted Boltzman Machines (RBMs); Figure 2.4 shows this architecture. An 

autoencoder is classified as an unsupervised learning neural network. It consists of three 

levels: input, output, and one or more hidden layers. Unlike other deep neural networks, 

an autoencoder provides a topology in which the hidden layers are smaller than the input 

layers. As a result, this can learn a precise characterization of features; Figure 2.5 shows 

the autoencoder design. CNN is a robust artificial intelligence algorithm. It has 

demonstrated exceptional feature extraction capabilities, notably in voice and image 

processing applications (Husaini, Habaebi, Hameed, Islam, & Gunawan, 2020). It is 

similar to a human neural network due to its weight-sharing arrangement, which 
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minimizes the model's complexity and weight (Aleesa, Younis, Mohammed, & Sahar, 

2021). The internal design is shown in Figure 2.6. 

 

Figure 2.4 The internal architecture of DBN 

  

 

 

Figure 2.5 The design of autoencoders  

 

Figure 2.6 An example of the CNN network  
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The DL RNN technique can store and handle complicated data. RNNs are 

complex systems with an internal status at each classification point. This is because of 

circular relationships between neurons of higher and lower layers and optional self-

feedback connections. These feedback relations enable RNNs to transmit data from 

previous events to current processing phases. Thus, RNNs construct a memory of the 

time series event (Staudemeyer, 2015).  

The training process of the RNN classifier consists of two parts: Forward 

Propagation and Back Propagation. The feed-forward neural network enables 

transmitting information only in the forward direction, from the input nodes, through 

the hidden layers, and to the output nodes. There are no cycles or loops on the network. 

Decisions are based on the latest feedback in the feed-forward neural network. It does 

not memorize past details, and it does not have any potential scope. Feed-forward neural 

networks are used for general regression and classification problems. Back Propagation 

is necessary to send the residuals collected to change the weights, which are not 

inherently distinct from the ordinary neural network training (Yin, Zhu, Fei, & He, 

2017); see Figure 2.7. 
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Figure 2.7 RNN model architecture ("Deep Learning with Tensorflow 2.0, Keras and 

Python | Codebasics," 2021) 

 

 

2.7.1 DL Techniques- Related works 

 

The review of the study of the implementation of the DL technique in IDS, along with 

its datasets, is highlighted in Table 2.1 below. 

 

Table 2.1 DL Methods in SCADA IDS with Datasets 

 

Author(s) Dataset Remarks Limitations 

(Tian et al., 

2020) 

NSL-KDD 

UNSW-NB15 

A SCADA IDS Based 

on the enhanced DBN. 

The design focused on 

keeping the activation 

rate low to overcome 

the homogeneity of 

features issue. The 

sparsity penalty is used 

to overcome the 

overfitting in the 

dataset. 

The NSL-KDD 

dataset is 

outdated, the 

training 

process is 

complex, and 

the feature 

extraction 

parameters are 

manually 

selected. 

(Y. Li, Ma, & 

Jiao, 2015) 
KDD99 

DBN is used with 

Autoencoders to detect 

anomalies. AE is used 

to reduce the 

dimensionality in the 

dataset. 

The KDD 

intrusion 

dataset is 

outdated. 

Attacks were 

related to the 

IT domain, and 

reducing the 

dimensionality 

of data may 

cause a loss of 

crucial features 

(C. Wu et al., 

2020) 
NSL-KDD 

Combined ML and DL 

methods (DBN-SVM) 

to detect intrusions in 

SCADA datasets. The 

Particle Swarm 

Optimization algorithm 

is used for optimization. 

The dataset is 

outdated, with 

manual feature 

extraction. 
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(Marir et al., 

2018) 

KDD CUP′99 

NSL-KDD 

UNSW-NB15 

CICIDS2017 

Four datasets are used to 

evaluate the SVM-DBN 

model.  

KDD99 and 

the NSL are 

outdated 

datasets. It is 

not clear which 

dataset is used 

for the training. 

The evaluation 

metrics are not 

comprehensive.  

(C. Wang et 

al., 2020) 
SWAT 

Autoencoder is used to 

reduce the data 

dimensionality in the 

training data. 

The model can 

detect the 

device 

associated with 

the anomaly; it 

would be 

suitable for 

fault detection 

as it does not 

identify the 

attack type. 

(Y. Yu, Long, 

& Cai, 2017) 

CTU-UNB  

Contagio-CTU-

UNB 

Stacking dilated 

convolutional 

autoencoders to detect 

intrusions. The DCAE 

has fewer parameters 

than other DL models, 

so training takes less 

time. 

Reducing the 

dimensionality 

of data may 

cause a loss of 

crucial features 

(Zavrak & 

Iskefiyeli, 

2020) 

CICIDS2017 

Implemented 

Variational 

Autoencoder (VAE) 

with One Class-SVM. 

For manual 

feature 

extraction, the 

evaluation 

metrics are not 

comprehensive. 

(G. Zhang et 

al., 2020) 

NSL-KDD  

UNSW-NB15 

Used Wasserste in 

Generative Adversarial 

Network (CWGAN) 

with Cost-Sensitive 

Stacked Autoencoders 

(CSSAE), with 

Autoencoders. 

Attempted to address 

the dataset imbalance by 

over-sampling the 

minority class. 

The NSL-KDD 

dataset is 

outdated. Over-

sampling may 

increase the 

training time 

and may lead 

to data 

corruption. 
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(K. Wu, 

Chen, & Li, 

2018) 

NSL-KDD 

Developed a malware 

classification by 

transforming the data 

into pictures. The DL 

algorithm used in this 

work is CNN. 

The NSL-KDD 

is an outdated 

dataset. 

(W. Wang et 

al., 2017) 
ISCX 

CNN is used as a 

feature extractor. The 

paper showed the 

feasibility of using CNN 

to classify traffic data. 

The time 

complexity 

analysis is not 

discussed, and 

the evaluation 

metrics are 

unclear. 

(Khan, Zhang, 

Alazab, & 

Kumar, 2019) 

KDD99 

An enhanced CNN 

model for intrusion 

detection is introduced. 

It can automatically 

recognize features. 

Outdated 

datasets, 

manual 

parameter 

selection, and 

evaluation are 

not 

comprehensive.  

(Saxe & 

Berlin, 2017) 
A raw string of data 

CNN to detect 

malicious data in URLs, 

file paths, named pipes, 

named mutexes, and 

system files 

small sample 

size, the time 

complexity is 

not discussed, 

and the 

evaluation is 

unclear. 

(Staudemeyer, 

2015) 
KDD99 

applied LSTM-RNN for 

the IDS implementation.  

The outdated 

dataset is not 

performing 

well with 

Probe, R2L, 

and U2R 

attacks. Time 

complexity 

analysis is not 

discussed. 

(J. Kim, Kim, 

Thu, & Kim, 

2016) 

KDD99 10 percent 

Used LSTM-RNN 

algorithm for anomaly 

detection. The Hessian-

Free algorithm is used 

for optimization. 

Outdated 

dataset, high 

False Alarm 

Rate (FAR). 

(Yin et al., 

2017) 
NSL-KDD 

RNN-IDS is introduced 

for binary and 

multiclass classification. 

An outdated 

dataset requires 

a lot of training 

time 
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(Kwon, Yoo, 

& Shon, 

2020) 

Raw traffic data. 

Developed an IDS for 

IEEE 1815.1-based 

power system using 

Bidirectional-RNN. In 

bidirectional LSTM, the 

prediction is made by 

integrating forward 

propagation and 

backward propagation 

The time 

complexity 

analysis is not 

discussed, and 

the evaluation 

process details 

of this model 

are not 

presented. 

(Xu et al., 

2018) 
NSL-KDD 

Deep Neural Networks 

(DBN) with Gated 

Recurrent Units (GRU) 

are combined to develop 

a SCADA IDS. 

The outdated 

dataset and 

time 

complexity are 

not discussed. 

(S. J. Yu, 

Koh, Kwon, 

Kim, & Kim, 

2016) 

KDD99 

Using the Hurst 

parameter to detect 

anomalies in the 

network traffic. 

Outdated 

dataset 

 

 

 

The core points of the taxonomy analysis are summarized in Figure 2.8 and 

Figure 2.9. They summarize the algorithms used in their performance matrices and the 

datasets used to train and evaluate these models. To sum up the analysis, similarities 

and differences can be defined. A noticeable similarity is that ten papers used either the 

KDD99 dataset or a variation of the KDD99, like the NSL-KDD of KDD-10%. As a 

result, cyber-attacks can be categorized into four groups which are Denial of Service 

(DoS), User to Root (U2R), Remote to the user (R2L), and Normal. Another common 

issue is that the features are either chosen manually or extracted using an ML method 

instead of the DL algorithm. One of the main observed ideas is that they focused on 

reducing the dimensionality of the data. 
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Figure 2.8 Accuracy and recall for different related works found in the literature. 

 

 

Figure 2.9 Datasets usage percentage in the different models discussed in section 

2.7.1. 
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2.7.2 Limitations and Open Issues Found in the Literature 

 

DL algorithms play an essential role in enhancing system security. Before implementing 

these algorithms into the SCADA network, several issues and problems should be 

addressed to increase network security. A spotlight on some of the issues and challenges 

is highlighted in this section. 

Parameters tuning. The DL model parameters used in the literature are not 

specifically and carefully configured. DL parameters include the number of hidden 

layers, the activation function on each layer, the number of epochs, the optimization 

function, the learning rate, and the dropout rate. Predefined rules should be followed to 

have a reliable neural network architecture. For example, there are some formulas to 

determine the optimum number of hidden nodes in every layer. However, rules do not 

always lead us to the appropriate parameters and design. Some argue that all parameter 

configurations need to be assessed and the best design based on the best performance 

approaches to ensure the optimum parameter settings for a neural network. 

Evaluation. There is no systematic method of selecting which DL model to use 

because each has its own characteristics that make it ideal for a particular application. 

All the papers produced an acceptable deep-learning method. Although each paper is 

evaluated with different metrics like accuracy, recall, and F1 score, the classification 

model's evaluation process is not standard. This makes it difficult to compare two 

approaches to the same problem. A straightforward procedure for the assessment of a 

DL classification algorithm is required. 

Representation of cyber-physical threats. Most of the research on SCADA 

systems concentrated on cyber threats instead of physical and insider threats. SCADA 

becomes essential to people's lives; a cyberattack on the electric grid will directly affect 

people. In some cases, it may lead to the loss of lives. One of the fundamental issues 
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that should be discussed in the future is isolating and mitigating an attack when it is 

discovered. The choice of the dataset is critical. Many researchers have used outdated 

datasets, such as the KDD99 group datasets. The use of such a dataset may lead to the 

issue of overfitting the model. The field of CPS security needs new and diverse datasets. 

Datasets can be generated from different ICT and CPS systems, such as additive 

manufacturing, water treatment plants, electricity generation, oil and gas plants, 

SCADA applications in consumer electronics, and many other fields. Such datasets 

could be extended to include IoT-based CPS of drones, self-driven vehicles, care area 

networks, drive-by-wire in airplanes, and mobile devices. 

Data imbalance is a significant issue with ML and DL models. The labels in 

the dataset do not contain an equal percentage of normal and abnormal entries. In ML 

and DL applications, an imbalanced dataset is one in which the number of samples in 

one class is much lower than the number of entries in other classes, as discussed in 

(Mishra & Singh, 2021) and reaffirmed in (Ani, He, & Tiwari, 2017). Because of the 

data imbalance issue, the model may be biased toward a single class. There are a few 

ways to overcome this issue, either by under-sampling the majority class, as in the work 

of (Aytuǧ Onan, 2019), or by oversampling the minority class (Mishra & Singh, 2021). 

Graph-based security techniques. The field of network anomaly detection has 

made substantial use of graph theory. Several studies have used various graph-based 

techniques to detect anomalies (Ateş, Özdel, & Anarım, 2020). The graph properties 

were employed to take advantage of the spatial relationship in data transmission to 

detect botnets in the network (Chowdhury et al., 2017). (Pourhabibi, Ong, Kam, & Boo, 

2020) reviewed various studies that utilized Graph-Based Anomaly Detection (GBAD) 

for fraud detection. To detect cyber-attacks against IoT networks, the authors (Abid & 
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Jemili, 2020) proposed a graph-based IDS. Graph-based IDS design is quite promising 

for detecting anomalies in SCADA systems. 

Privacy by design (PbD) in SCADA. PbD is a concept that assures privacy 

protection by including privacy-enhancing technologies in the design standards of 

information technology, which makes privacy the default (Cavoukian, Polonetsky, & 

Wolf, 2010). PbD was utilized by researchers (O'Connor, Rowan, Lynch, & Heavin, 

2017) to protect health information obtained through IoT devices. In (Pedraza, Patricio, 

de Asís, & Molina, 2013), the researchers offered another example of using PbD to 

develop an ML system. Although these principles were used to develop a Face-

Recognition System, they can be replicated for SCADA IDS designs to offer plenty of 

security features. 

Applications of Blockchain in SCADA security. Because SCADA systems are 

increasingly adopting IIoT, Blockchain technologies can be used to protect such 

networks. The utilization of Blockchain to develop IDSs in IIoT systems was 

demonstrated by (Derhab et al., 2019). Similarly, (Vargas, Lozano-Garzon, Montoya, 

& Donoso, 2021), the authors combined ML methods and Blockchain techniques to 

transfer information between sub-networks securely. The work by (Alladi, Chamola, 

Rodrigues, & Kozlov, 2019) reviews different Blockchain applications in smart grid 

security.  

 

2.8 SELF-SIMILARITY FOR ANOMALY DETECTION 

Self-similarity is often used in anomaly detection to identify deviations from the 

expected patterns in time series data. The idea is to compare the statistical properties of 

the time series data at different time scales and identify any changes in these properties 

as potential anomalies. The Hurst parameter is a standard measure of self-similarity in 
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time series data, and it provides information about the persistence of trends in the data. 

The Hurst parameter indicates a random process if it is close to 0.5. In contrast, values 

greater than 0.5 indicate persistence (trends tend to persist over time), and values less 

than 0.5 indicate anti-persistence (trends tend to reverse over time). In a stable system, 

the Hurst parameter is expected to be close to a constant value, whereas, in the presence 

of an anomaly, the Hurst parameter may change significantly. By using self-similarity, 

especially the Hurst parameter, as a feature in an anomaly detection model, one can 

enhance the model's ability to detect subtle and complex anomalies that may not be 

easily visible from the raw data. This is because the self-similarity feature provides 

additional information about the underlying structure of the data, which can help 

distinguish between normal and abnormal behavior.  

 

2.9 PUBLIC SCADA DATASETS 

Data is the foundation for security analysis in SCADA IDS, and this section presents 

the standard public datasets in SCADA. As shown in section 2.7, most studies examine 

DL detection skills utilizing publicly accessible SCADA datasets. Most datasets are out 

of date and only relevant to IT systems. KDD99 by Hettich in 1999 ("KDD Cup 1999 

Data," 2021) contains around 5,000,000 records, each of which includes 41 attributes 

and is labeled either as regular or as an attack, with one unique form of attack. The 

NSL-KDD (Tavallaee, Bagheri, Lu, & A. Ghorbani, 2009) is a variation of KDD99 

created in 2009, and it has some advantages compared to KDD99. For example, the 

redundant record is excluded from the train collection to reduce bias toward the most 

common records, and the duplicate record in the test sets is removed. They are gathered 

by MIT Lincoln's Cyber Systems and Technologies (Lippmann et al., 1999). Another 

dataset used in SCADA IDS development is ISCX2012 (Shiravi, Shiravi, Tavallaee, & 
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Ghorbani, 2012). The data was gathered at the University of New Brunswick. It was 

gleaned through network traffic, which included HTTP, SMTP, SSH, and FTP, among 

other protocols (Mohamed, Dahl, & Hinton, 2010).  

The UNSW-NB15 dataset was created by the University of New South Wales' 

cybersecurity laboratory group. Several researchers have used this dataset to create a 

SCADA IDS, such as those in the work of (Tian et al., 2020), in which the authors 

developed an IDS model based on a deep belief network (DBN) (Marir et al., 2018). 

combined ML techniques with DL algorithms to detect abnormality in network traffic 

(H. Zhang, Huang, Wu, & Li, 2020). used this dataset to improve the detection of 

minority and zero-day attacks on the networks. 

The CICIDS2017 (Canadian Institute for Cybersecurity IDSs) dataset is another 

dataset used in SCADA systems, including modern and known recent attacks 

(Sharafaldin, Habibi Lashkari, & Ghorbani, 2019). It consists of raw data and traffic 

records collected over five days.  

There are two SCADA datasets used in Water Distribution Systems (WDS). One 

of the new SCADA datasets is the BATtle of the Attack Detection Algorithms 

(BATADAL) (Taormina et al., 2018). Training Dataset 1, Training Dataset 2, and Test 

Dataset are the three datasets that comprise this dataset. The Secure Water Treatment 

(SWaT) (Goh, Adept, Junejo, & Mathur, 2017) dataset was generated for cyber-security 

research at the Singapore University of Technology and Design. Data is marked by 

normal and abnormal behavior (Inoue, Yamagata, Chen, Poskitt, & Sun, 2017). 

The CTU-UNB dataset combines data from the CTU-13 dataset with normal 

records from the UNB ISCXIDS 2012 dataset (Y. Yu et al., 2017). Several researchers 

use this dataset to assess the implemented SCADA system's security measures. The 

Power System Attack (C et al., 2014) datasets consist of three datasets: a) 2 classes, b) 
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3 classes, and c) multiclass. Oak Ridge National Laboratories and Mississippi State 

University created them. These datasets have been implemented in many cyber-physical 

systems for the smart grid (Pan, Morris, & Adhikari, 2015). Table 1 provides a summary 

of the public datasets utilized in SCADA IDS. Many researchers are now studying 

DL/ML detection algorithms using publicly available SCADA datasets. 

 

Table 2.2 Public SCADA datasets 

 

SCADA 

Dataset 
Year Availability Remarks 

KDDCup 

1999 
1999 

(“KDD Cup 1999 

Data,” 2021) 
widely used SCADA systems. 

NSL-KDD 2009 
(Choudhary & 

Kesswani, 2020) 

A better version of 

KDDCup99. 

ISCX 

Dataset 
2012 (Shiravi et al., 2012) 

Used for anomaly detection on 

the network. 

UNSW-

NB15 

Dataset 

2015 (Moustafa, 2021) 

has 49 features and a collection 

of regular and attacked events, 

with around 2.5 million class 

records. 

CICIDS2017 2017 
(Sharafaldin et al., 

2019) 

A date, source and destination 

IPs, source and destination 

ports, protocols, and attack type 

are all included in each entry. 

BATADAL 

Datasets 
2018 (Taormina et al., 2018) 

Used in Water Distribution 

Systems. 
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SWaT 

Dataset 
2017 (Goh et al., 2017) 

Used in Water Distribution 

Systems. 

CTU-UNB 

Datasets 
2013 

("The CTU-13 Dataset. 

A Labeled Dataset with 

Botnet, Normal and 

Background Traffic. — 

Stratosphere IPS," n.d.) 

It includes attack types such as 

Web-based malware, Exploits, 

and Botnet. 

Power 

System 

Attack 

Datasets 

2014 (C et al., 2014) 
Used to detect intrusions in the 

smart grid. 

Morris Gas 

Pipeline 
2013 

("Tommy Morris - 

Industrial Control 

System (ICS) Cyber 

Attack Datasets," n.d.) 

A corpus of marked RTU 

telematics streams generated by 

a gas pipeline system 

 

 

Morris 

Power 

System 

2014 

 

("Tommy Morris - 

Industrial Control 

System (ICS) Cyber 

Attack Datasets," n.d.) 

 

The data is a combination of 

field device measurement and 

device logs. It consists of three 

datasets: a) binary dataset, b) 

three-class dataset, and c) 

multiclass dataset. 

Bot-IoT 

(5%) 

 

2018 

("The Bot-IoT Dataset | 

UNSW Research," n.d.) 

Bot-IoT was built on a testbed 

with different virtual computers 

running different operating 

systems. 

 

 

 

ICS cyber 

testbed 

industrial 

OT dataset 

2022 
 

(Mubarak et al., 2022) 

It was developed from a 

portable ICS testbed that 

included a) a PLC system, b) an 

HMI system, c) an Ethernet 

switch, d) Process simulation 

modules, e) a Physical Sensor, 

and f) an Attacker system. 

 

 

2.10 DATASET BALANCING TECHNIQUES 

This section highlights the importance of balancing datasets and the techniques used. 

SCADA systems monitor and control industrial processes in power plants or factories. 

These systems typically generate large amounts of data, which can be used for various 
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purposes, such as to improve the efficiency of industrial processes or to detect 

anomalies that may indicate potential problems.  

However, the data generated by SCADA systems are often imbalanced, with 

some classes or categories being underrepresented. This can be a problem when training 

DL models on the data, as the models may be biased towards the majority class and not 

accurately capture the minority classes. The dataset should be balanced using sampling 

approaches to solve this problem. Sampling approaches select a portion of the data to 

train the model to ensure that all classes are represented equally. There are several ways 

to do this, including under-sampling the majority class and oversampling the minority 

class (A. Chawla, Lee, Fallon, & Jacob, 2019).  

Under-sampling implies lowering the number of samples in the majority class to 

equal that in the minority class. This can be accomplished by random sampling, which 

selects a random subset of the majority class, or through targeted sampling, which 

selects samples based on specific criteria, such as distance to the classifier's decision 

boundary. 

Conversely, oversampling involves increasing the number of samples in the 

minority class to match the number in the majority class. This can be done through 

various methods, such as generating synthetic or repeating samples from the minority 

class. 

 

2.10.1 Under-Sampling Approaches 

 

Under-sampling is a popular technique for balancing SCADA datasets. This approach 

involves reducing the number of samples in the majority class to match the number in 

the minority class. Random sampling involves selecting a random subset of the majority 
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class to reduce its size (Miah, Khan, Shatabda, & Md.Farid Dewan, 2019). This 

approach can be simple and effective but may not always produce the best results. 

Targeted sampling, conversely, involves selecting samples from the majority 

class based on specific criteria. For example, samples closest to the classifier's decision 

boundary may be selected, as they are likely to impact the model's performance most.  

Another approach to under-sampling is to use a clustering algorithm to group 

similar samples together and then select a representative subset of each cluster to reduce 

the overall size of the majority class (Aziz & Ahmad, 2021). This can help preserve the 

majority class's diversity while reducing its size to match the minority class. 

Under-sampling can be a valuable technique for balancing SCADA datasets, as 

it allows for developing more accurate and fairer machine-learning models. However, 

it is crucial to carefully select the samples to be removed to avoid losing important 

information that may be useful for training the model (Tsai, Lin, Hu, & Yao, 2019).  

Near Miss sampling is a method that involves selecting a subset of the majority 

class that is like the minority class. This is done by selecting observations from the 

majority class nearest to the classifier's decision boundary. The selected observations 

are removed from the dataset, resulting in a more balanced dataset. 

Condensed under-sampling is a method that involves creating a new, smaller 

dataset by selecting a subset of the majority class that is most representative of the 

overall distribution of the classifier. This is done by selecting a subset of the majority 

class that contains a similar number of observations to the minority class but also 

maintains the overall distribution of the classifier. 

Tomek link is a method that removes observations from the dataset between two 

observations of different classes. This is done by identifying pairs of observations 
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nearest neighbors of opposite classes and removing the observation between the two. 

This results in a more balanced dataset. 

The Edited Nearest Neighbors rule is a method that involves removing 

observations from the dataset that are not representative of their class. This is done by 

identifying the k-nearest neighbors of each observation and removing the observation 

if most of its neighbors belong to a different class. 

One-sided selection is a hybrid method that involves first applying over-

sampling to the minority class and then applying under-sampling to the majority class. 

This results in a more balanced dataset that contains a larger number of observations of 

the minority class and a smaller number of observations of the majority class. 

 

2.10.2 Over-Sampling Approaches 

 

Over-sampling is a technique used in ML to address the class imbalance in a dataset. 

Class imbalance occurs when the number of observations from one class far outnumbers 

the observations from the other classes. Over-sampling involves increasing the number 

of observations of the minority class in the dataset to better balance the classes 

(Mahmoud, El-Kilany, Ali, & Mazen, 2021). 

There are several different approaches to over-sampling. One of the most 

common is random oversampling, duplicating observations from the minority class to 

balance the dataset. Another approach is called synthetic oversampling, which involves 

generating new observations for the minority class using a combination of the existing 

observations. 

One of the advantages of over-sampling is that it can be performed on a dataset 

without requiring additional data. This makes it a simple and effective way to address 

the class imbalance. However, over-sampling can also introduce bias into the dataset if 
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it is not done carefully. It is important to ensure that the new observations added to the 

dataset represent the minority class and not simply duplicates of existing observations 

(N. v Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  

Random oversampling involves increasing the number of observations of the 

minority class in the dataset to better balance the classes. This is done by simply 

duplicating observations from the minority class.  

The Synthetic Minority Oversampling Technique (SMOTE) is a popular 

method that combines random and synthetic oversampling to create new observations 

for the minority class (N. v Chawla et al., 2002). This is done by selecting observations 

from the minority class and using them to generate new synthetic observations. The new 

synthetic observations added to the dataset is a popular method that combines random 

and synthetic oversampling to create new observations for the minority class. This is 

done by selecting observations from the minority class and using them to generate new 

synthetic observations.  

Adaptive Synthetic Sampling (ADASYN) is an oversampling method that 

combines the existing observations and the borderline samples of the classifier to 

generate new observations for the minority class. Borderline samples are observations 

located near the classifier's decision boundary and are essential for determining the 

classification of new observations. 
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Table 2.3 Advantages and Disadvantages of Under-Sampling and Over-Sampling. 

 

Technique Advantages Limitations 

Under-

sampling 

Reduces bias towards majority 

class, simple and effective 

approach 

Loss of essential features 

potential imbalance, if not done 

carefully, requires sufficient 

data 

Over-

sampling 

Reduces bias toward the majority 

class. No additional data is 

required 

It may cause imbalance 

towards minority classes, 

increase dataset size, and make 

training difficult 

 

 

 

Balancing a dataset for IDSs (IDS) using under-sampling and oversampling is a 

common problem in ML. Class imbalance occurs when the number of observations 

from one class far outnumbers the observations from the other. Under-sampling is a 

technique used to address the class imbalance by reducing the number of observations 

of the majority class in the dataset. Oversampling is a technique used to address the 

class imbalance by increasing the number of observations of the minority class in the 

dataset. Balancing a dataset for IDS using under-sampling and oversampling can help 

improve an ML model's performance by providing a more balanced dataset for training. 

It is essential to carefully evaluate the methods used to balance the dataset and ensure 

they do not introduce bias or cause vital information to be lost. 

 

2.11 SUMMARY 

This chapter focuses on the theories and terminology underlying this study, such as 

SCADA systems and applications, SCADA security open issues, IDSs, advanced DL 

DBN, Autoencoders, CNN, and RNN approaches, and their importance in developing 
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a reliable, resilient, and effective SCADA IDS. The capabilities of intrusion detection 

and its limitations using public datasets, as well as a comparison of DL algorithms, are 

discussed in detail in this chapter. In addition, the existing public industrial datasets 

were studied, and the approach for an enhanced IDS by addressing dataset imbalances 

is followed in the next chapter. 
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CHAPTER THREE 
 

METHODOLOGY 
 

 

 

 

3.1 INTRODUCTION 

This chapter explains the research methods and procedures for achieving the research 

questions. A thorough screening of the public SCADA datasets is introduced. The 

research starts with a literature review of the current state of the art. The datasets used 

to develop IDSs and the limitations. SCADA systems control and monitor critical 

infrastructure and industrial processes, such as power plants and manufacturing 

facilities. These systems are essential for the smooth operation of many industries. If 

they were to be compromised, they could have serious consequences, such as 

disruptions to essential services, financial losses, and even threats to public safety. 

Therefore, it is essential to evaluate the security measures for SCADA systems to ensure 

they are adequately protected against potential security threats. This can involve a range 

of activities, such as conducting risk assessments, implementing security controls, and 

regularly testing the effectiveness of security measures. By taking these steps, 

organizations can help to ensure the continued safe and secure operation of their 

SCADA systems.  

This work addresses the dataset imbalance and improves the CNN-LSTM 

algorithm for more reliable and efficient SCADA IDSs. The specific goals are to screen 

publicly available SCADA datasets, conduct experiments to understand the impact of 

dataset imbalance on SCADA IDS development and evaluate the enhanced CNN-

LSTM algorithm against other works. 

This chapter is organized as follows: Section 3.2 outlines the materials and 
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techniques used to screen the SCADA datasets by providing a clear guideline for the 

dataset criteria, data collection, and how to evaluate a SCADA dataset. Section 3.3 

describes the experiment parameters and tools used to investigate the impact of the 

dataset imbalance problem. Section 3.4 explains how the findings are examined, and 

Section 3.5 summarizes the chapter. 

 

3.2 DATASET SCREENING 

SCADA datasets are data collections used to train and evaluate ML algorithms for 

SCADA IDSs. These datasets typically include sensor readings, control signals, and 

other data collected from SCADA systems. They may be collected in various industrial 

environments, including power plants, manufacturing facilities, and water treatment 

plants. This section provides how we examined the public datasets associated with 

SCADA to improve IDSs.  

In the literature review, significant databases such as Elsevier, IEEE Explore, 

Microsoft Academic, Springer, Google Scholar, and Wiley online libraries are utilized 

to search for papers relevant to IDSs for SCADA. The methods and standards adopted 

to include a scientific paper in this study focus on answering SCADA intrusion 

detection problems by applying DL techniques. This research was limited to articles 

published between 2015 and 2022.  

The outcome of the literature review provided a highlight for the SCADA 

datasets used by security researchers to develop IDSs. The following datasets are found 

in the literature; 1) UNSW-NB15, 2) CICIDS2017, 3) KDD99, 4) NSL-KDD, 5) 

ISCX2012, 6) Morris Gas Pipeline, 7) Morris Power System, 8) ICS cyber testbed 

industrial OT dataset, 9) BATADAL Datasets, 10) SWaT Dataset, 11) CTU-UNB 

Datasets, 12) Power System Attack Datasets.  
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The dataset examinations are based on multiple factors. Including a) how a 

dataset is cleaned, trained, and evaluated in IDSs, b) the results of using the dataset in 

developing IDSs for SCADA, and c) the drawbacks of a dataset and how it affects the 

development of IDSs. The constraints and issues associated with using such datasets.  

Each dataset is analyzed using the EDA method to gain a comprehensive 

overview of the attributes, size, and attack types. The EDA's primary goal is to uncover 

inconsistencies in the dataset, recognize common patterns, and identify anomalies. It 

enables us to fully understand before forming any assumptions or hypotheses. EDA 

involves using various statistical and visualization techniques to explore and analyze 

the data and can help uncover hidden relationships and patterns that may not be 

immediately apparent. This can give vital insights into the data's characteristics and help 

identify the most relevant attributes the IDS should be trained with. The following 

section will explain the process of performing EDA with Python. 

 

3.1.1 Performing EDA 

Figure 3.1 depicts the EDA workflow in Python. The following is a list of all the steps 

required to conduct an effective and meaningful EDA on a dataset.  

1) To begin, load the Python libraries that will be used in the analysis. Pandas, 

Numpy, Matplotlib, Seaborn, and Scatter are among these 

libraries. The dataset is loaded into a Pandas data frame, which we'll refer to as 

df.  

2) Using Pandas function info() will give us basic information about the data, 

such as the columns, number of records, null data, and the data type. Then, we 

can use another function in the Pandas library, describe(). This function 

will provide a statistical overview of each column, the number of records in each 
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column, the average, maximum value, minimum value, and standard deviation. 

We can continue exploring the data with functions like duplicated() and 

unique(). 

3) Visualize the data using libraries such as Matplotlib, Seaborn, and 

Scatter. Visualizing the data can help us identify inconsistencies, patterns, 

and anomalies. 

4) It is to find the correlated variables and features in the dataset using the corr() 

function and visualize the data with Seaborn. Overall, EDA is an essential 

step in developing an IDS, and using Python can provide a powerful and flexible 

platform for exploring and analyzing SCADA datasets. 

 

  

Figure 3.1 Dataset EDA workflow. 

 

3.2.1 Dataset Cleaning 

 

After performing EDA on SCADA datasets, the next step is to clean and preprocess the 

data. This involves removing outliers or missing values and transforming the data into 
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a format suitable for further analysis. It may also be necessary to perform feature 

engineering, which involves creating new features from existing data to help improve 

DL models' performance. Generally, once the data has been cleaned and preprocessed, 

the next step is to apply DL algorithms to the data to build predictive models or identify 

patterns and trends. In our case, we investigated the impact of the dataset's imbalance. 

Hence, the dataset should be balanced before being used as training data for the DL 

model. A balanced dataset contains approximately 50% of each majority and minority 

class. 

The classification of public SCADA datasets is the result of the datasets 

screening. The outcome is the characteristics of each dataset. These criteria include the 

data type, whether simulated data, real-world SCADA field data, network traffic data, 

or log files. Other properties are the dataset format, protocols found in the records, 

number of features, class distributions, size, and the Attack to Normal Ratio (ANR); 

more details in Chapter 4. The following section will use the imbalanced datasets to 

understand the impact of the dataset imbalance in developing IDSs for SCADA systems. 

 

3.2.2 PCA 

 

The PCA method is a statistical methodology for analyzing the variability of a 

multivariate dataset. PCA is used in the context of SCADA data to uncover patterns and 

trends that may not be immediately apparent, as well as to reduce the dimensionality of 

the data by projecting it onto a lower-dimensional space. This may be used for various 

purposes, such as data visualization, anomaly detection, and feature selection. In this 

scenario, PCA is utilized to comprehend and gain a reasonable dataset overview. To get 

an idea of a city, we do not need to see every street; just a few would work. Similarly, 

for reducing the dimensionality of a dataset to understand its general properties. To 
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perform the PCA on a SCADA dataset in Python, you may follow the next steps: 

1. Import PCA from the sklearn library. 

2. Load the dataset. 

3. Standardize the data by subtracting the mean and dividing it by the standard 

deviation. 

4. Fit the PCA model to the data 

5. Transform the data into the principal components 

The first step is to load the SCADA dataset and standardize it by subtracting the 

mean from each value and dividing it by the standard deviation. Then, the fit() 

method creates a PCA instance and fits the data. Finally, the transform() method 

transforms the data into the principal components. 

 

3.3 EXPERIMENT SETTINGS 

The primary goal of this section is to understand the impact of dataset imbalance in 

SCADA IDS by conducting a few experiments. This section uses two imbalanced 

datasets: the Morris Power Dataset and the CICIDS2017 dataset. The Google Collab 

platform runs the Python commands for its ease of use and provides GPU access to 

improve the model's training. The model used for this purpose is the CNN-LSTM. 

Four experiments were conducted to determine the effect of dataset imbalance. 

In the first one, CNN-LSTM detects intrusions using imbalanced data. In the second 

experiment, the data is balanced using under-sampling only. The model is trained with 

balanced data using an oversampling approach in the third experiment. A hybrid 

balancing technique is used in the fourth experiment, under-sampling the majority class 

and over-sampling the minority class. Next, the CNN-LSTM model is used to detect 

anomalies in the dataset. Each experiment's average values have been reported after 
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being conducted several times. The DL model was built with the TensorFlow, Pandas, 

and Keras frameworks. The measures we used to assess the performance of these 

experiments are described next.  

 

3.3.1 Evaluation Metrics 

 

The evaluation metrics used in these experiments are briefly discussed in this section. 

All experiments evaluate the model based on Accuracy (ACC), Recall, Precision, and 

F1-score. Accurate is the most common performance metric for binary and multiclass 

classification problems. An IDS accuracy rate measures how accurately it detects 

normal or abnormal network traffic (Z. Wang, Xie, Wang, Tao, & Wang, 2021). The 

TPR is the ratio of correctly predicted and total network anomalies. TPR is called Recall 

or sensitivity. The Precision rate is an indicator of accuracy, which indicates the 

proportion of the number of positive cases correctly classified by the classifier to the 

number of positive cases. F1-score is the weighted harmonic average of Precision and 

Recall, which is quite effective for the imbalanced classification problem. 

 

3.3.2 Experiment 1 - CNN-LSTM with imbalanced datasets 

 

The imbalanced SCADA datasets are adjusted using the MinMaxScaler, with 70% of 

the data used for training and 30% for testing. Figure 3.2 shows the flow of this 

experiment. This experiment consists of three steps, which are as follows:  

1. Preprocessing of dataset. Categorical features are converted to numerical 

features in this step. The data values are then normalized between 0 and 1 

to expedite the transformation process. Furthermore, any instance with 

missing values is removed, as is any feature with the same value for more 

than 80% of all records. 
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2. Training and Testing. The CNN-LSTM model is enhanced with BN and 

layer modifications, and the best parameters for training the dataset are 

chosen. 

3. Evaluation stage. Accuracy, Recall, and F1-score metrics evaluate the 

model's performance. 

 

 

Figure 3.2 The flowchart of training the CNN-LSTM model with imbalanced data. 

 

3.3.3 Experiments 2,3 & 4 - CNN-LSTM with balanced datasets 

 

In experiments 2,3 and 4, the dataset is divided based on its majority and minority 

classes. Experiment 2 trains the model with a dataset balanced with under-sampling 

approaches. In experiment 3, the datasets are balanced with over-sampling techniques. 

For experiment 4, both under-sampling and over-sampling techniques are used. Figure 

3.3 illustrates the workflow used in each of these experiments. 
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Figure 3.3 The flowchart of training the CNN-LSTM model with imbalanced data. 

 

3.4 ANALYSIS METHODS 

It is critical to assess the outcomes of a DL experiment to understand how well the 

model did and find any areas for improvement. This section explains how to effectively 

examine the results of the experiments discussed in Section 3.3.  

Examining the training and validation loss curves first. These graphs depict the 

model's loss (or error) on the training and validation sets during the training period. If 

the training and validation losses decrease with time, the model is learning well. 

Suppose the validation loss is frequently more significant than the training loss. In that 

case, this might indicate overfitting, in which the model performs well on the training 

data but does not generalize well to the new form of data.  

Second, examine the training and validation accuracies. The model learns well 

if the training and validation accuracies increase over time. If the validation accuracy is 

regularly lower than the training accuracy, this might indicate overfitting. 
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Third, analyze the confusion matrix. The confusion matrix is a table that displays 

the model's true positive, true negative, false positive, and false negative predictions. It 

demonstrates how well the model performs on each class in the dataset while 

highlighting any possible issues with its predictions. 

Fourth, consider the model's predictions. Predictions made by the model on a 

few samples from the validation or testing set demonstrate how well the model is doing. 

The key to efficiently interpreting DL experiment results is carefully analyzing the 

model's training and validation performance and predictions on individual cases. 

 

3.5 HYBRID DL IDS 

The result of this study presents an innovative anomaly detection model designed to 

accurately detect deviations from normal behavior in each dataset. The model comprises 

several key components, each contributing to its effectiveness. Firstly, the Morris Power 

dataset data is transformed into images, providing a visual representation that the model 

can quickly analyze. Secondly, the Hurst parameter is calculated, providing critical 

information about the self-similarity of the data. This information is then used to train 

a state-of-the-art DL model, specifically a CNN and LSTM network, which can detect 

even subtle anomalies in the data. Finally, the model is evaluated and optimized, 

ensuring that it provides accurate and reliable results. Through this comprehensive 

approach, the model is a highly effective tool in detecting anomalies in the Morris 

Power dataset. 

 

3.5.1 Dataset Transformation 

 

The Morris Power dataset is transformed into images using the DeepInsight package 

(Sharma, Vans, Shigemizu, Boroevich, & Tsunoda, 2019). This powerful tool enables 
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the conversion of non-image data into well-organized images. The process of 

transforming the Morris Power dataset into images is illustrated in Figure 3.4, where 

the numerical data is transformed into pixels, forming a visual representation of the 

features in the dataset. This image representation makes it easier for the ML model to 

analyze and identify patterns and anomalies in the data. By utilizing the DeepInsight 

package, this study can leverage the power of DL and achieve more accurate results in 

detecting anomalies in the Morris Power dataset.  

 

 

 

Figure 3.4 DeepInsight pipeline. (a) An illustration of transformation from feature 

vector to feature matrix. (b) An illustration of the DeepInsight methodology to 

transform a feature vector into image pixels (Sharma et al., 2019). 

 

 

 

The DeepInsight package has been used to convert the Morris Power dataset into 

images, enabling the next step of the analysis process. The Hurst parameter is then 

calculated for each image, providing important information about the self-similarity of 

the data. This information is critical for the anomaly detection process, as it allows the 

model to identify deviations from the normal behavior represented by the Hurst 

parameter values calculated from the normal data. Using the Hurst parameter values as 

a threshold, the model can accurately detect anomalies in the Morris Power dataset, 
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making this a vital component of the overall approach used in this study. The following 

section will discuss the calculation of the Hurst parameter in the next section. 

 

3.5.2 Hurst Parameter Calculation 

 

The Hurst parameter is a statistical measure that provides information about the self-

similarity of a signal or a pattern and is commonly used in calculating fractal dimension. 

In the context of anomaly detection in the Morris Power dataset, the Hurst parameter is 

calculated for each image to determine the self-similarity of the data. The Hurst 

parameter can be calculated using the R/S analysis method, which involves dividing the 

signal's range by the signal's standard deviation at different time scales. The formula for 

the Hurst parameter can be expressed as follows: 

𝐻 =  𝐸[𝑙𝑜𝑔(𝑅/𝑆)] / 𝑙𝑜𝑔(𝑛)        (1) 

where H is the Hurst parameter, R is the range of the data, S is the standard 

deviation of the signal, and n is the time scale. The calculation of the Hurst parameter 

involves several steps. First, the data is divided into overlapping segments of length n, 

and for each segment, the range (R) and standard deviation (S) are calculated. The R/S 

ratio is then calculated for each segment, and the logarithm of this ratio is taken. Finally, 

the expected value of the logarithm of the R/S ratio is calculated and divided by the 

logarithm of the time scale (n), resulting in the Hurst parameter. 

The Hurst parameter calculation is a critical step in the anomaly detection of the 

Morris Power dataset. Using the Hurst parameter values obtained from the normal data 

as a threshold, the model can accurately distinguish between normal and abnormal 

behavior, providing a robust and effective approach for detecting anomalies. The Hurst 

parameter has proven to be a valuable tool in this study, enabling the model to detect 

anomalies with high accuracy and precision. 
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With the Hurst parameter calculation complete, the next step in the process is to 

build the DL model that will be used to analyze the images and detect anomalies. This 

study uses a CNN combined with an LSTM network to detect anomalies. The 

combination of these two networks provides a powerful approach for analyzing image 

data and detecting anomalies, leveraging the strengths of both networks to achieve 

improved performance. In the following section, the details of the CNN-LSTM model 

used in this study will be discussed in detail. 

 

3.5.3 CNN-LSTM Model 

 

The CNN-LSTM model architecture combines two separate networks: a CNN and an 

LSTM network. The CNN network helps to extract meaningful information from the 

input data, in this case, the network traffic data, by using multiple layers such as 

convolutional layers, activation functions, pooling layers, BN, dropout, and a flattened 

layer. 

 Batch Normalization (BN) is a technique that improves the training of deep 

learning models by addressing internal covariate shifts and stabilizing the learning 

process. It normalizes the activations within each layer, reducing the impact of changing 

input distributions during training. BN also acts as a form of regularization, mitigating 

the vanishing and exploding gradient problems. Overall, BN enhances training 

efficiency, improves model performance, and ensures a more stable and effective 

learning process.  

The LSTM network is designed to handle sequences of data and is used to 

capture any temporal relationships in the data. The LSTM network comprises multiple 

LSTM layers and a Dropout layer, which helps prevent overfitting during training. The 

final prediction is made by passing the output of the LSTM network through a dense 
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layer with softmax activation, which maps the outputs to a probability distribution over 

the different classes; see Table 3.1 for a summary of all layers.  

In summary, the CNN-LSTM model architecture uses a combination of a CNN 

and an LSTM to process traffic images and predict the abnormality. The CNN 

component extracts relevant features from the speech signals, while the LSTM 

component sequentially processes the features to capture temporal dependencies. 

 

Table 3.1 The Architecture of the CNN-LSTM 

 

Layer Output Shape 

conv2d_3 (Conv2D) (73, 73, 32) 

MaxPooling 2D (36, 36, 32) 

Flatten (41472) 

Reshape (1, 41472) 

LSTM (32) 

Dense (1) 

 

 

 

3.6 SUMMARY 

In the context of anomaly detection, this research advances the field by 

introducing a sophisticated approach tailored to the Morris Power dataset. Utilizing a 

combined CNN and LSTM architecture, the study presents a hybrid DL model 

designed to identify both spatial and temporal irregularities. The methodology is 

comprehensive. First, the Morris Power dataset is transformed into images using the 

DeepInsight package. This transformation allows for a visual representation, 

facilitating a deeper engagement with the DL model. This transformation process, 

from numerical data to pixels, offers an enhanced visualization of key features. 

Subsequently, the research integrates the Hurst parameter calculation. This 

statistical measure gauges the self-similarity of the data, serving as a threshold. By 

comparing deviations from the norm, encapsulated by the Hurst values, the model 
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gains a nuanced perspective to detect anomalies. At the core of the methodology is the 

hybrid DL model. The CNN component effectively extracts spatial features from the 

images, while the LSTM captures the temporal dynamics. This model is enhanced 

with dropout layers and batch normalization. Dropout layers prevent overfitting by 

ensuring the model remains versatile, while batch normalization accelerates the 

training process, addressing the challenges of internal covariate shift. 

The contributions and novelty are evident. The integration of the CNN-LSTM 

model, augmented with dropout and batch normalization, is a novel endeavor for 

network traffic data, especially post-image transformation. Employing the DeepInsight 

package for anomaly detection is a unique aspect of this study. Additionally, combining 

the Hurst parameter with DL methodologies signifies a pioneering approach, merging 

statistical techniques with the power of DL. In conclusion, this thesis provides an 

enhanced approach to anomaly detection. By synthesizing traditional statistical methods 

with advanced DL techniques, the research offers valuable insights and sets a precedent 

for future studies in this domain. 
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CHAPTER FOUR 
 

RESULTS AND DISCUSSION 
 

 

 

 

4.1 INTRODUCTION 

This chapter focuses on the results of the dataset analysis and the four experiments 

conducted to address the impact of dataset imbalance in developing a SCADA-based 

IDS. This chapter is organized as follows: Section 4.2 provides the result of the first 

objective: the detailed analysis of the SCADA datasets used to develop IDSs. Section 

4.3 discusses the outcome of the four experiments to tackle the SCADA imbalanced 

datasets. Section 4.4 discusses the open issues and challenges in developing SCADA-

IDSs with imbalanced datasets. Section 4.5 provides a summary of the results of this 

research. 

  

4.2 SCADA DATASETS ANALYSIS 

This section presents a detailed analysis of public intrusion datasets for SCADAs, 

focusing on how security researchers used them to develop an IDS, their results, and 

the effect of the dataset's drawbacks. According to (Kenyon, Deka, & Elizondo, 2020), 

the absence of relevant datasets is one of the major obstacles to improving IDS for 

industrial control systems. However, producing realistic datasets needed costly 

networked assets, specific traffic generators, and complicated design planning. The 

SCADA datasets are examined using a variety of criteria.  

• How a dataset in an IDS is cleaned, trained, and evaluated. 

• What are the outcomes of using the dataset to create IDSs for SCADAs?   

• The drawbacks of a dataset and how it affects the development of IDSs.  
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Furthermore, we address the constraints and issues associated with conducting 

security research using the datasets examined. Before discussing the results of the 

analysis, it is crucial to provide a brief explanation of key concepts in SCADA datasets. 

 

4.2.1 Critical Concepts in SCADA Datasets  

 

Generally, SCADA datasets are divided into two categories: a) real-world and b) 

simulated datasets. Real-world datasets refer to data collected from actual SCADA 

systems in the field. These datasets may include information about the operations of the 

SCADA system, such as the values of process variables, the status of equipment, and 

the commands issued by operators. Real-world datasets can be helpful in training and 

evaluating SCADA IDS because they provide a realistic representation of the types of 

data and events that an IDS might encounter in practice. Simulated datasets, on the other 

hand, are created artificially and are not based on real-world data. They may be used to 

test or evaluate SCADA IDS in a controlled environment. Simulated datasets can be 

helpful because they allow researchers to test the performance of an IDS under a variety 

of different conditions and configurations. However, it is essential to consider the 

limitations of simulated datasets and how well they represent the real-world conditions 

that an IDS might encounter (Choi, Yun, & Kim, 2019). 

The size of the dataset is regarded as a significant factor in determining the 

accuracy of an ML/DL model. Large datasets often improve classification performance, 

whereas small datasets may be overfitting (Althnian et al., 2021). Overfitting occurs 

when a classifier perfectly fits the training data but performs inadequately on 

invalidation and other data—detecting misleading patterns that will not reoccur in the 

future, resulting in less precise predictions. 
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The distribution of attacks in datasets is most likely the most challenging part of 

generating a SCADA dataset. If the attacks are not correctly executed, they might result 

in an invalid system representation or biases in the detection process (Conti, Donadel, 

& Turrin, 2021). The datasets used to develop an IDS should be balanced, which implies 

that the numbers of normal and abnormal records should be similar. Figure 4.1 depicts 

a balanced dataset, whereas Figure 4.2 depicts an imbalanced dataset. 

 

 

Figure 4.1 A balanced dataset from the NSL-KDD. 

 

 

 
 

Figure 4.2 An imbalanced dataset from KDD99 
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It is essential to mention that the likelihood of attacks over benign records in 

actual networks is generally relatively low, especially when record data is collected in 

mass quantity over periods. 

Unlike datasets generated through a testbed, attacks can be represented in 

various ways depending on the goals of the simulation and the capabilities of the 

SCADA IDS being tested. One way to represent attacks in simulated SCADA datasets 

is to inject anomalies or malicious events into the data. Another way to represent attacks 

in simulated SCADA datasets is to simulate the effects of a successful attack on the 

system. The characteristics of SCADA Datasets discussed in this research are described 

next. 

 

4.2.2 Characteristics of SCADA Datasets  

 

The main qualities of a SCADA dataset include the data type, whether it is actual 

SCADA data or simulated data generated through a testbed. The format of the data if it 

comes in CSV files or collected PCAP files. The protocols are one of the most critical 

features of the dataset, alongside the number of features, as the protocols used in a 

SCADA network can have significant implications for the system's security. Some 

standard protocols used in SCADA networks include Modbus, DNP3, TCP, UDP, 

HTTP, HTTPS, and ICMP. As discussed in Section 4.2.1, the size of the dataset plays 

a critical role in determining the performance of an ML/DL IDS model. The ANR is 

another critical quality in our research as it relates directly to the dataset imbalance 

issue.  

The ANR measures the balance between normal, benign, and malicious activity 

in a dataset. In SCADA datasets, ANR may refer to the ratio of normal data, like the 

process variables and the equipment status, to data representing an attack or other 



60 

malicious activity, such as abnormal values and unexpected commands. A dataset with 

a high ANR (a large proportion of attack data) may be more challenging for an IDS to 

analyze, as it may have more false positives (normal data incorrectly identified as attack 

data) or false negatives (attack data not detected). On the other hand, a dataset with a 

low ANR (a small proportion of attack data) may be less challenging for an IDS. Still, 

it may not provide as much information about its capabilities and limitations. Table 4.1 

shows these criteria found in the datasets discussed in our research. The following 

sections analyze Four publicly available datasets used in developing SCADA IDSs. 

 

 

Table 4.1 Characteristics of the SCADA datasets. 

 

Dataset Data Type Format Protocols Number 

of 

Features 

ANR 

% 
Size 
MB 

UNSW-

NB15  
Simulated 

Network Data 
CSV TCP, 

UDP, 

ICMP 

49 14.5 687.2 

CICIDS2017  Simulated 

Network Data 
CSV HTTP, 

HTTPS, 

SSH, FTP, 

Email 

83 19.98 51,100 

KDD99  Network Data CSV TCP, 

UDP, 

ICMP 

42 67.6 743 

NSL-KDD  Network Data CSV TCP, 

UDO, 

ICMP 

41 87.06 18 

ISCX2012  Simulated 

Network Data 
PCAP, 

CSV 
HTTP, 

HTTPS, 

FTP, SSH, 

and email 

80 NA 78,600 

Morris Gas 

Pipeline 
Network data CSV Modbus 12 2.75 47 

Morris 

Power 

System 

Field data and 

device logs 
CSV 

and 

ARFF 

Modbus 128 245 231 

Bot-IoT 

(5%) 
Network Data PCAP, 

CSV 
TCP, 

UDP, and 

HTTP 

29 768,980 1070 

ICS cyber 

testbed 

Simulated 

Network Traffic 

Data 

CSV S7,TCP, 

ARP, 

Telnet, 

16 126 13.5 
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industrial 

OT dataset 
ICMP, and 

HTTP 

 

 

 

4.2.3 Morris Gas Pipeline Dataset Analysis 

This dataset is a corpus of marked RTU telematics streams generated by a gas pipeline 

system stored at Mississippi State University's Critical Infrastructure Protection Center 

in 2011 (Morris, Vaughn, & Dandass, 2011). There are 14 different files in this dataset; 

see Table 4.2 for an overview of the content of these files. The dataset contains records 

of command injection attacks, response injection attacks, and normal operation 

scenarios (Beaver, Borges-Hink, & Buckner, 2013).  

 

Table 4.2  Description of files containing the Morris Gas Pipeline dataset. 

 

File Name Description  

AddressScanScrubbedV2.csv Scanning the whole network by 

sending packets with addresses. 

FunctionCodeScanScrubbedV2.csv A scan to find the function codes. 

IllegalSetpointScrubbedV2.csv Modifying the value of the pipeline 

pressure. 

modbusRTU_DoSResponseInjectionV2.csv Normal RTU communication and 

DoS attacks 

MulticlasCommandInjectionV2.csv Combination of normal command 

packets and command attacks  

MulticlassResponseInjectionV2.csv Combination of normal response 

packets and response attacks 

PIDmodificationScrubbedV2.csv Modifying the values of the PLCs in 

the control loop. 

scrubbedBurstV2.csv Sending a single value multiple times 

at once to the pipeline pressure. 

scrubbedFastV2.csv Sending different values successively 

to the pipeline pressure. 

scrubbedNegativeV2.csv Setting a negative value for the 

pipeline pressure is invalid. 

scrubbedSetpointV2.csv Sending incorrect value equal to the 

setpoint value. 
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scrubbedSingleV2.csv Following an accurate response with 

a fraudulent one in which the gas 

pipeline value is manipulated to trick 

the PLC control loop. 

scrubbedSlowV2.csv Creating a lack of confidence in the 

control loop by sending different 

values to the pipeline pressure 

slowly. 

scrubbedWaveV2.csv Deceiving the control loop by 

sending fluctuating values to the 

pipeline pressure. 

 

 

 

 

Figure 4.3 (a) Command Injection, (b) DoS Dataset, (c) Response Injection, (d) 

Multiclass. 

 

 

 

The collection consists of network data in CSV format, a) Command Injection 

dataset, b) Denial of Service (DoS) dataset, c) Command Injection dataset, and d) 

Multiclass dataset. Figure 4.3 shows the class distribution in the Morris Gas Pipeline 
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datasets; from these figures, these datasets are not balanced. The Modbus 

communication protocol is used in the dataset, including RTU and ASCII. The Morris 

Gas Pipeline dataset comprises Modbus protocol interactions between the controlling 

system and the HMI. The total number of normal records is 140,382, 97.32%, whereas 

the total number of attack records is just 3,867, 2.68% (Choi et al., 2019). These 

numbers indicate that this dataset is not balanced, and the detection result might be 

biased. 

 

4.2.3 Morris Power System Dataset Analysis 

 

Uttam Adhikari, Shengyi Pan, and Tommy Morris generated the Morris Power System 

dataset in 2014 in partnership with Borges and Justin Beaver from Oak Ridge National 

Laboratories' Raymond (ORNL) (C et al., 2014). It includes 37 power system event 

instances considering the number of Intelligent Electronic Devices (IEDs) in operation 

and normal/abnormal occurrences in the power grid testbed. These events are generated 

by different power control system devices such as IEDs, generators, and breakers. In 

addition to the switches and routers, which are network devices. The data is a 

combination of field device measurement and device logs. It consists of three datasets: 

a) binary dataset, b) three-class dataset, and c) multiclass dataset. The number of attack 

records is relatively high in the binary dataset, 55,663, around 71.02% of the total 

records, which is not balanced, as shown in Figure 4.4a. 

Meanwhile, the normal operation records are 22,714, 29.98% (Choi et al., 2019). 

For the three-class dataset, the classes are also not balanced, with more than 71% of the 

data being attack scenarios, 23% for Natural operations, and 6% for NoEvents, see 

Figure 4.4b. In the multiclass dataset, nearly half of the records are Relay Setting 

Change attacks, as illustrated in Figure 4.4c.  
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Figure 4.4 (a) Binary, (b) Three-class, (c) Multiclass. 

 

 

4.2.4 Bot-IoT Dataset Analysis 

 

Although it is an IoT dataset, analyzing and studying it for the SCADA system can be 

very promising. According to (Menze, 2020), 2020 Kaspersky's recent report, IoT is 

expected to change the state of security in industrial control systems, as per 55% of 

enterprises (ICS). The Bot-IoT dataset was generated in 2018 by (Koroniotis, Moustafa, 

Sitnikova, & Turnbull, 2018) at the Research Cyber Range lab of UNSW Canberra, 

with around 73 million instances in the entire dataset. Bot-IoT was built on a testbed 

that included different virtual computers running different operating systems, network 

firewalls, network taps, the Node-red tool, and the Argus network security tool. The 

distribution of classes in the binary and multiclass datasets is shown in Figure 4.5. The 

IoT devices used to generate this dataset are a) weather stations, b) smart fridges, c) 

Motion-activated lights, d) remotely activated garage doors, and e) smart thermostats. 
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It comprises several sets and subsets that vary in data format, volume, and feature 

quantity (Peterson, Leevy, & Khoshgoftaar, 2021). This dataset mainly has three types 

of features: dependent, independent, and invalid. 

 

 

 

Figure 4.5 (a) Binary, (b) Three-class, (c) Multiclass 

 

 

 

Six invalid features in the datasets include pkSeqID, seq, time, time, 

saddr, and daddr. Using invalid features will result in misleading results; for 

example, source addresses in the dataset are private IP addresses. If an attack has been 

associated with such data, then the model would classify any such private IP as 

malicious data. 

 

4.2.5 CICIDS2017 Dataset Analysis 

 

The Canadian Cyber Security Institute collected and assembled the CICIDS2017 

dataset with the help of the B-Profile system at the end of 2017 (Sharafaldin et al., 

2019). The dataset contains 2,830,473 network traffic samples, with benign traffic 

accounting for 80.30 % and attack traffic accounting for 19.7%. The categories include 

the most prevalent attacks, such as DoS, DDoS, Botnet, PortScan, Web Attacks, etc. 

The dataset collects 84 features from the generated network traffic, with the multiclass 
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label being the last column. Furthermore, compared to publicly available datasets from 

1998 to 2016, this dataset fits the 11 performance evaluation criteria. Figure 4.6 depicts 

the CICIDS2017 record distribution for each class. 

 

 

Figure 4.6 The class distribution in the CICIDS2017 dataset. 

 

4.2.6 Issues in The Datasets 

 

We discovered significant flaws in the generalization of attacks and anomaly event 

categories and frequency in several datasets examined in this study. Another issue is the 

lack of clarity in the labeling and descriptions of the datasets. This can be seen in the 

Bot-IoT and Morris Gas Pipeline datasets. The Morris GSas Pipeline dataset is scattered 

across 14 files, as seen in Table 4.2. Similarly, the Morris power system dataset comes 

in 16 CSV files, and the Bot-IoT and SCADA cyber testbed industrial OT datasets 

consist of 4 CSV files for each.  

Another issue is the lack of description of the original data and the procedures 

and methodologies used to create it. As this definition implies, provenance is all about 

integrity, reliability, and repeatability, and it is critical for security researchers to fully 

understand the dataset and the environment in which it was formed (Rosa et al., 2019). 
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The date of event origination, the technique of event production, and the context in 

which the events were collected or produced are all unknown to these datasets.   

All the analyzed datasets do not consider insider threats in their design. They do 

not consider the attacker's relation to the system in the design of such datasets. This is 

mainly because of data collection privacy concerns and the difficulty of simulating the 

full scope of hacker activities and motives. Another argument is that including insider 

threats and providing the public with a realistic representation of the SCADAs will give 

attackers a clear picture of the system and expose system weaknesses. 

The lack of sustainability is another shortcoming of the datasets analyzed in this 

research. Datasets like the one developed by Morris in 2013 and 2014 aren't maintained 

or managed once deployed. The attacks and threats do not reflect reality, which is 

essential in a field where attack complexity is increasing regularly.  

Only two out of nine datasets in Table 4.1 included PCAP files, indicating that 

datasets like Morris Power System, Morris Gas Pipeline, NSL-KDD, KDD99, 

CICIDS2017, and UNSW-NB15 do not give the original data. This is necessary for 

security researchers to be able to reproduce the dataset features. They include only high-

level metadata, and crucial information such as timestamps, flow architecture, data 

flow, and protocol flags are frequently ignored. When comparing different IDS models, 

the absence of these features is a substantial roadblock. 

An imbalanced dataset has a substantially lower number of samples from one 

class than the other. Almost most of these datasets include more normal data than 

attacks. As you can see in Section 4.2, almost all the datasets are imbalanced. In some 

extreme cases, the dataset is 100% attack scenarios, as in the Bot-IoT dataset; in such 

situations, the dataset cannot be used to train DL-based IDSs. 
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4.3 RESULTS OF DATASET IMBALANCE EXPERIMENTS 

This section shows the results of the four experiments conducted to address the dataset 

imbalance problem. First is the result of training the CNN-LSTM model with the 

imbalanced datasets (Morris Power System and CICIDS2017). Second, is the results of 

training the same model. However, the datasets are balanced using the under-sampling 

approaches. In the Third experiment, the training data is balanced with over-sampling 

techniques. A combination of the two sampling methods is used in the Fourth 

experiment.  

 

4.3.1 CNN_LSTM with Imbalanced Datasets 

 

Initially, we compared dataset performance without employing any balancing strategy. 

The datasets were divided into two groups for binary classification: benign and attack; 

this is illustrated in Table 4.3. While Figure 4.7 shows the accuracy across the different 

number of features. The Morris Power dataset's accuracy was the highest when the 

features containing the same value in more than 70% of the instances were removed. 

On the other hand, the accuracy of the CICIDS2017 datasets remains constant with 

different thresholds. However, accuracy is not the best measure to evaluate performance 

in intrusion detection scenarios with an imbalanced dataset. Because a large portion of 

training data is regular traffic, the algorithms are skewed toward estimating all data as 

usual and disregarding the small percentage of attack events. Figure 4.8 shows the 

precision, recall, and F1 score. 
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Table 4.3 The binary classification with CNN-LSTM 

 

Dataset 
No. of 

Records 
Type of Records 

No. of 

Classes 

Morris Power 72,073 
Normal and 

Attack 
2 

CICIDS 2017 1,161,344 
Normal and 

Attack 
2 

 

 

 

 

Figure 4.7 The accuracy with a different number of features 

 

 

Figure 4.8 Evaluation metrics for the imbalanced datasets 
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The CICIDS2017 performance metrics are much better than the Morris power 

dataset, with approximately 97% and 75% for the F1-score. We believe this is because 

the CICIDS2017 has a higher ANR and better dataset quality. After comparing four 

values for the variance threshold, we continued our research using the threshold of 70%. 

 

4.3.2 CNN_LSTM with Under-Sampling 

 

The second phase of our experiment is to sample the data using under-sampling 

techniques, initially balancing the CIC-IDS2017 dataset with Random Under-Sampling 

and CNN-LSTM. The selection of features was determined by ANOVA F-value, which 

selected the highest score. The dataset is balanced using under-sampling algorithms 

such as Random Under-Sampler (RUS), One-Sided Selection, and Near Miss algorithm. 

The data is then divided into training and testing segments with a 70:30 split. And then, 

the CNN-LSTM model is trained with balanced datasets.  

The results of balancing the Morris Power dataset are shown in Table 4.4. The 

attack class was cut by 35.3 % when a random under-sampler was used. The One-Sided 

Selection approach reduces the majority class by only 2.3 %. The Near Miss method 

produced the best results, reducing the attack class by half. This is because the Near 

Miss algorithm preserves the proximity of minority class instances. It selects instances 

from the majority class closest to those in the minority class. This approach aims to 

reduce class imbalance while preserving significant boundary instances. Table 4.5 

shows the binary classification result using the balanced Morris Power dataset. 

Although the random under-sampler produced a greater F1-Score than the other 

algorithms, the Near Miss approach produced a higher F1-Score, which is the primary 

metric in our research. The performance has improved by 9 % as compared to the 
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imbalanced dataset. The imbalanced dataset has an F1-Score of 57%, while the balanced 

dataset has an F1-Score of 66%. 

 

Table 4.4 Balancing Morris Power dataset with under-sampling 

 

Technique 
Before After 

Normal Attack Normal Attack 

Random 15,471 38,583 15,471 25,000 

One Sided 

Selection 
15,471 38,583 15,471 37,706 

Near Miss 15,471 38,583 15,471 19,338 

 

 

 

Table 4.5 Evaluation metrics for the Morris Power dataset with under-sampling. 

 

Technique ACC Precision Recall F1-Score 

Random 71.38 51 71 59 

One Sided Selection 70.91 50 71 59 

Near Miss 65.89 72.07 65.67 66 

 

Compared to the Morris Power dataset, the CICIDS2017 dataset is 18 times more 

prominent, and the sampling process took a long time. Tables 4.6 and 4.6 display the 

results of applying the under-sampling method to balance this large dataset. As far as a 

balanced dataset was concerned, the near-miss algorithm delivered the best results. To 

a maximum of 99.34 %, the model's performance is boosted by 2%. The random under-

sampler achieved 96 %, while the One-Sided Selection generated an F1-Score of 

97.67%. Overall, the performance of the CICIDS2017 datasets is excellent. 
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Table 4.6 Balancing the CICIDS2017 dataset with under-sampling 

 

Technique 
Before After 

Normal Attack Normal Attack 

Random Under 

Sampling 
652,757 218,251 250,000 218,251 

One Sided Selection 652,757 218,251 648,519 218,251 

Near Miss 652,757 218,251 291,001 218,251 

 

 

 

Table 4.7 Evaluation metrics for the CICIDS2017 dataset with under-sampling. 

 

Technique ACC Precision Recall F1-Score 

Random 96.65 94 98 96 

One Sided 

Selection 
97.34 96.62 98.04 97.67 

Near Miss 99.25 99.44 99.25 99.34 

 

 

4.3.3 CNN_LSTM with Over-Sampling 

 

This section describes the third experiment, which only used over-sampling approaches 

to balance the datasets. Random Over-Sampler (ROS), Synthetic Minority Overs-

Sampling Technique (SMOTE), and Adaptive Synthetic Sampling are the algorithms 

used to balance the data (ADASYN). The remaining steps are the same as detailed in 

section 4.3.2.  

Table 4.8 displays the outcomes for the Morris Power dataset; employing ROS, 

the minority class is doubled in size. SMOTE oversamples the normal class, resulting 

in a nearly balanced dataset. ADASYN performed well when over-sampling the 
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minority category but did not perform optimally. In terms of performance, the accuracy 

of all algorithms is around 71%. The difference is evident in the other metrics; for 

example, the SMOTE algorithm performed best in the F1-Score, scoring 64%; the 

detailed findings are shown in Table 4.9. 

 

Table 4.8 Balancing Morris Power dataset with over-sampling. 

 

Technique 
Before After 

Normal Attack Normal Attack 

Random 15,471 38,583 30,866 38,583 

SMOTE 15,471 38,583 34,724 38,583 

ADASYN 15,471 38,583 32,425 38,583 

 

 

 

Table 4.9 Evaluation metrics for the Morris Power dataset with over-sampling. 

 

Technique ACC Precision Recall F1-Score 

Random 
71 51 71 59 

SMOTE 
70 65 70 64 

ADASYN 
71.37 64 71 61 

 

 

 

In the CICIDS2017, the SMOTE algorithm outperformed ROS and ADASYN 

in over-sampling the minority class; Table 4.10 provides the actual values. Table 4.11 

displays the outcome of the CNN-LSTMM binary classification with the oversampled 

dataset. The accuracy declined from 99.40 % when SMOTE was used to 93.62 % when 

ADASYN was used, and the F1-Score dropped from 99.46 % to 93.25 %. The drop in 
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performance when using ADASYN oversampling in anomaly detection with a CNN 

model is due to several factors, including:  

1. Synthetic instances from ADASYN can introduce noise, confuse the model, 

and hinder its ability to distinguish between normal and abnormal patterns.  

2. ADASYN's effectiveness relies on diverse and representative minority class 

instances; otherwise, the generated synthetic instances may not accurately 

represent true anomalies, leading to decreased performance.  

3. ADASYN can also distort decision boundaries if synthetic instances are not 

well-distributed or aligned with true anomalies, impacting the model's 

ability to detect subtle deviations.  

4. There is an increased risk of overgeneralization, resulting in higher false 

positive rates and negatively affecting precision, recall, and F1-score 

metrics.  

 

Table 4.10 Balancing CICIDS2017 dataset with over-sampling. 

 

Technique 
Before After 

Normal Attack Normal Attack 

Random 652,757 218,251 652,757 476,512 

SMOTE 652,757 218,251 652,757 522,205 

ADASYN 652,757 218,251 652,757 457,547 

 

 

Table 4.11 Evaluation metrics for the CICIDS2017 dataset with over-sampling. 

 

Technique ACC Precision Recall F1-Score 

Random 99.63 99.04 99.78 99.41 

SMOTE 99.47 99.43 99.49 99.46 

ADASYN 93.62 92.37 99.18 93.25 
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4.3.4 CNN_LSTM with Hybrid-Sampling 

 

The fourth and final experiment balanced the datasets using under-sampling and over-

sampling methods. As shown in Table 4.12 for the Morris Power dataset's first coupled 

algorithm, SMOTE and Near-Miss. This method succeeded in balancing the Morris 

Power dataset. The detailed values for the evaluation metrics are provided in Table 4.13. 

The Morris Power dataset significantly reduced accuracy from 75% to 59%. 

 

Table 4.12 Balancing Morris Power Dataset with Hybrid Sampling 

 

Technique 
Before After 

Normal Attack Normal Attack 

SMOTE & Near Miss 15,471 38,583 27,008 31,774 

ADASYN & Near 

Miss 15,471 38,583 33,252 23,277 

 

Table 4.13 Evaluation metrics for the Morris Power dataset with hybrid sampling. 

 

Technique ACC Precision Recall F1-Score 

SMOTE & Near Miss 
66.69 60 67 62 

ADASYN & Near Miss 
69.47 56 69 59 

 

 

 

On the other hand, the result of balancing the CICIDS 2017 with a hybrid 

technique is shown in Table 4.14. The performance of the binary classification model 

decreased. A roughly similar result is obtained when ADASYN is combined with the 

near-miss algorithm for hybrid balancing. The detailed values for the evaluation metrics 

are provided in Table 15. In the CICIDS 2017, accuracy decreased from 93.44% to 

89.84%. 
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Table 4.14 Balancing the CICIDS2017 dataset with hybrid sampling. 

 

Technique 
Before After 

Normal Attack Normal Attack 

SMOTE & Near 

Miss 
652,757 218,251 559,505 391,654 

ADASYN & Near 

Miss 652,757 218,251 396,819 277,466 

 

 

Table 4.15 Evaluation metrics for the CICIDS2017 dataset with hybrid sampling. 

 

Technique ACC Precision Recall F1-Score 

SMOTE & Near 

Miss 
93.44 94.05 93 93.32 

ADASYN & Near 

Miss 89.84 90.15 89.36 89.58 

 

4.4 RESULTS OF ANOMALY DETECTION WITH SELF-SIMILARITY 

The results of the transformation of the Morris Power dataset into image representations 

and the subsequent analysis utilizing DeepInsight are presented in this section. A sample 

of normal traffic packet data has been transformed and depicted in Figure 4.9, while 

Figure 4.10 displays a sample of attack data. The visual comparison of these images 

reveals that there is an increase in the pixel intensity in the top right corner of the attack 

data image (Figure 4.10). 

These image representations of the Morris Power dataset were also utilized to 

detect anomalies and classify the data into normal or attack classes. The Hurst parameter 

calculation was also performed on the dataset to further aid anomaly detection. The 

results of the Hurst parameter calculation are discussed next. 
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Figure 4.9 Example of the normal packet in the Morris Power dataset converted into 

an image. 

 

 

 

 

Figure 4.10 Example of an attack packet in the Morris Power dataset converted into an 

image. 

 

 

The dataset underwent a thorough conversion and was divided into three 

directories: Natural, Attack, and Test. To evaluate the statistical self-similarity of the 

images, the Hurst parameter has been calculated for each image within each of these 

directories. 
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The Hurst parameter for images in the Natural folder is a benchmark for 

determining the "abnormal" behavior threshold. The Hurst parameter of the images in 

the Attack and Test folders has been determined accordingly, and the images within the 

Test folder have been classified as "abnormal" if their Hurst parameter falls below the 

established threshold. 

The analysis of the Hurst parameters for the Attack and Natural data has been 

visualized in Figure 4.11, providing an in-depth look at the Mean, Min, and Max values. 

Figure 4.12 compares the Hurst parameters of the Natural and Attack data, 

comprehensively evaluating the differences between the two datasets. Finally, Figure 

4.13 presents a histogram comparison between the Natural and Attack data against all 

data, offering a graphical representation of the distribution of Hurst parameters for each 

category. 

This systematic and data-driven approach allows for a robust evaluation of the 

Hurst parameter, providing a quantitative measurement of the statistical self-similarity 

of the images and facilitating the classification of "abnormal" behavior.  
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Figure 4.11 Statistical measures for the Hurst values calculated for the Morris Power 

Dataset. 

 

 

 

 

 

Figure 4.12 Comparison of Hurst parameters for Natural vs. Attack traffic images in 

Morris Power Dataset 
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Figure 4.13 Comparison of Hurst parameters for Natural vs. Attack traffic images in 

Morris Power Dataset. 

 

 

 

 

 

Figure 4.14 Evaluation Metrics of Hurst IDS using Morris Power Dataset. 

 

 

 

The anomaly detection results using the CNN-LSTM model are presented in 

Figure 4.15. This figure comprehensively evaluates the model's performance, including 

accuracy, precision, recall, and F1-score, which are widely used metrics in ML and 

computer vision. From the bar chart, the CNN-LSTM model has achieved high 

performance in detecting network traffic anomalies. 

A combination of the Hurst detector and the CNN-LSTM model is employed to 

enhance the performance further. BN and dropout layers are used to enhance the CNN-

LSTM model. The Hurst detector is used to identify any abnormal network traffic data, 

and then the detected data is passed to the CNN-LSTM model for double confirmation. 

This combined approach improves the overall accuracy and robustness of the system, 

making it more effective in detecting network anomalies. 
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Figure 4.15 Evaluation Metrics of CNN-LSTM IDS using Morris Power Dataset. 

 

The hybrid model that combines self-similarity with the Hurst parameter and the 

CNN-LSTM model achieved outstanding results in detecting anomalies in network 

traffic data. As shown in Figure 4.16, the model achieved perfect accuracy, precision, 

recall, and F1-score. It effectively identifies abnormal traffic patterns with high 

accuracy and low false positive and false negative rates. This is a testament to the 

model's ability to effectively integrate the Hurst parameter's ability to detect long-range 

correlations in network traffic data and the CNN-LSTM's capacity to learn spatial and 

temporal dependencies from image-based network traffic data. These results 

demonstrate the effectiveness of this hybrid approach in detecting anomalies in network 

traffic and highlight the importance of considering both statistical and neural network-

based approaches in network traffic analysis.  
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Figure 4.16 Evaluation Metrics of Hybrid Self-similarity and CNN-LSTM IDS using 

Morris Power Dataset. 

 

 

4.5 OPEN ISSUES AND CHALLENGES 

The dataset is the backbone of the development of an IDS. Therefore, a well-designed 

IDS model requires a well-designed dataset. The dataset is usually generated through a 

testbed or a real-time collection of a running SCADA system. In the case of a testbed, 

the dataset should fully describe the architecture and the behavior of the testbed. Since 

most current IDS models are based on supervised learning techniques, the labeling 

procedure must be fully described in the dataset's documentation for researchers to act 

accordingly. Moreover, the label should include the attack type and phase, which is 

crucial for the recovery process after an attack. A system may consider this part of the 

attack if it is not accurately labeled as a recovery.  

Furthermore, to allow for simple and efficient usage of the dataset, the dataset 

should include a clear and comprehensive description of the testbed architectural design 

and a thorough description of the dataset characteristics. One of the critical metrics for 

evaluating a dataset should be its documentation. System settings, assumptions, and an 
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extensive explanation of the attacks included in the testbed are just a few of these 

features. 

Another challenge of developing an IDS with imbalanced datasets is that there 

is no systematic method of selecting which DL model to use because each has its own 

set of characteristics that make it ideal for application. All the papers produced an 

acceptable deep-learning method. Although each paper is evaluated with different 

metrics like accuracy, recall, and F1 score, the classification model's evaluation process 

is not standard. This makes it difficult to compare two approaches to the same problem. 

A straightforward procedure for the assessment of a DL classification algorithm is 

required. 

While the results achieved by the hybrid model are impressive, it is essential to 

note that overfitting remains a possibility. Overfitting occurs when a model performs 

well on the training data but poorly on unseen data.  

 

4.6 SUMMARY 

IDS are essential tools for protecting critical infrastructures, such as the industrial 

control systems used in SCADA networks. However, developing an IDS for a SCADA 

system can be challenging, mainly when dealing with imbalanced datasets. Several 

approaches can be taken to address the issue of imbalanced datasets in developing an 

IDS for a SCADA system. One approach is to use under-sampling or oversampling 

techniques to balance the dataset. Under-sampling involves reducing the number of 

instances in the majority class, while over-sampling involves generating synthetic 

instances of the minority class.  
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Figure 4.17 The F1-score and accuracy of both datasets in all four experiments. 

 

The overall result is shown in Figure 4.9, and it is clear from the pattern that 

when using the Morris Power dataset, the CNN-LSTM model performs quite modestly. 

This is due to the dataset's small size, only around 72,000. The outcome may differ if 

an ML algorithm is used. DL techniques, however, need a more extensive dataset. The 

results using the imbalanced CICIDS2017 dataset were satisfactory. When over-

sampling is used exclusively, the best outcome is obtained. Figure 4.9 demonstrates that 

the hybrid-sampling method did not produce reliable outcomes. This is because the 

dataset is distorted by removing records from the majority class and adding fake data to 

the minority class.  

This research enhanced the CNN algorithm by balancing the Morris Power 

System and CICIDS2017 datasets. The results shown in Figure 4.9 indicated a slight 

improvement in the F1-Score for both the Morris Power dataset and the CICIDS2017 

dataset. 
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CHAPTER FIVE 
 

CONCLUSION 
 

 

 

This section provides the conclusions of this research and the recommendations for 

future research. Because it is directly tied to real life, SCADA security is a contentious 

issue in ongoing security research. On the topic of developing resilient and reliable 

IDSs, this work offers a thorough investigation of the publicly available SCADA 

datasets. The research provides conclusions and recommendations on SCADA security 

and developing reliable and resilient intrusion detection systems. The results show that 

the security of SCADA systems requires a well-designed measure, and the integration 

of advanced technology and algorithms can improve their security. The study presents 

a novel combination of the Hurst Detector and the CNN-LSTM model to detect network 

anomalies, which showed exceptional performance and demonstrated the effectiveness 

of multi-model analysis in network security. Additionally, a comprehensive security 

strategy is essential to deploying intrusion detection sensors, signature-based and 

anomaly-based detection methods, secure communication protocols, and robust 

authentication and authorization processes. With continued research and development, 

the integration of cutting-edge technologies and a comprehensive security strategy will 

ensure the future of SCADA systems is more secure and resilient.  

The future of SCADA security is bright with the advancement of technology and 

artificial intelligence. The results of this study on network traffic anomaly detection 

have demonstrated the potential for improving SCADA security through advanced 

algorithms and innovative approaches. With continued research and development, we 

can expect the integration of cutting-edge technologies like Zero-Knowledge Proof 



86 

(ZKP), Privacy by Design (PbD), blockchain, graph-based techniques, and stable 

diffusion models to enhance the security of SCADA systems further. 

By incorporating additional network traffic features and exploring alternative 

neural network architectures, such as CNNs and RNNs, the performance of anomaly 

detection models will continue to improve. Integrating unsupervised learning 

techniques like autoencoders and clustering algorithms will also play a crucial role in 

enhancing the overall performance of these models. 

In addition, a comprehensive security strategy that includes deploying IDS 

sensors, using signature-based and anomaly-based detection methods, secure 

communication protocols, and robust authentication and authorization processes will be 

essential in keeping SCADA systems secure. Network segmentation and access control 

will also help limit the spread of cyber-attacks and make it more challenging for 

attackers to access sensitive system areas. 

As cyber threats continue to evolve, staying updated with the latest information 

and trends is crucial to defend against them effectively. By combining cutting-edge 

technology with a comprehensive security strategy, we can look forward to a future 

where SCADA systems are more secure and resilient than ever. 
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