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ABSTRACT

3D printing is one of the additive manufacturing technologies that has widely been used
in the automotive and manufacturing industry. Polylactic acid (PLA) is one of the
materials used in 3D printing, made up of linear polymeric structure, that resulted in
lower mechanical properties compared to other polymer materials used such as
polyamide (PA), acrylonitrile butadiene styrene (ABS), and polycarbonate (PC). The
reinforcement of lignin into PLA is not only capable to improve its stiffness but also
provides thermal stability and antioxidant properties in PLA/lignin biocomposite.
However, the interfacial adhesion between PLA and lignin had reduced the tensile
strength and elongation at break of this biocomposite. Hence, this study aimed to utilize
the lignin from oil palm empty fruit bunch (OPEFB) by dioxane-based extraction in
PLA/lignin biocomposite. A dioxane-based extraction method is one of the solvent
extraction processes capable to extract the native structure of lignin from lignocellulosic
biomass. OPEFB was used as the source of lignin due to its availability in South East
Asia (SEA). The lignin extraction process was optimized by using one-factor-at-time
(OFAT) and response surface method (RSM) optimization. The factors that been
optimized were temperature (range: 70 to 90°C), dioxane concentration (range: 90 to 97
%(Vv/v)), solvent/solid ratio (range: 6 to 10 ml/g), hydrochloric acid concentration
(range: 0.1 to 0.5 M) and retention time (range: 40 to 140 min). The optimized factors
were further used to extract lignin for PLA/lignin biocomposite. The PLA/lignin
biocomposite samples were prepared with a lignin content of 0.5, 1.0, 1.5 and 2.0 wt%
in filament and 3D printed form. The highest extraction yield of lignin was 10.64% by
using 1,4-dioxane with 0.1M of hydrochloric acid (HCI) as an acid catalyst at 90°C and
10 ml/g of solvent/solid ratio for 140 minutes. The extracted lignin consisted of 92% of
acid-insoluble lignin and 0.1% of acid-soluble lignin. The Fourier-transform infrared
(FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the release of
lignin with low contamination of cellulose and hemicellulose. Apart from that, lignin
from OPEFB showed an additional carbonyl group in the chemical structure of lignin.
Thermogravimetric analysis (TGA) showed that the extracted lignin started to degrade
around 200°C. The Young’s modulus had increased 27% after the reinforcement of 0.5
wt% of lignin (PLALO.5) compared to PLA. No reduction in tensile strength and
elongation at break was observed during the tensile test. Lignin also acted as a
nucleation crystallization agent, which could increase the crystallinity of PLA/lignin
biocomposite and provide mechanical strength. The differential scanning calorimetry
(DSC) confirmed that the crystallinity of PLA/lignin biocomposite was increased only
after 1 wt% of lignin reinforcement (PLAL1.0). The 3D printing that involved the
melting and cooling process further improved the degree of crystallinity (Xc) of
PLALL1.0. Hence, the PLAL1.0 was selected as the best lignin content into PLA with
the highest value of Young’s modulus of 2.14 GPa. Also, no interlayer adhesion was
observed in 3D printed PLAL1.0. The lignin from OPEFB by dioxane-based extraction
successfully increase the stiffness without any reduction in the ductility of PLA for 3D
printing application.
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CHAPTER ONE
INTRODUCTION

11 BACKGROUND OF STUDY

3D printing gains huge interest as an additive manufacturing technology in
recent years. 3D printing is a creation of a physical object, designed by a graphical
construction of computer-aid design and built with successive addition of material
(Shahrubudin et al., 2019). First developed by Charles W. Hull in 1986 with the name
of stereolithography, now 3D printing is also used in medical applications (Maroulakos
et al., 2019). Among the medical applications that use 3D printing are bone
reconstruction, rehabilitation, and regeneration (Maroulakos et al., 2019). In the
manufacturing industry, 3D printing outputs are used as prototypes before proceeding
with real production (Attaran, 2017). Low-melting-point polymers such as polylactic
acid (PLA), polyamide (PA), acrylonitrile butadiene styrene (ABS), and polycarbonate
(PC) are used as materials in 3D printing. Among them, PLA has been used widely as
it is a toxic-free chemical and it does not cause any irritation on human sensitive skin
(Z. Liuetal., 2019). The biodegradability of PLA also has been taken into consideration

in material selection due to environmental preservation (Z. Liu et al., 2019).

However, the mechanical strength of the PLA could become a limitation
compared to other polymeric materials in 3D printing (Z. Liu et al., 2019). This was due
to the simple linear molecular structure of PLA, meanwhile, ABS, PA, and PC contain
aromatic and branched graph structures (Z. Liu et al., 2019). Hence, composite studies
with the reinforcement of potential filler have been performed to overcome this

limitation. PLA biocomposite has been studied for years to increase the selectivity of



using biodegradable PLA in 3D printing (Ishii et al., 2018; Matsuzaki et al., 2016;
Palmero et al., 2018). The potential use of lignin from the lignocellulose as a filler in
the composites can increase the mechanical strength of PLA (Zhang et al., 2019). This
is because lignin has an aromatic structure to support the linear structure of the PLA
and improve the stiffness in the PLA/lignin biocomposite material (Bajpai, 2018; Z. Liu
et al., 2019). Not only that, the reinforcement of lignin into PLA also could provide
thermal stability and antioxidant properties in the PLA/lignin biocomposite
(Dominguez-Raobles et al., 2019; Mimini et al., 2019). Also, lignin is the second most
abundant renewable polymer that could be obtained from biomass and agricultural

waste (Yearla & Padmasree, 2015).

In the previous studies, several methods have been developed to extract the
lignocellulose from the biomass. Among the solvent extraction methods used were
alkaline treatment, deep eutectic solvent (DES) treatment, and organosolv treatment
(Tianetal., 2017). It is important to take note that, the different types of lignin extraction
processes could provide a different structure of lignin for its potential usage (Tang et
al., 2020). Oil palm empty fruit bunch (OPEFB) is one of the available lignin sources
in South East Asia (SEA) that could be used in the extraction of lignin (Hamzah et al.,
2019). OPEFB waste is made of dry matter such as cellulose, hemicellulose, and lignin.
Maryana et al. (2019) stated that OPEFB contains 15.36% lignin, 20.27%
hemicellulose, 42.56% cellulose, and 21.10% water-soluble compound. The complex
matrix of lignocellulose in plant function as a support for plant structure and as a defense
mechanism from pathogens (Cragg et al., 2015). With high lignocellulose content, the
handling of OPEFB waste must be managed properly. Improper handling of OPEFB

could lead to anaerobic digestion and the release of toxic gases toward the surrounding



area (Muna et al., 2019). In conjunction with that, the complex lignocellulose structure
from OPEFB is favorable for re-use as filler in composite material and various other
applications. The use of OPEFB in lignin extraction process also one of the sustainable

methods to reduce the agricultural waste produced.

1.2 PROBLEM STATEMENT

Although the reinforcement of lignin into the PLA could provide a wide
advantage, poor interfacial adhesion between the lignin and PLA had limited the
mechanical strength of this biocomposite (Hong et al., 2021). Even with the increment
of Young’s modulus, the elongation at break and tensile strength were reduced after the
reinforcement of lignin into PLA (Gkartzou et al., 2017). The hydroxyl content in the
chemical structure of lignin is the factor in the poor interaction between the PLA and
lignin (Hong et al., 2021; Obielodan et al., 2019). Different types of extraction processes
could provide different yields and structures of lignin that would cater toward its various
applications (Tang et al., 2020). Another approach was used in this study, where 1,4-
dioxane had been used as an extraction solvent in the lignin extraction process from
OPEFB. The extraction using 1,4-dioxane could extract the native structure of lignin
from lignocellulosic biomass with low carbohydrate contamination (Lu et al., 2017,
Saha et al., 2019). With low contamination of cellulose and hemicellulose, dioxane-
based extraction could reduce hydroxyl content in lignin. However, the extraction
method using dioxane has not been reported on OPEFB as a raw material for the
extraction of lignin. Hence, an optimization process was needed to extract the highest
yield of lignin from OPEFB by using 1,4-dioxane, followed by the characterization of

lignin.



Apart from that, high lignin content was not in favor of a better mechanical
strength of PLA/lignin biocomposite. The higher the lignin content, the Young’s
modulus of PLA/lignin biocomposite begins to drop (Gkartzou et al., 2017). The lignin
content below 5 wt% was recommended to provide a better Young’s modulus of this
biocomposite material (Obielodan et al., 2019). In conjunction with that, the
reinforcement of lignin lower than 5 wt% was used in this study for the PLA/lignin
biocomposite. Also, the tensile test for PLA/lignin biocomposite was prepared in
filament and 3D printed form. Surface morphology and thermal/crystallization analysis
also could provide a better understanding of the interaction of lignin and PLA in

PLA/lignin biocomposite.

1.3 IMPORTANCE OF STUDY

In the current study, PLA/lignin biocomposite for 3D printing was done on
different types of lignin (Mimini et al., 2019). Among the problem encountered was the
reduction in ultimate strength and elongation at break due to the poor surface adhesion
between PLA and lignin (Hong et al., 2021). Hong et al. (2021) stated that lignin-
reinforced biocomposite is still a challenge in the production of polymer filaments.
Theoretically, lignin is hydrophobic and could blend well with other hydrophobic
materials such as PLA (Patel & Parsania, 2018). In conjunction with that, the selection
of the lignin extraction method is crucial since it affects the structure of the extracted
lignin. 1,4-dioxane could extract the lignin without any major modification on the
microstructure of lignin during the extraction process (Lu et al., 2017). The
reinforcement of lignin from OPEFB extracted by 1,4-dioxane into PLA for 3D printing
at low lignin content was a novelty of this study, which could potentially promote the

use of non-toxic biomaterial for 3D printing.



As the extraction process could affect the properties of the extracted lignin, most
studies tried to find the best method of the lignin extraction process. From the selection
of the most suitable extraction solvents, the extraction of lignin has evolved to a two-
stage treatment to achieve the optimum extraction process (Lu et al., 2017). Apart from
the extraction process, the types of lignocellulosic biomass could also affect the quality
of the lignin. The extraction of lignin in various types of lignocellulosic biomass has
been conducted in many studies (Karmanov et al., 2020; Li et al., 2017; Zhang et al.,
2020). In Malaysia, OPEFB is one of the lignocellulosic biomasses frequently been used
as a source for lignin extraction. This is due to the availability of OPEFB in Malaysia
as the second-largest contributor in CPO production. Lignin from OPEFB also had been
extracted with various types of solvents, such as alkaline soda and ethanol organosolv
(Tian et al., 2017). This study had utilized another organic solvent, 1,4-dioxane in the

extraction of lignin from OPEFB with HCI as an acid catalyst.

1.4  RESEARCH OBJECTIVES

The objectives of this study are as follow:

1. To optimize the lignin extraction process from OPEFB using 1,4-dioxane
as extraction solvent to gain a high extraction yield.

2. To analyze the extracted lignin by morphology, spectroscopy, and
thermogravimetric analysis.

3. To study the effect of lignin from dioxane-based extraction in PLA/lignin
biocomposite as a filament and 3D printed sample with the lignin content

of 0.5, 1.0, 1.5, and 2.0 wt%.



15  SCOPE OF STUDY
This study focused on optimization of the lignin extraction process by using 1,4-dioxane
from OPEFB to gain a high yield of lignin for the preparation of PLA/lignin

biocomposite material in 3D printing.

i.  Lignin extraction
The process utilized 1,4-dioxane as an extraction solvent in extracting lignin from
OPEFB. The optimization technique had been done which included several factors such
as temperature (range: 70 to 90°C), the concentration of dioxane (range: 90 to 97
%(v/V)), the concentration of HCI (range: 0.1 to 0.5 M), retention time (range: 40 to 140
min) and solvent/solid ratio (range: 6 to 10 ml/g). The factor level for optimization was
taken from the previous treatment with a different kind of lignocellulosic biomass. The
optimization techniques used were one-factor-at-a-time (OFAT) and response surface

method (RSM) toward the response, extraction yield (%).

ii. Characterization
The properties of the extracted lignin were characterized for its morphology,
spectroscopy, and thermogravimetric analysis. Morphology analysis on scanning
electron microscopy (SEM) of extracted lignin was performed. Spectroscopy analysis
was undertaken to determine the functional group present in the extracted lignin by
using Fourier-transform infrared (FTIR) spectroscopy. The thermogravimetric analysis
(TGA) observed the degradation behavior of the extracted lignin with increasing

temperature.

iii. PLA/lignin biocomposite
The extracted lignin was reinforced into the PLA in the preparation of PLA/lignin

biocomposite material. The samples were prepared in filament and 3D printed form



with various lignin content at 0.5, 1.0, 1.5, and 2.0 wt%. The universal testing machine
(UTM) was utilized to measure the tensile properties. The fracture surface was observed
by scanning electron microscopy (SEM) for morphology analysis. The PLA/lignin
biocomposite proceeded for thermal analysis. Thermogravimetric analysis (TGA)
observed the degradation behavior of PLA/lignin biocomposite filament with increasing
temperature. Differential scanning calorimetry (DSC) showed the glass transition (Tg),

crystallization (T¢), and melting temperature (Tm) of PLA/lignin biocomposite.

16 THESIS ORGANIZATION

This thesis was completed with five chapters. Chapter One was a brief
explanation of the background of the study which was related to 3D printing in additive
manufacturing. The benefits of use and limitation of PLA as a polymeric material in 3D
printing also have been discussed briefly. This chapter also explained the potential use
of lignin within OPEFB as a filler for biocomposite material in 3D printing. Problems
statements, objectives, scope, and importance of study were stated clearly in this

chapter.

In Chapter Two, the beneficial use of lignin compared to other lignocellulose
components for the PLA biocomposite study had been explained. Also, the current
problem regarding PLA/lignin biocomposite had been discussed. The structure of lignin
linkage in lignocellulose and its monomer was well illustrated in this chapter. Apart
from that, the availability of OPEFB in Malaysia and its neighboring countries was
explained thoroughly. The literature review on the different lignin extraction methods

and the outcomes from the previous study was discussed with its extraction mechanism.

The materials and apparatus used during the research were specified in Chapter

Three. The experimental procedure was described in detail on the preliminary treatment



