CONJUGATE HEAT TRANSFER ANALYSIS OF A
BATTERY PACK USING FINITE VOLUME METHOD

BY

IMRAN MOKASHI

A thesis submitted in fulfillment of the requirement for the
degree of Doctor of Philosophy (Engineering)

Kulliyyah of Engineering
International Islamic University Malaysia

JANUARY 2022



ABSTRACT

Lithium-ion (Li-ion) batteries are an excellent energy source for electric vehicles due
to their extraordinary features, such as lower mass density, high energy density and long
service life. The use of Li-ion batteries in electric vehicles is becoming extensive in the
modern world. During battery charging and usage, internal heat is continuously
generated due to increased thermal resistance. If the heat produced is not removed
correctly, it will get stored and increase the cell temperature. Such an extreme
temperature directly affects the life cycle, effectiveness, dependability, and battery
safety problems. Hence cooling mechanism is necessary to have a good life and
reliability on the battery system. The main objective of this analysis is to perform the
thermal analysis of the Li-ion battery pack considering conjugate conduction-
convection boundary conditions at the pack and coolant interface. This analysis is
performed numerically by solving the relevant governing equations using the finite
volume method. The conduction, Navier-Stokes, and energy equations are solved
iteratively. The numerical study is carried for the battery pack cooled with five
categories of coolants. Five categories of coolants are passed over the heat-generating
battery packs to extract the heat and keep the temperature within the limit. Different
kinds of gases, conventional oils, thermal oils, nanofluids, and liquid metals, are
adopted as coolants. In each category of coolant, five types of fluids are selected to
obtain the lowest maximum temperature. The flow Reynolds number (Re), heat
generation (Qgen), and conductivity ratio (Cr) are the parameters considered for each
fluid to analyze the temperature distribution in the battery pack and its maximum
temperature in detail. The average Nusselt number (Nuayg) analysis indicates the heat
removal from the battery pack cooled by flowing fluid is carried out considering
coupled heat transfer conditions at the pack and coolant interface. The Pr of the coolants
varies in the range of 0.0208 to 511.5 (25 coolants), and Cr for each coolant category
has its own upper and lower limit are used. The major findings of the conjugate analysis
conducted reveals that the temperature distribution is non-uniform at the top and bottom
of the battery. The maximum temperature of the battery pack is located at the top portion
of the battery where the electrodes are placed. The temperature of the pack is low at the
bottom surface due to direct contact with the coolant which comes in contact as fresh.
The regions with high and low temperatures at the top and bottom of the battery pack
produce uneven thermal stress, which later can cause the failure of the battery. Hence,
choosing an appropriate range of thermal conductivity ratios that balances the solid and
the fluid field to get better battery system performance results is required. The
maximum temperature of the pack is significantly reduced by the Re and Cr of the
coolants. While Qgen in the battery causes an increase in temperature above critical
limits. For temperature reduction below the critical threshold requires use of nanofluids
at moderate Re and any Cr is suitable. The flow of gas coolants over the battery pack
causes a less decrease in maximum temperature due to their lower thermal conductivity.
The Cr of all coolants except gases causes a higher difference in maximum temperature
atall Re. Thermal oils, nanofluids, and liquid metals provide maximum temperature in
the same range of 0.62 to 0.54. In contrast, gases have nearly the same effect at different
values of Re and Cr. Pr of oils and liquid metals show more influence than the gases
and nanofluids. However, the Pr of coolants shows lower effects at different heat
generations inside the battery pack. Conversely, by increasing the Cr of coolants, the
Pr shows a promising variation in maximum temperature. The Nuayg iS found to be
unaffected by Qgen due to the velocity profile remaining the same at any heat generation



term. Whereas the flow Re changes the velocity distribution significantly which impacts
Nuavg Severely for different coolants. The analysis also revealed that Cr and Qgen have
no role in improving Nuayg While Pr and Re vary significantly in each step. Moreover,
Nuayg is found to increase with Re continuously irrespective of any Cr and Qgen. While,
for oils with an increase in Pr and Re, Nuayg was found to reduce significantly.
Nanofluids are found to be more effective in improving heat transfer from the battery
pack when cooled by flowing nano-coolants over it.
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CHAPTER ONE

INTRODUCTION

1.1 BATTERY THERMAL MANAGEMENT SYSTEM (BTMS)

The use of Li-ion batteries facilitates power for transmission in electric vehicles. But
they are susceptible to heat generation during charging and discharging (An et al.,
2017)(Yun et al., 2016). The batteries operating under high-temperature and low-
temperature environments require enhanced electrochemical stability to prevent
overheating. A BTM system with battery packs must be mounted to improve
temperature uniformity and ensure that the battery works within the optimal temperature
range (Hannan et al., 2017).

BTMS is classified in a wide range of parameters. The operating principle or the
coolant phase and whether or not there is a direct interaction between the coolant and
the batteries. The operation is actively controlled by a control system or passively
without a power-assisted control system. The BTMS can also be classified based on the
coolant phase. The most widely used and suggested coolants in the literature are gas,

liquid, and phase change material (Lazrak et al., 2018).

Air-based cooling systems are the most commonly used cooling systems in
everyday life, be it for automotive applications, device cooling, or residential
applications (Choi et al., 2012; Choi & Kang, 2014; Fan et al., 2013; Fathabadi, 2014;
Park, 2013b). Air BCSs use cold air flow between the batteries inside the battery pack
to assimilate the produced heat and transfer it away from the batteries. For air BCSs
(battery cooling systems), the air flow may be either due to the vehicle's movement,
which is alluded to as natural air-driven BCS, or air is forced between the batteries

through a power-assisted system.

The majority of the airflow BTMS proposed for EVs (electric vehicles) are
forced convection air cooling systems. These systems have a high heat transfer
coefficient, low price, simple design, and easy maintenance. The energy consumption

during the operation of these devices is low due to lower air viscosity. The air-based



BTMSs proposed in the literature are suggested primarily for battery packs subjected to

moderate refrigeration loads.

The battery pack’s layout structure, such as the spacing between batteries, array
configuration, airflow rate, geometries of inlet and outlet flow ducts, and so on, has a
significant impact on BTM system efficiency (Fan etal., 2013; Marambio et al., 2016;
Tong et al., 2016; Wang et al., 2014; Yang et al., 2015). Irregular spacing dramatically
affects the temperature distribution in the battery cells (Fan et al., 2013). Battery array
configuration includes two typical cell arrangements, staggered and aligned. The
staggered arrangement of battery cells gives lower maximum temperature in the battery
cellsthan aligned (Tong et al., 2016). Transverse gaps and longitudinal gaps should also
be considered for different battery arrangements (Yang et al., 2015). Air flow rate is
another crucial parameter that directly affects the efficiency of an air BTMS (Choi &
Kang, 2014; Giuliano et al., 2012; Li et al., 2013; Saw et al., 2016; Wang et al., 2015;
Xun et al., 2013). When the air flow rate decreases, the maximum temperature of the
battery and maximum temperature difference within the battery cells increases.
Although the rise in air flow rate would undoubtedly boost the cooling potential for air
cooling systems, it also raises the cost. Therefore, consideration should be given to the

trade-offs among these two parameters (Tong et al., 2016).

The geometry of Inlet and outlet flow channels plays a significant role in
maintaining uniformity in the flow rates across the channels. That, in turn, substantially
affects the battery cell temperature and battery module pressure drop (Sun & Dixon,
2014). Two types of air ducts- standard channel and jet cooling channel are reported in
the literature. The Jet air cooling significantly reduces the maximum temperature in the
battery cells and increases the temperature uniformity within the battery cells. The
inclusion of aluminum porous metal foam in an air-cooled BTMS with flow channels
also improves the thermal performance of the battery (Mohammadian & Mousavi,
2015).

To date, liquid-based cooling systems have become the most commonly used
and popular BTMS, with some of the key producers of EV and HEV (hybrid electric
vehicles) using liquid cooling systems to keep the batteries within the safe limit. Rimac

Automobili in Croatia produced the first high-performance EVs, which introduced the



liquid-based cooling system to keep the temperature of the batteries at optimal operating
conditions. The air-based cooling system appears to be inadequate to keep the battery
temperature within the allowable limit at higher ambient temperature. It is more

apparent for the high discharge rate of a large battery pack.

Liquid-based BCSs are power-assisted devices that use liquid-phase coolants
(Richard, 1999). The liquid coolant passes between the batteries and absorbs some or
all of the battery's heat. Liquid-based systems allow auxiliary devices to recycle the
liquid coolant by extracting the absorbed heat from the battery pack, unlike air-based
BCSs. Liquid cooling, which uses convection or boiling mode to transfer the heat,
effectively reduces the temperature and prevents overheating of batteries than air
cooling due to the higher specific heat of liquids. Although it has some disadvantages,
as stated in (Pesaran 2001)(Chen et al., 2016), liquid cooling is more efficient than air

cooling.

The liquid cooling system can be classified into two types as direct-contact and
indirect-contact type, depending on whether the working fluid touches the battery
directly or not. The most commonly used working fluid for direct-contact type can be
dielectric, such as mineral oils (Karimi & Li, 2013; Nelson et al., 2002), electronic
cooling liquid (Gils et al., 2014; Hirano et al., 2014), and so on, to prevent short-circuit
if the coolant touches the battery directly. The indirect-contact type uses a cold plate or
heat sink, jacket, and tubes (pipes) to isolate the battery and the working fluid. Battery-
generated heat is conducted from the battery cells into the cooling plate and convected
away by the coolant. The selection range for the coolant is broad due to no restriction
on the insulation criteria. However, the seal is critical to prevent liquid leakage because
the insulation of the working fluid is not taken into account. Further, the working fluid
chosen should have low maintenance problems to prevent the shift of the liquid-solid
phase under lower ambient temperature, affecting the cooling system and the battery

modules due to volume expansion.

Cooling plate (indirect type) has attracted much attention of researchers in
BTMS due to smaller thickness, compact structure, and good heat transfer impacts
(Giuliano et al., 2012; Huo et al., 2015; Nieto et al., 2014; Panchal et al., 2016a, 2016c,
2016b; Qian et al., 2016; Smith et al., 2014; Tong et al., 2015). Generally, the cold plate



arrangement involves sandwiching batteries within the cooling plates or positioning the
cooling plates on the bottom or side surface of the battery. The average increase in
temperature and non-uniformity of temperature decreases with the number of batteries
between the cooling plates (Tong et al., 2015). While the increase in the volume of the
fluid or increase in thickness of the cooling plate decreases the average temperature
considerably and increases battery cell uniformity, it also causes an increase in the
pumping power. BTMS system design should comprehensively consider
electrochemical and thermal-hydraulic parameters. In order to optimize the different
parameters, a multi-objective optimization algorithm can be proposed to achieve
optimal decisions and acceptable compromises among these parameters. A simple U-
flow is the best compromise between thermal efficiency, power consumption, and

vehicle integration (Smith etal., 2016).

The cooling plate's operating characteristics are determined in part by the
channel's geometric structure: its direction, width, length, etc. It is known that heat
transfer by convection decreases along the axial direction of a traditional straight
channel due to the development of a hydrodynamic boundary layer resulting in a
substantial temperature gradient on the battery surface. Hence to boost efficiency,
traditional straight channels are replaced by oblique mini channels. In oblique mini
channels, re-initialization of boundary layers takes place, which considerably improves

the temperature uniformity of the battery system.

Tubes (pipes) have recently emerged as a valuable constituent of liquid cooling
systems (Lan et al., 2016; Rao et al., 2016). U-shape pipe, along with an optimum
combination of velocity and other parameters, significantly reduces the temperature

uniformity inthe channels.

The various cooling specifications for the BTMS system are also determined by
the shape and atmosphere of the batteries. In the cylindrical battery, due to the cambered
exterior surface, it is not ideal for cooling the battery using a flat cooling plate. The
cooling plate structure should be altered and optimized to increase the contact surface
between the battery and cooling plate and enhance the cooling effect. The direction of
flow, number of channels, and inlet size, and flow rate all affect the BTMS performance.



