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ABSTRACT 

3D printing is one of the additive manufacturing technologies that has widely been used 

in the automotive and manufacturing industry. Polylactic acid (PLA) is one of the 

materials used in 3D printing, made up of linear polymeric structure, that resulted in 

lower mechanical properties compared to other polymer materials used such as 

polyamide (PA), acrylonitrile butadiene styrene (ABS), and polycarbonate (PC). The 

reinforcement of lignin into PLA is not only capable to improve its stiffness but also 

provides thermal stability and antioxidant properties in PLA/lignin biocomposite. 

However, the interfacial adhesion between PLA and lignin had reduced the tensile 

strength and elongation at break of this biocomposite. Hence, this study aimed to utilize 

the lignin from oil palm empty fruit bunch (OPEFB) by dioxane-based extraction in 

PLA/lignin biocomposite. A dioxane-based extraction method is one of the solvent 

extraction processes capable to extract the native structure of lignin from lignocellulosic 

biomass. OPEFB was used as the source of lignin due to its availability in South East 

Asia (SEA). The lignin extraction process was optimized by using one-factor-at-time 

(OFAT) and response surface method (RSM) optimization. The factors that been 

optimized were temperature (range: 70 to 90ºC), dioxane concentration (range: 90 to 97 

%(v/v)), solvent/solid ratio (range: 6 to 10 ml/g), hydrochloric acid concentration 

(range: 0.1 to 0.5 M) and retention time (range: 40 to 140 min). The optimized factors 

were further used to extract lignin for PLA/lignin biocomposite. The PLA/lignin 

biocomposite samples were prepared with a lignin content of 0.5, 1.0, 1.5 and 2.0 wt% 

in filament and 3D printed form. The highest extraction yield of lignin was 10.64% by 

using 1,4-dioxane with 0.1M of hydrochloric acid (HCl) as an acid catalyst at 90ºC and 

10 ml/g of solvent/solid ratio for 140 minutes. The extracted lignin consisted of 92% of 

acid-insoluble lignin and 0.1% of acid-soluble lignin. The Fourier-transform infrared 

(FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the release of 

lignin with low contamination of cellulose and hemicellulose. Apart from that, lignin 

from OPEFB showed an additional carbonyl group in the chemical structure of lignin. 

Thermogravimetric analysis (TGA) showed that the extracted lignin started to degrade 

around 200ºC. The Young’s modulus had increased 27% after the reinforcement of 0.5 

wt% of lignin (PLAL0.5) compared to PLA. No reduction in tensile strength and 

elongation at break was observed during the tensile test. Lignin also acted as a 

nucleation crystallization agent, which could increase the crystallinity of PLA/lignin 

biocomposite and provide mechanical strength. The differential scanning calorimetry 

(DSC) confirmed that the crystallinity of PLA/lignin biocomposite was increased only 

after 1 wt% of lignin reinforcement (PLAL1.0). The 3D printing that involved the 

melting and cooling process further improved the degree of crystallinity (Xc) of 

PLAL1.0. Hence, the PLAL1.0 was selected as the best lignin content into PLA with 

the highest value of Young’s modulus of 2.14 GPa. Also, no interlayer adhesion was 

observed in 3D printed PLAL1.0. The lignin from OPEFB by dioxane-based extraction 

successfully increase the stiffness without any reduction in the ductility of PLA for 3D 

printing application. 
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البحث خلاصة  

تعد الطباعة ثلاثية الأبعاد إحدى تقنيات التصنيع بالإضافة التي تم استخدامها على نطاق واسع في مجال التصنيع 

( هو أحد المواد المستخدمة في الطباعة ثلاثية الأبعاد، ويتكون من PLAت. حمض البوليلاكتيك )وصناعة السيارا

هيكل بوليمري خطي، مما يؤدي إلى انخفاض خصائصه الميكانيكية مقارنة بالمواد البوليمرية الأخرى المستخدمة 

( PLA(. إنّ تقوية )PCبونات )(، والبولي كرABS(، وأكريلونيتريل بوتادين ستايرين )PAمثل البولي أميد )

باللجنين لا تقتصر على تحسين صلابته فحسب، بل توفر أيضاً ثباتاً حرارياً وخصائص مضادة للأكسدة في المركب 

( واللجنين قد قلل من قوة الشد والاستطالة PLAاللجنين(. ومع ذلك، فإن الالتصاق السطحي بين ) /PLAالحيوي )

وي. ومن هنا، هدفت هذه الدراسة إلى استخدام اللجنين المستخلص من العناقيد الفارغة عند الكسر لهذا المركب الحي

اللجنين(. وطريقة الاستخلاص المعتمدة  /PLA( باستخدام الديوكسان في مركب )OPEFBلثمار زيت النخيل )

للجنين من الكتلة  على الديوكسان هي إحدى عمليات الاستخلاص بالمذيبات القادرة على استخلاص البنية الأصلية

( كمصدر للجنين نظراً لتوافرها في جنوب شرق آسيا. OPEFBالحيوية اللجّنوسليلوزية. وقد استخدمت عناقيد )

( وطريقة التحسين: سطح OFATوتم تحسين عملية استخلاص اللجنين باستخدام عامل واحد في كل مرة )

درجة مئوية(،  90إلى  70جة الحرارة )النطاق: (. وكانت العوامل التي تم تحسينها هي درRSMالاستجابة )

مل/ غم(،  10إلى  6٪ )حجم/ حجم((، ونسبة المذيب/ الصلب )النطاق: 97إلى  90وتركيز الديوكسان )النطاق: 

دقيقة(.  140إلى  40مولار(، ووقت الاستبقاء )النطاق:  0.5إلى  0.1وتركيز حمض الهيدروكلوريك )النطاق: 

اللجنين(. حيث تم تحضير  /PLAامل المحسّنة كذلك لاستخلاص اللجنين للمركب الحيوي )وقد تم استخدام العو

وزن٪ على شكل  2.0و 1.5و 1.0و 0.5اللجنين( بمحتوى من اللجنين بنسبة  /PLAعينات المركب الحيوي )

ديوكسان -4، 1م ٪، وذلك باستخدا10.64خيوط مطبوعة ثلاثية الأبعاد. وقد كانت أعلى إنتاجية لاستخلاص اللجنين 

مل/ غم من نسبة  10درجة مئوية و 90( كمحفز حمضي عند HClمولار من حمض الهيدروكلوريك ) 0.1مع 

٪ من اللجنين غير القابل للذوبان في الحمض 92دقيقة. ويتكون اللجنين المستخلص من  140المذيب/ الصلب لمدة 

( FTIRيل فورييه الطيفي للأشعة تحت الحمراء )٪ من اللجنين القابل للذوبان في الحمض. وقد أكد تحل0.1و

( إطلاق اللجنين مع انخفاض تلوث السليلوز والهيميسليلوز. وبعيداً عن ذلك، SEMوالمسح المجهري الإلكتروني )

( مجموعة كربونيل إضافية في التركيب الكيميائي للجنين. كما أظهر التحليل الحراري OPEFBأظهر اللجنين من )

درجة مئوية. وزاد معامل يونج بنسبة  200أن اللجنين المستخلص بدأ في الانحلال عند حوالي  (TGAالوزني )

(. ولم يلاحظ أي انخفاض في PLA( مقارنة مع )PLAL0.5وزن ٪ من اللجنين ) 0.5٪ بعد التقوية بمقدار 27

تبلور للتنوّي، حيث يمكنه أن يزيد قوة الشد والاستطالة عند الكسر أثناء اختبار الشد. كما عمل اللجنين أيضاً كعامل 

( أن تبلور DSCاللجنين( وينتج قوة ميكانيكية. كما أكد مسعر المسح التفاضلي ) /PLAمن تبلور المركب الحيوي )

(. إنّ عملية الطباعة PLAL1.0وزن٪ من تقوية اللجنين ) 1اللجنين( قد زاد فقط بعد /PLAالمركب الحيوي )

(، PLAL1.0( للجنين )Xcكذلك عملية الصهر والتبريد أدت إلى تحسين درجة التبلور ) ثلاثية الأبعاد التي تضمنت

جيجا  2.14( مع أعلى قيمة لمعامل يونج البالغ PLA( كأفضل محتوى لجنين في )PLAL1.0لذلك، تم اختيار )

قد نجح اللجنين من (. لPLAL1.0باسكال. كذلك لم يلاحظ أي التصاق للطبقة البينية في المطبوع ثلاثي الأبعاد )

(OPEFB( عن طريق الاستخلاص القائم على الديوكسان في زيادة الصلابة دون أي انخفاض في ليونة )PLA )

 في تطبيق الطباعة ثلاثية الأبعاد.
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

3D printing gains huge interest as an additive manufacturing technology in 

recent years. 3D printing is a creation of a physical object, designed by a graphical 

construction of computer-aid design and built with successive addition of material 

(Shahrubudin et al., 2019). First developed by Charles W. Hull in 1986 with the name 

of stereolithography, now 3D printing is also used in medical applications (Maroulakos 

et al., 2019). Among the medical applications that use 3D printing are bone 

reconstruction, rehabilitation, and regeneration (Maroulakos et al., 2019). In the 

manufacturing industry, 3D printing outputs are used as prototypes before proceeding 

with real production (Attaran, 2017). Low-melting-point polymers such as polylactic 

acid (PLA), polyamide (PA), acrylonitrile butadiene styrene (ABS), and polycarbonate 

(PC) are used as materials in 3D printing. Among them, PLA has been used widely as 

it is a toxic-free chemical and it does not cause any irritation on human sensitive skin 

(Z. Liu et al., 2019). The biodegradability of PLA also has been taken into consideration 

in material selection due to environmental preservation (Z. Liu et al., 2019).  

However, the mechanical strength of the PLA could become a limitation 

compared to other polymeric materials in 3D printing (Z. Liu et al., 2019). This was due 

to the simple linear molecular structure of PLA, meanwhile, ABS, PA, and PC contain 

aromatic and branched graph structures (Z. Liu et al., 2019). Hence, composite studies 

with the reinforcement of potential filler have been performed to overcome this 

limitation. PLA biocomposite has been studied for years to increase the selectivity of 
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using biodegradable PLA in 3D printing (Ishii et al., 2018; Matsuzaki et al., 2016; 

Palmero et al., 2018). The potential use of lignin from the lignocellulose as a filler in 

the composites can increase the mechanical strength of PLA (Zhang et al., 2019). This 

is because lignin has an aromatic structure to support the linear structure of the PLA 

and improve the stiffness in the PLA/lignin biocomposite material (Bajpai, 2018; Z. Liu 

et al., 2019). Not only that, the reinforcement of lignin into PLA also could provide 

thermal stability and antioxidant properties in the PLA/lignin biocomposite 

(Domínguez-Robles et al., 2019; Mimini et al., 2019). Also, lignin is the second most 

abundant renewable polymer that could be obtained from biomass and agricultural 

waste (Yearla & Padmasree, 2015). 

In the previous studies, several methods have been developed to extract the 

lignocellulose from the biomass. Among the solvent extraction methods used were 

alkaline treatment, deep eutectic solvent (DES) treatment, and organosolv treatment 

(Tian et al., 2017). It is important to take note that, the different types of lignin extraction 

processes could provide a different structure of lignin for its potential usage (Tang et 

al., 2020). Oil palm empty fruit bunch (OPEFB) is one of the available lignin sources 

in South East Asia (SEA) that could be used in the extraction of lignin (Hamzah et al., 

2019). OPEFB waste is made of dry matter such as cellulose, hemicellulose, and lignin. 

Maryana et al. (2019) stated that OPEFB contains 15.36% lignin, 20.27% 

hemicellulose, 42.56% cellulose, and 21.10% water-soluble compound. The complex 

matrix of lignocellulose in plant function as a support for plant structure and as a defense 

mechanism from pathogens (Cragg et al., 2015). With high lignocellulose content, the 

handling of OPEFB waste must be managed properly. Improper handling of OPEFB 

could lead to anaerobic digestion and the release of toxic gases toward the surrounding 
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area (Muna et al., 2019). In conjunction with that, the complex lignocellulose structure 

from OPEFB is favorable for re-use as filler in composite material and various other 

applications. The use of OPEFB in lignin extraction process also one of the sustainable 

methods to reduce the agricultural waste produced. 

1.2 PROBLEM STATEMENT 

Although the reinforcement of lignin into the PLA could provide a wide 

advantage, poor interfacial adhesion between the lignin and PLA had limited the 

mechanical strength of this biocomposite (Hong et al., 2021). Even with the increment 

of Young’s modulus, the elongation at break and tensile strength were reduced after the 

reinforcement of lignin into PLA (Gkartzou et al., 2017). The hydroxyl content in the 

chemical structure of lignin is the factor in the poor interaction between the PLA and 

lignin (Hong et al., 2021; Obielodan et al., 2019). Different types of extraction processes 

could provide different yields and structures of lignin that would cater toward its various 

applications (Tang et al., 2020). Another approach was used in this study, where 1,4-

dioxane had been used as an extraction solvent in the lignin extraction process from 

OPEFB. The extraction using 1,4-dioxane could extract the native structure of lignin 

from lignocellulosic biomass with low carbohydrate contamination (Lu et al., 2017; 

Saha et al., 2019). With low contamination of cellulose and hemicellulose, dioxane-

based extraction could reduce hydroxyl content in lignin. However, the extraction 

method using dioxane has not been reported on OPEFB as a raw material for the 

extraction of lignin. Hence, an optimization process was needed to extract the highest 

yield of lignin from OPEFB by using 1,4-dioxane, followed by the characterization of 

lignin.  
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Apart from that, high lignin content was not in favor of a better mechanical 

strength of PLA/lignin biocomposite. The higher the lignin content, the Young’s 

modulus of PLA/lignin biocomposite begins to drop (Gkartzou et al., 2017). The lignin 

content below 5 wt% was recommended to provide a better Young’s modulus of this 

biocomposite material (Obielodan et al., 2019). In conjunction with that, the 

reinforcement of lignin lower than 5 wt% was used in this study for the PLA/lignin 

biocomposite. Also, the tensile test for PLA/lignin biocomposite was prepared in 

filament and 3D printed form. Surface morphology and thermal/crystallization analysis 

also could provide a better understanding of the interaction of lignin and PLA in 

PLA/lignin biocomposite.  

1.3 IMPORTANCE OF STUDY 

In the current study, PLA/lignin biocomposite for 3D printing was done on 

different types of lignin (Mimini et al., 2019). Among the problem encountered was the 

reduction in ultimate strength and elongation at break due to the poor surface adhesion 

between PLA and lignin (Hong et al., 2021). Hong et al. (2021) stated that lignin-

reinforced biocomposite is still a challenge in the production of polymer filaments. 

Theoretically, lignin is hydrophobic and could blend well with other hydrophobic 

materials such as PLA (Patel & Parsania, 2018). In conjunction with that, the selection 

of the lignin extraction method is crucial since it affects the structure of the extracted 

lignin. 1,4-dioxane could extract the lignin without any major modification on the 

microstructure of lignin during the extraction process (Lu et al., 2017). The 

reinforcement of lignin from OPEFB extracted by 1,4-dioxane into PLA for 3D printing 

at low lignin content was a novelty of this study, which could potentially promote the 

use of non-toxic biomaterial for 3D printing.  
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As the extraction process could affect the properties of the extracted lignin, most 

studies tried to find the best method of the lignin extraction process. From the selection 

of the most suitable extraction solvents, the extraction of lignin has evolved to a two-

stage treatment to achieve the optimum extraction process (Lu et al., 2017). Apart from 

the extraction process, the types of lignocellulosic biomass could also affect the quality 

of the lignin. The extraction of lignin in various types of lignocellulosic biomass has 

been conducted in many studies (Karmanov et al., 2020; Li et al., 2017; Zhang et al., 

2020). In Malaysia, OPEFB is one of the lignocellulosic biomasses frequently been used 

as a source for lignin extraction. This is due to the availability of OPEFB in Malaysia 

as the second-largest contributor in CPO production. Lignin from OPEFB also had been 

extracted with various types of solvents, such as alkaline soda and ethanol organosolv 

(Tian et al., 2017). This study had utilized another organic solvent, 1,4-dioxane in the 

extraction of lignin from OPEFB with HCl as an acid catalyst.  

1.4 RESEARCH OBJECTIVES 

The objectives of this study are as follow: 

1. To optimize the lignin extraction process from OPEFB using 1,4-dioxane 

as extraction solvent to gain a high extraction yield. 

2. To analyze the extracted lignin by morphology, spectroscopy, and 

thermogravimetric analysis. 

3. To study the effect of lignin from dioxane-based extraction in PLA/lignin 

biocomposite as a filament and 3D printed sample with the lignin content 

of 0.5, 1.0, 1.5, and 2.0 wt%. 
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1.5 SCOPE OF STUDY 

This study focused on optimization of the lignin extraction process by using 1,4-dioxane 

from OPEFB to gain a high yield of lignin for the preparation of PLA/lignin 

biocomposite material in 3D printing. 

i.  Lignin extraction 

The process utilized 1,4-dioxane as an extraction solvent in extracting lignin from 

OPEFB. The optimization technique had been done which included several factors such 

as temperature (range: 70 to 90ºC), the concentration of dioxane (range: 90 to 97 

%(v/v)), the concentration of HCl (range: 0.1 to 0.5 M), retention time (range: 40 to 140 

min) and solvent/solid ratio (range: 6 to 10 ml/g). The factor level for optimization was 

taken from the previous treatment with a different kind of lignocellulosic biomass. The 

optimization techniques used were one-factor-at-a-time (OFAT) and response surface 

method (RSM) toward the response, extraction yield (%). 

ii. Characterization 

The properties of the extracted lignin were characterized for its morphology, 

spectroscopy, and thermogravimetric analysis. Morphology analysis on scanning 

electron microscopy (SEM) of extracted lignin was performed. Spectroscopy analysis 

was undertaken to determine the functional group present in the extracted lignin by 

using Fourier-transform infrared (FTIR) spectroscopy. The thermogravimetric analysis 

(TGA) observed the degradation behavior of the extracted lignin with increasing 

temperature. 

iii. PLA/lignin biocomposite 

The extracted lignin was reinforced into the PLA in the preparation of PLA/lignin 

biocomposite material. The samples were prepared in filament and 3D printed form 
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with various lignin content at 0.5, 1.0, 1.5, and 2.0 wt%. The universal testing machine 

(UTM) was utilized to measure the tensile properties. The fracture surface was observed 

by scanning electron microscopy (SEM) for morphology analysis. The PLA/lignin 

biocomposite proceeded for thermal analysis. Thermogravimetric analysis (TGA) 

observed the degradation behavior of PLA/lignin biocomposite filament with increasing 

temperature. Differential scanning calorimetry (DSC) showed the glass transition (Tg), 

crystallization (Tc), and melting temperature (Tm) of PLA/lignin biocomposite. 

1.6 THESIS ORGANIZATION 

This thesis was completed with five chapters. Chapter One was a brief 

explanation of the background of the study which was related to 3D printing in additive 

manufacturing. The benefits of use and limitation of PLA as a polymeric material in 3D 

printing also have been discussed briefly. This chapter also explained the potential use 

of lignin within OPEFB as a filler for biocomposite material in 3D printing. Problems 

statements, objectives, scope, and importance of study were stated clearly in this 

chapter.  

In Chapter Two, the beneficial use of lignin compared to other lignocellulose 

components for the PLA biocomposite study had been explained. Also, the current 

problem regarding PLA/lignin biocomposite had been discussed. The structure of lignin 

linkage in lignocellulose and its monomer was well illustrated in this chapter. Apart 

from that, the availability of OPEFB in Malaysia and its neighboring countries was 

explained thoroughly. The literature review on the different lignin extraction methods 

and the outcomes from the previous study was discussed with its extraction mechanism.  

The materials and apparatus used during the research were specified in Chapter 

Three. The experimental procedure was described in detail on the preliminary treatment 


