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ABSTRACT 

 

 

The world is experiencing the impact of climate change, such as rising sea levels, extreme 
weather, natural disaster, and reduced food production. These issues strongly correlate with 
the global warming phenomenon caused by high carbon emissions; in fact, the 
transportation sector is recorded as one of the highest contributors. Therefore, many 
countries are phasing out internal combustion engine (ICE) usage by replacing them with 
more environment-friendly electric vehicles (EVs). However, as essential infrastructure in 
the EV ecosystem, the EV charging station must be installed in huge numbers at various 
locations. Excessive charging loads could cause challenges to the microgrid, such as 
harmonic distortion, voltage instability, and high-power losses. As a solution, microgrid 
reconfiguration modeling is needed. Hence, this research develops an optimum 
reconfigurable microgrid to minimize power losses and increase voltage stability. The most 
efficient metaheuristic method, Cuckoo Search Algorithm (CSA) is used to find the best 
reconfiguration as it is involved with the multi-objectives problem, in comparison to 
Genetic Algorithm (GA) as the second most efficient metaheuristic method and Particle 
Swarm Optimization (PSO) as the least most efficient metaheuristic method. The two 
different scales of bus networks, IEEE-33 bus, and IEEE-69 bus, are utilized as a microgrid 
test model in various charging conditions. The simulation results show the power losses 
decreased up to 99.47 %, while the voltage stability index (VSI) value increased up to 
6.1386 approximately with integration of EVs load. Moreover, the compared results with 
GA and PSO algorithm show that the CSA performed better in terms of power loss 
reduction and voltage stability for all cases.  
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CHAPTER ONE 

INTRODUCTION 

 
 

1.1 OVERVIEW 

 

The internal combustion engine (ICE) has been widely used in the automotive industry and 

has continuously developed since the 19th century. Modern ICEs use fossil fuels efficiently 

compared to older version of the ICEs. However, ICEs still use fossil fuels to generate 

energy to move vehicles. Fossil fuel combustion releases carbon dioxide into the air and 

makes detrimental to the environment. Carbon dioxides cause the effect of global warming 

as the gas trap heat in the atmosphere and increase the earth's surface and ocean 

temperature. Consequently, sea-level increases and more unstable weather are expected to 

occur frequently. Sea levels are expected to increase up to 30 cm to 65 cm by 2050 (Horton 

et al., 2005). 

 

 Fortunately, carbon dioxide reduction efforts have been encouraged worldwide 

since the 2000s. Most prominently, United Nations Framework Convention on Climate 

Change was established by United Nations as an effort to mitigate the effect of global 

warming. Paris Agreement was signed by 196 parties that aim to limit global warming to 2 

ႏ� below pre-industrial levels and try to take considerable action to limit temperature 

increase ����ႏ�below pre-industrial levels (Gao et al., 2017). Thus, one main effort of 

carbon dioxide emission reduction is the introduction of Electric Vehicles (EVs). EVs are 

considered one way to limit carbon dioxide emissions because the focus on renewable 

energy implementation is increasing to reduce electricity generation dependency on fossil 

fuels. 
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In EV operation, EV uses one or more electric engines or traction engines for 

vehicle driving. EVs are powered by electricity supplied from an energy storage device like 

a battery or large-scale capacitor. As the storage needs to be charged using a power outlet 

beforehand, numerous charging stations with the interconnection to electric grids need to 

be deployed strategically. Thus, it is one of the most critical infrastructures in meeting the 

increasing number of EVs on the road.  Meanwhile, in Malaysia, one target of National 

Automotive Policy 2020 (NAP 2020) is Malaysia will develop EV Smart Grid 

Interoperability Center by 2030 (Kementerian Perdagangan Antarabangsa Dan Industri, 

n.d.). Currently, there are more than 200 public EV charging stations in peninsular 

Malaysia, and it is expected to accommodate 125,000 units by 2030. 

 

 

1.2 PROBLEM STATEMENT 

 

In meeting the rising number of EVs, arguably, one of the most crucial infrastructures is to 

have sufficient charging stations. Consequently, these charging stations are mostly 

connected to the power grid. Hence, those charging activities cause some negative impact 

on the grid. For instance, the uncoordinated charging of EVs degrades voltage profile 

(Rahman et al., 2022), increases peak load (Park, 2018), cause harmonic distortions 

(Ahmed et al., 2021), increases power losses (Deb, Kalita, et al., 2018), and equipment 

overloading. With these problems, the grid's reliability was being questioned. Thus, this 

research is aimed to utilize a reconfigurable microgrid to mitigate the impact of EV 

charging load on the network. 
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1.3 RESEARCH HYPOTHESIS 

 

A reconfigurable microgrid can reduce power loss and increase voltage stability by finding 

the best path to deliver power, thus a model of a reconfigurable microgrid was needed to 

apply on small-scale and medium-scale microgrids. The solution of the reconfiguration is 

optimized as the result of the simulation is the least power loss and best voltage stability. 

But, to find the best solution, an algorithm was needed. It is expected that Cuckoo Search 

Algorithm (CSA) is a better algorithm to find the solution for reconfigurable microgrids 

compared with the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). 

 

 

1.4 RESEARCH OBJECTIVES 

 

i. To assess the impact of EV charging load on the microgrid. 

ii. To develop an optimum reconfigurable microgrid for minimizing the power 

losses and increasing voltage stability by using CSA, PSO, and GA with EV 

charging loads integration. 

iii. To apply the developed model/algorithm to small scale and medium scale 

microgrids. 

 

 

1.5 RESEARCH METHODOLOGIES 

 

The fisrt step to achieve research objective is assessment of the EV charging load on the 

microgrid. Thus, a comprehensive review of EV charging load impact on the microgrid was 

needed. Then, a standard IEEE-33 bus test system was used as a microgrid model. Power 
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flow calculation was being performed using MATPOWER 6.0 toolbox in MATLAB under 

both conditions with and without EV charging load, respectively. The impact of EV 

charging loads on the microgrid was analyzed especially in terms of power loss and voltage 

stability. From here, objective number 1 which is to assess the impact of EV charging load 

on microgrids was achieved. 

 

The second step to achieve research objectives is modeling of reconfigurable 

microgrid with the interconnection of EV. Thus, a reconfigurable microgrid model of the 

IEEE-33 bus test system with the integration of EV was formulated in a MATLAB software 

environment. Data of the IEEE-33 bus system which is real power and reactive power of 

busloads and resistance and reactance of bus system lines was loaded in the MATLAB 

software. The number of EV charging stations was increased as well as the charging load 

size and installed location was varied. Power flow calculation of the system was executed 

by using MATPOWER 6.0 toolbox to ensure the reliability of the system models. 

 

The third step to achieve research objective is developing the optimum model. Thus, 

the result was analyzed by using a CSA and the parameters was varied to get optimum 

fitness function. The process was repeated until the minimum power loss and highest 

voltage stability are achieved. The result was compared using a GA and PSO. From here, 

objective 2 which is to develop an optimum reconfigurable microgrid model for minimizing 

the power losses and increasing voltage stability by using CSA was achieved. 

 

Finally, to achieve research objectives is by applying optimum model on medium 

scale microgrid. The step is the result was validated by using medium scale test model 

which has a larger number of load bus which is IEEE-69 bus system with respect of IEEE-

69 bus system data. From here, objective 3 which is to apply on small scale and medium 

scale microgrid was achieved. 
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1.6 RESEARCH SCOPE 

 

The research scope of the research is microgrid. Thus, wide area synchronous grid and 

super grid are not in this research scope. In terms of power generations and loads, only the 

effect of the EV charger on the power distribution network is within the research scope and 

the effect of the distribution generator is not within research scope. Finally, the algorithm 

application is CSA in comparison with the PSO and GA. Other algorithms are not within 

the research scope. 

 

 

1.7 DISSERTATION ORGANISATION 

 

This dissertation contains five chapters. The organization of this dissertation is Chapter 1: 

Introduction, Chapter 2: Literature Review, Chapter 3: Methodology, Chapter 4: Result and 

Discussion, and Chapter 5: Conclusion.  

 

 In Chapter 1, introduction of overall dissertation was explained. This includes 

problem statement, research hypothesis, research objectives, research methodologies, 

research scope and dissertation organization. Meanwhile, Chapter 2 contains literature 

review of this dissertation. This chapter explains overview of literature revies, microgrids, 

loss minimization technique, electric vehicle chargers, voltage stability, optimization 

algorithm and related works. Chapter 3 is the methodologies of this dissertation. Power 

flow formulation and techniques, IEEE bus system, objective functions and cuckoo search 

algorithm was explained here. Chapter 4 is the result and discussion of this dissertation. 

The result was divided between IEEE-33 bus system and IEEE-69 bus system. Chapter 5 

is the conclusion and limitation of this dissertation. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

2.1 OVERVIEW 

 

Microgrid is the main subject of this research. In the microgrid system, EV charging loads 

was integrated into microgrid at different buses. The microgrid can be reconfigurable by 

using CSA and the optimal configuration was found based on the minimum power loss and 

the most stable Voltage Stability Index (VSI) as the best result. The design to find the best 

solution is the model of this dissertation. The literature review covers elements of this 

research and views of other researchers about those elements. Literature review also covers 

related works of other researchers and their findings. The elements of this research are 

microgrid type, loss minimization techniques, EV charger types, VSI and optimization 

algorithm. Microgrid is divided between AC, DC, and hybrid. Loss minimization 

techniques cover between distributed generations allocation, capacitor allocation and 

network reconfiguration. EV charger types covered are slow chargers and fast chargers. 

VSI are categorized between line VSI, bus VSI, and overall VSI. Optimization algorithms 

covered are GA, PSO and CSA and other algorithms are not covered. 

 

EVs are seen as the better solution to combat climate change and global warming due 

to the alternative of ICE vehicles as EVs use electricity as opposed to fuel burning. The 

transition from ICE vehicles to EVs has many economic and environmental benefits. 

However, as EVs number increase, the charging demands also increase  (Deb, Tammi, et 

al., 2018). Thus, EV implementation and integration can cause an extra burden on the 

existing power grid. In other words, as shown by many researchers, EV charging loads can 

cause harmonic distortion (Barrero-González et al., 2019; Jiang et al., 2014; Nikitha et al., 

2018), increase peak load (Arango Castellanos et al., 2019; Di Silvestre et al., 2013; Fan et 
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al., 2013; Sehar et al., 2017), and decrease voltage profile (Dharmakeerthi et al., 2014; 

Zhang et al., 2016; Zhou et al., 2016). A. Ul-Haq et al. find that 60% EV penetration causes 

a 109% power consumption increase (Ul-Haq et al., 2015). In a study of EV penetration to 

North Ireland power system, only one region can support 7kW, 22kW, and 50kW, two 

regions can support 7kW and 22kW rating charging, eight regions can support 7kW 

charging and the other 12 regions cannot support any EV charging load (Zhou et al., 2016). 

Besides that, magnetic devices in the power system can be degraded by total harmonic 

distortion presented in the system, meanwhile, EV charging load also can cause total 

harmonic distortion (Nikitha et al., 2018). In a study by F. Barrero-González et al., EV 

charging station load can cause up to 26% of total harmonic distortion (Barrero-González 

et al., 2019).  

 

 

2.2 MICROGRID 

 

The microgrid was studied as an effort to combat dependency on fossil fuels due to 

environmental concerns and to achieve Sustainable Development Goals (Kumar et al., 

2019). In comparison with a conventional power plant, microgrid offers renewable energy 

usage as power generation thus making microgrid technology more eco-friendly compared 

to the conventional power plant. Besides that, microgrids also may increase power system 

reliability, reduce network congestion, and reduce transmission power loss (Zaki Diab et 

al., 2019). Microgrids also can be working as autonomous networks or non-autonomously. 

Autonomous microgrids are microgrid networks disconnected from the power grid, 

meanwhile non-autonomous microgrids are interconnected with the power grid. Thus, off-

grid microgrids can provide power to isolated areas like an island. But there are a few 

challenges to operating off-grid microgrids such as stability and load management due to 

their nature isolated from the main grid �<ROGDú�HW�DO��������. 
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 A microgrid can be divided into three types depending on the technologies used 

which are AC microgrids, DC microgrids, and Hybrid microgrids. AC microgrids are the 

dominant technologies used currently as AC power systems used widely in industries since 

the end of the 19th century. There are a few disadvantages of individual AC microgrids 

which are low efficiency as AC microgrids require multiple conversions, need reactive 

power, and have problems with stability and synchronization. 

 

 Another type of microgrid technology is the DC microgrid. This technology utilizes 

DC as the type of electric current. As more energy sources are coming from DC electric 

current like photovoltaic, DC microgrid is potentially more cost-effective compared to its 

AC counterpart. DC also only requires a single DC-to-DC conversion to DC loads like 

many home appliances and off-grid EV charging load stations. Compared to AC, DC has 

the advantages of no reactive power and no synchronization needed. But the common 

electricity current type in the industry and residential areas is AC electricity current. To use 

a DC microgrid for AC loads, DC-to-AC conversion is needed.  

 

 The better solution to cater to the problems in AC and DC microgrids is by 

implementing a hybrid microgrid that uses both AC and DC electric current. In a hybrid 

microgrid, AC and DC renewable power sources and AC and DC loads are integrated into 

one microgrid system, thus reducing conversion power losses. The hybrid microgrid is also 

more appealing AC grids are more common, but DC renewable power sources are more 

attractive in distributed renewable energy generation. But, as AC is more common in the 

usage of electrical power transfer in the world, this research focus on AC microgrid. The 

microgrid simulation in this research is taking account the AC current in the microgrid. 
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2.2.1 AC Microgrid 

 

In an AC microgrid, power generation, power storage, and loads are connected to an AC 

bus. As many renewable energy sources are generating DC electric current, AC-to-DC 

inverters are needed to supply the power into the AC microgrid, thus generating power 

losses. To connect to DC loads, an AC-to-DC rectifier is needed meanwhile AC-to-AC 

converter is needed for AC loads. Multiple conversions from DC to AC and back to DC for 

DC loads decrease the reliability and efficiency of AC microgrids (Meje et al., 2020). 

Figure 2.1 shows the structure of the AC microgrid. 

 

 

 

Figure 2.1: AC Microgrid structure (Meje et al., 2020) 
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2.2.2 DC Microgrid 

 

As many renewable energy sources are in the form of DC electricity type, DC was seen as 

a better microgrid compared to AC microgrid. Besides that, many electrical loads and 

energy storage are in the form of DC electricity. DC also needs less power conversion 

compared to AC microgrids. Thus, DC microgrid can have better efficiency and reliability 

compared to AC microgrid (Meje et al., 2020). Figure 2.2 shows the DC microgrid 

structure. 

 

 

 

Figure 2.2: DC microgrid structure (Meje et al., 2020) 
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2.2.3 Hybrid Microgrid 

 

The idea of the hybrid microgrid is to utilize both advantages of the AC and DC microgrid. 

A hybrid microgrid skips multiple conversions of AC and DC to supply power to the load. 

This can prevent huge power loss in the overall microgrid system. Besides that, it is also 

much easier to connect various AC and DC renewable energy sources to the microgrid to 

minimize conversion loss. A microgrid is considered a controlled power system unit for 

utility purposes. Compared to conventional micro generation, microgrids cause fewer 

problems to the utility network. Loads are also coordinated intelligently and properly (Meje 

et al., 2020). Figure 2.3 shows the structure of hybrid microgrid structure. 

 

 

 

Figure 2.3: Hybrid Microgrid structure (Pan et al., 2018) 

 

 



 

12 
 

 

 

 

2.3 LOSS MINIMISATION TECHNIQUE 

 

Transmission and distribution power loss is perceived as the major concern in power 

systems. Any losses in the distribution stage become a big issue as electricity demand 

increases, constraints due to the environment, and the competitive energy market cause 

transmission and distribution systems to work in overloaded conditions. A load entity 

system must accept only a power quality and in parallel to get the most benefit of economic 

cost-effectiveness, researchers are discovering power loss minimization techniques and the 

best operation practices. Thus, researchers focus on power loss reduction and voltage 

stability improvement in a power system (Sambaiah & Jayabarathi, 2020). A few methods 

are suggested for power loss reduction: distributed generations (DGs) allocation, capacitor 

allocation, and network reconfiguration. 

 

 

2.3.1 Distributed Generations Allocation 

 

DGs can be defined as “Power generated from supply and demand resources that are 

significantly less than centralized power generation that distributed throughout distribution 

power system to meet the energy demand of customer in the system”. Generally, DGs are 

located near load nodes or the utility side of the meter (Sambaiah & Jayabarathi, 2020). 

 

 The main aspect of DG penetrations into a distribution system is the technical, 

economic, and environmental impact. The implementation of DGs is increasing year by 

year and the implementation shifts the grid away from traditional centralized power 

distribution. Thus, the location and appropriate size of DGs are needed to be considered 



 

13 
 

 

 

appropriate to optimize DG allocation benefits (Sambaiah & Jayabarathi, 2020). Figure 2.4 

shows DG allocations in a IEEE-33 bus system with battery energy storage. 

 

 

 

Figure 2.4: IEEE-33 bus system with battery energy storages and DGs (Abdolahi et al., 

2018) 

 

 

2.3.2 Capacitor Allocation 

 

A capacitor can reduce power loss in a power distribution system by the shunt capacitor 

integration in the system. Capacitors can reduce inductive reactance as the capacitor 

provides a reactive power source. Originally, researchers conduct their study for voltage 

control and consequently for power loss reduction. The problems of capacitor allocation 
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are the suitable unit for the capacitor to be used, the location to install the capacitors, and 

capacitor sizing to achieve power loss reduction, power factor control, and voltage 

regulation improvement (Sambaiah & Jayabarathi, 2020).  

 

 But there are many benefits of capacitor allocation in a power distribution system. 

The benefits are energy loss reduction, a decrease in power loss, voltage stability 

enhancement, handles voltage profile, power flow control, and correction of power factor. 

Capacitor allocation also can be used in high voltage distribution network systems 

(Sambaiah & Jayabarathi, 2020). 

 

 

2.3.3 Network Reconfiguration 

 

Network reconfiguration, also known only as reconfiguration, is the change of topology by 

switching on or off certain switches in a network, effectively changing the network into a 

meshed network or radial network. Reconfiguration is essential to decrease power loss. In 

the primary distribution system, there two switches type existed in the system, which are 

tie switches and sectionalizing switches. A tie switch is also known as an open switch 

meanwhile sectionalizing switch is also known as a closed switch. The operation involves 

alternating change sectionalizing switches and tie switches in the distribution system 

simultaneously. Effectively change the topology of the current distribution network 

configuration (Sambaiah & Jayabarathi, 2020). 

 

 In this research, to cater to the problem of stability and load management in 

microgrid, reconfiguration of microgrids is needed to reduce power loss and improve 

voltage stability. Reconfiguration is needed to maximize voltage profile to all nodes of the 

distribution network, besides that the general target is to improve load balancing and reduce 
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power loss �<ROGDú�HW�DO��������. The objective of reconfiguration in this research is power 

loss reduction and voltage stability improvement. 

 

There are many advantages of network reconfiguration, such as service restoration 

in case of feeder faults, bus voltage enhancement, reduce network overload, outage 

planning for network maintenance, and power loss reduction. Switching operation is the 

basic in network reconfiguration but the operation is complex due to the many nodes of 

switching operation and the discrete nature of the switch. Thus, many studies are solving 

this problem through the heuristic method. Generally, reconfiguration can be solved by 

using the algorithm by two methods, branch exchange, and loop cutting. Branch exchange 

is an algorithm that opens and closes switches in pairs to find a feasible radial 

reconfiguration meanwhile loop cutting is to explore the nodes to be opened in a mesh 

system (Sambaiah & Jayabarathi, 2020). 

 

In this research, the method used for power loss minimization and voltage stability 

improvement is by using network reconfiguration by CSA as optimization algorithm. 

Reconfiguration is chosen as the method to reduce power loss and improve voltage stability 

as there is no need for additional equipment and power sources like capacitors and DGs. 

Thus, reconfiguration is simpler, and cost less compared to adding additional equipment in 

microgrid. 

 

  

2.4 ELECTRIC VEHICLE CHARGERS 

 

EV energy refill can be operated in two methods: battery swapping and conductive 

charging. Conductive charging itself can be divided as two types, which are on-board and 

off-board types (Chen & Liao, 2013). On-board charging limits the power charged into the 
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vehicle as there are weight, cost, and space constraints in the vehicle. Off-board chargers 

are not restricted by space and weight (Yilmaz & Krein, 2012). Generally, EV chargers can 

be divided into two types: slow chargers and fast chargers (FC).  (L. Wang et al., 2021). 

Standardization of charging modes is defined in IEC 61851-1 and SAE J1772 based on 

power level and input current (AC or DC) (L. Wang et al., 2021). Table 2.1 shows IEC 

61851-1 charging modes, meanwhile Table 2.2 shows SAE J1772 Standard charging 

modes. 

 

 

Table 2.1: Charging Modes of IEC 61851-1 (Triviño et al., 2021) 

 

Charging 

Mode 

Charging 

Type 

Max. 

Current (A) 

Max. 

Power 

(kW) 

Charging 

Time for 

50kWh 

Distance for a 

15 min Charge 

(km) 

Mode 1 Slow 16 A, AC, 

Single-

Phase 

3.7 14 h 5 

Mode 2 Fast 32 A, AC, 

Single-

Phase 

7.4 7 h 9 

32 A, AC, 

Three-Phase 

22 > 2 h 27  

Mode 3 Rapid 62 A, AC, 

Three-Phase 

43 > 1 h 54 

Mode 4 Ultra-

Rapid 

400 A, DC 200 15 min 250 
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Table 2.2: Charging modes of SAE J1772 Standard (Kongjeen & Bhumkittipich, 2018) 

 

Charging Mode Grid Connection Voltage (V) Current (A)  Type of Charge 

AC level 1 1 phase 120 12-16 Slow 

AC level 2 1 phase 240 <80 Slow 

AC level 3 1, 3 phase(s) 240 >80 Slow 

DC level 1 - 200-450 80 Slow 

DC level 2 - 200-450 200 Medium 

DC level 3 - 200-600 400 Fast 

 

 

2.4.1 Slow Chargers 

 

Slow chargers typically are EV charging load that is lower than the maximum power 

consumption of a household. It is usually installed at homes and public destinations. The 

maximum power consumption of a household is 19kW in the United States of America and 

22kW in European Union (L. Wang et al., 2021).  From the perspective of IEC 61851-1 

standard, Mode 1, Mode 2, and Mode 3 are considered slow charging and from the 

perspective of SAE J1772 Standard, AC level 1 to AC level 3 and DC level 1 are considered 

slow charging for EV.  

 

 

2.4.2 Fast Chargers 

 

Meanwhile, fast chargers have a higher power rating than normal household consumption. 

Typically, fast chargers were installed at fast-charging stations (L. Wang et al., 2021). From 

the perspective of the IEC 61851-1 standard, Mode 4 is considered fast charging and from 
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the perspective of SAE J1772 Standard, DC level 1 and level 2 are considered fast charging 

for EVs. 

 

 In this research, the implementation of the charging load station is considering fast 

charging of around 50kW per vehicle (considering Mode 3 of IEC 61851-1 standard and 

DC level 2 of SAE J1772 Standard) and 1500 kW for each charging station. Thus, a 

charging station can cater to up to 30 vehicles at one time. 

 

 

2.5 VOLTAGE STABILITY 

 

Many blackouts in the world have been caused by voltage instability even though it is a 

local phenomenon. In studies between 1965 and 2005, in the investigation of 12 cases of 

blackouts, seven cases in implies that voltage instability is the major cause. Voltage 

stability is the capability of a power system to sustain stable voltage in case there is 

additional load admittance, which causes load power increases. Reactive power source 

failure to supply reactive power or power line failure to deliver required reactive power is 

the cause of voltage instability. 

 

Voltage stability indices (VSIs) can be divided into three groups, which are line 

VSIs, bus VSIs, and overall VSIs. Line VSIs are indices that measure the capability of 

power lines to deliver the required voltage to the load point. Meanwhile, bus stability 

indices measure whether there is voltage collapse at any bus in the power system. Overall 

voltage stability measures the overall voltage stability system situation. VSI is measured 

by calculating all buses or lines of the system and the VSI value is taken from the nearest 

bus or line to voltage collapse or instability. In overall VSIs, the index can only predict the 

point of a system collapse. Overall VSIs are not measuring any weak lines or buses 
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(Modarresi et al., 2016). As this research need to identify which bus is weak and strong, 

thus this VSI is not considered to be applied in this research. Meanwhile, Danish et al. 

(2019) divided system parameters or variable-based VSI into only bus VSI and line VSI. 

 

 

2.5.1 Line VSI 

 

In line VSIs, the discriminant of the voltage quadratic equation must be greater or equal to 

zero to reach stability. Line VSIs were referred to as a line between two buses in a power 

system as figured in Figure 2.5 where shunt admittance is neglected. Thus, many line VSI's 

theoretical base are the same with the assumption make the difference among line VSIs 

(Modarresi et al., 2016). 

 

 

 

Figure 2.5: Representation of two buses in a power system (Modarresi et al., 2016) 
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2.5.2 Bus VSI 

 

In bus VSIs, voltage stability is focused on the system buses and the information of weak 

elements in the power system with potential voltage problems is not provided. Thus, bus 

VSI cannot be applied to determine a weak power system facility (Modarresi et al., 2016). 

But, in this research, strength of a bus must be determined EV charging loads are directly 

connected to a bus in microgrid. If a bus collapse, the power supplied to EV charging load 

station is halted or not enough and it was affecting the voltage stability of the entire 

microgrid configuration. 

 

 

2.6 OPTIMISATION ALGORITHM 

 

Optimization is very beneficial and important to many human applications in many areas. 

Optimization can be defined as the maximization of output with quality and minimization 

of input resources. Optimization has applications in many fields like science, technology, 

economics, and engineering (Babalola et al., 2020). The heuristic algorithm can explore the 

approximate solution to a problem and the successful result is not always guaranteed. The 

heuristic algorithm candidates are measured by performance metrics such as lower running 

time and quality of results (Rashid & Tao, 2018). 

 

 A metaheuristic is a type of stochastic-based optimization. Metaheuristic algorithms 

usually take the idea from how nature is working like GA, Ant Colony Optimization 

(ACO), and PSO. Metaheuristics algorithms also can be classified based on the 

mechanisms which are mutation and adaptive (Wong & Ming, 2019). Table 2.3 shows 

metaheuristic algorithms classification. 
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Table 2.3: Metaheuristic Algorithms Classification (Wong & Ming, 2019) 

 

Categories Examples 

Swarm intelligence ACO 

Pheromone Intelligent Water Drop 

Gravitational search algorithm 

Glowworm algorithm 

PSO 

Evolutionary Imperialist Algorithm 

SaDe 

L-Shade 

Differential algorithm 

GA 

Other nature inspiration Bat algorithm 

Artificial Bee Colony Optimization 

Artificial Immune Algorithm 

Ying Yang Algorithm 

CSA 

 

 

2.6.1 Genetic Algorithm 

 

GA was established by John Holland from the University of Michigan in the 1960s, but the 

popularity of GA come after the 1990s. The mechanism of this algorithm is inspired by the 

Darwinian Theory of Natural Selection. The steps of GA involve mutations, crossover, and 

selection. The first step in GA is the generation of a random initial population. Each 

contains a set of features called chromosomes was being mutated and crossover with other 
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individuals. This process was iterated many times (Immanuel & Chakraborty, 2019). Figure 

2.6 shows a general GA pseudocode and Figure 2.7 shows a flowchart of GA. 

 

 

 

Figure 2.6: General GA pseudocode (Immanuel & Chakraborty, 2019) 
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Figure 2.7: GA Flow Chart (Immanuel & Chakraborty, 2019) 

  

 

2.6.2 Particle Swarm Optimisation 

 

PSO was designed by Kennedy and Eberhart to imitate and simulate simplified social 

behavior. PSO also can optimize nonlinear problems by the inspiration from fish schooling, 

bird flocking, and swarming theory in general (Kennedy & Eberhart, 2010). Besides that, 

PSO has excellent good convergence in addition to best in nonlinear problem optimization. 

Because of this advantage, many researchers are increasing PSO performance by 
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introducing new methods and adding new parameters. For example, Eberhart and Shi were 

introducing linear decreasing weight PSO which decreases the inertia of individual particles 

by updating them into velocity (Xiaojing et al., 2019).  

 

The concept of PSO is every individual was following their leader, in this case, 

Global Best (gbest), and track their position simultaneously. The position of every 

individual is denoted as Particle Best (pbest). PSO also has a few parameters such as 

cognitive parameters, ܿଵ, social parameters, ܿଶ, inertia, ݓ and velocity, ݒ௜ (Ülker & Ülker, 

2018). Figure 2.8 shows the general steps of PSO. 

 

 

 

Figure 2.8: General steps of PSO (Ülker & Ülker, 2018) 

 

 

2.6.3 Cuckoo Search Algorithm 

 

CSA was inspired by the behavior of certain cuckoo species. As a part of their reproduction 

strategy, cuckoo engages in a parasitic way to ensure their offspring hatch and live. Species 
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like Guira and ani place their eggs in a shared nest and sometimes eliminate others’ eggs 

to improve their own egg's survival probability. Some species of cuckoo birds lay their eggs 

in other host birds’ nests, and it can be another species of bird. A host bird was throwing 

another bird’s egg or abandon the nest if it found that there are other bird’s eggs in the nest. 

The survival of cuckoo offspring is better in the nest as cuckoo lay their eggs in the nest 

which is the host bird are just laying the egg. Thus, cuckoo bird offspring was removing 

other eggs in the nest to increase the food given to them by the host bird (Yang & Deb, 

2009). 

 

 Besides that, CSA also utilizes Levy Flights which mimic many animals and many 

insects’ patterns to explore their area. The mechanism is a sudden 90-degree turn in their 

exploration after many straight flight paths. Human behavior also can be related to Levy 

flight, such as hunter-gatherer foraging. Moreover, light also shows Levy's flight pattern 

(Yang & Deb, 2009). Figure 2.9 shows the pseudocode of CSA via Levy Flight and Figure 

2.10 shows Levy Flight path simulation in a 2-D plane. 
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Figure 2.9: Pseudocode of CSA via Levy Flights (Yang & Deb, 2009) 
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Figure 2.10: Levy Flight Path simulation in 2-D Plane (Ali et al., 2021) 

 

 

 The steps of CSA works are: 1) Cuckoo bird lay their one egg only at one time and 

put it in a random nest; 2) The best nest which is the higher quality survives for the next 

generation; 3) The host nest number is always fixed but the cuckoo bird’s egg can be 

detected by host bird with a probability between 0 to 1, denoted as ݌௔. If that happened, the 

host bird either abandons the nest or throws discovered egg (Yang & Deb, 2009). 

  

In the findings by Yang et al., CSA performed better than PSO and GA (Yang & 

Deb, 2009), In comparison with GA, CSA can find global optima 100% in all functions 

meanwhile GA can find between 77% to 100% of the time to find global optima as shown 

in Table 2.4. Besides that, PSO can only find between 90% to 100% of the time to find 

global optima as shown in Table 2.5. 
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Table 2.4: Comparison of GA and CSA (Yang & Deb, 2009) 

 

Functions/Algorithms GA CS 

Multiple peaks 52124 ± 3277 (98%) 927 ± 105 (100%) 

Michalewicz’s (d=16) 89325 ± 7914 (95%) 3221 ± 519 (100%) 

Rosenbrock’s (d=16) 55723 ± 8901 (90%) 5923 ± 1937 (100%) 

De Jong’s (d=256) 25412 ± 1237 (100%) 4971 ± 754 (100%) 

Schwefel’s (d=128) 227329 ± 7572 (95%) 8829 ± 652 (100%) 

Ackley’s (d=128) 32720 ± 3327 (90%) 4936 ± 903 (100%) 

Rastrigin’s 110523 ± 5199 (77%) 10354 ± 3755 (100%) 

Easom’s 19239 ± 3307 (92%) 6751 ± 1902 (100%) 

Griewanks 70925 ± 7652 (90%) 10912 ± 4050 (100%) 

Shubert’s (18 minima) 54077 ± 4997 (89%) 9770 ± 3592 (100%) 

 

 

Table 2.5: Comparison of PSO and CS (Yang & Deb, 2009) 

 

Functions/Algorithms GA CS 

Multiple peaks 3719 ± 205 (97%) 927 ± 105 (100%) 

Michalewicz’s (d=16) 6922 ± 537 (98%) 3221 ± 519 (100%) 

Rosenbrock’s (d=16) 32756 ± 5325 (98%) 5923 ± 1937 (100%) 

De Jong’s (d=256) 17040 ± 1123 (100%) 4971 ± 754 (100%) 

Schwefel’s (d=128) 14522 ± 1275 (97%) 8829 ± 652 (100%) 

Ackley’s (d=128) 23407 ± 4325 (92%) 4936 ± 903 (100%) 

Rastrigin’s 79491 ± 3715 (90%) 10354 ± 3755 (100%) 

Easom’s 17273 ± 2929 (90%) 6751 ± 1902 (100%) 
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Griewanks 55970 ± 4223 (92%) 10912 ± 4050 (100%) 

Shubert’s (18 minima) 23992 ± 3755 (92%) 9770 ± 3592 (100%) 

 

 

Uniyal et. al. find total DG sizing and location are nearly equal, meanwhile, real 

power loss is even less (Uniyal & Kumar, 2016), The highest power loss reduction in the 

study is CSA and PSO at the same par. While Gravitational Search Algorithm (GSA) is the 

third place, and the worst is GA. 

 

An algorithm is needed to explore an optimum configuration of a microgrid. CSA 

is used in this research to find the optimum network reconfiguration topology. Compared 

to PSO, CSA is more effective and consist of fewer parameter, thus making the 

implementation easier compared to PSO. Thus, in this research, power loss minimization 

and voltage stability were conducted by using CSA as the algorithm to find the solution for 

the power flow metaheuristic problem. The simulation results were compared with GA and 

PSO. 

 

 

2.7 RELATED WORKS 

 

Table 2.6 shows the related works about techniques used to reconfigure the network with 

EV charging loads integration. All research shows a reduction in power loss when a 

network is reconfigured by an optimization algorithm. Among these research, Li et al. 

(2015) and J. Wang et al. (2022) used a convex optimization algorithm whereas other 

researchers used a metaheuristics optimization algorithm. 
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Table 2.6: Table of Related Works 

 

Authors (Year) Approach Contribution Limitation 

Li et al. (2015) Distribution Network 

Reconfiguration 

based on Second-

order Conic 

Programming 

Considering EV 

Charging Strategy 

Distribution Network 

Reconfiguration with EV 

charging load penetration 

using Second-order Conic 

Programming has lower 

power loss compared to PSO 

Consumed time 

to calculate 

power loss is 

higher by using 

Second-order 

Conic 

Programming 

compared to 

PSO  

Reddy et al. (2021) Minimization of EV 

charging Stations 

influence on 

unbalanced radial 

distribution system 

with optimal 

reconfiguration using 

PSO 

Power loss can be reduced 

on an unbalanced radial 

distribution system by using 

PSO up to 26.36%. 

The simulation 

was conducted 

on an unbalanced 

IEEE-19 bus 

system which is 

a small-scale 

distribution 

system. 

Wan Izzat Aiman 

et al. (2021) 

CSA is used to find 

optimal 

reconfiguration with 

EV charging load 

integrated 

CSA can discover the 

optimum configuration to 

minimize power loss 

Only power loss 

reduction is used 

as an objective 

function. 
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Zhechao Li et al. 

(2016) 

Reconfiguration to 

Enhance the 

Capacity of EV 

Charging Stations in 

Radial Distribution 

Systems by using 

PSO 

PSO can reduce power loss 

and at the same time 

increase EV charging load 

capacity as the number of 

EV charging station bus site 

increase, the power loss 

reduces from 355.64 kW to 

293.67 kW, and EV 

charging station capacity 

increases from 4,744 kW to 

5,249kW. 

Bus 9, 14, 20, 

and 56 were 

assumed as 

potential EV 

charging stations 

bus sites without 

proper 

explanation. 

Reddy & 

Selvajyothi (2020)  

Mitigation of the 

impact of EV 

charging stations in 

the radial 

distribution system 

by using PSO by 

finding optimal 

placement of EV 

charging stations and 

network 

reconfiguration 

PSO can minimize power 

loss and voltage profile 

better when reconfiguration 

is run simultaneously with 

EV charging station 

placement compared to EV 

charging station placement 

only. 

The simulation 

was run on a 

balanced radial 

distribution 

system. The 

study can be 

extended to the 

unbalanced 

radial 

distribution 

system. 

J. Wang et al.  

(2022) 

Coordinated 

distribution 

reconfiguration with 

maintenance 

scheduling 

considering EV 

charging uncertainty 

Second-Order Cone 

Relaxation can find 

solutions to reduce power 

loss considering EV 

charging uncertainty when 

the distribution 

There is no 

comparison with 

metaheuristics 

optimization 

algorithms like 

CSA and PSO 
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by using Second-

Order Cone 

Relaxation 

reconfiguration system is 

under maintenance 

 

 

2.8 SUMMARY 

 

In summary, an algorithm is needed to find the optimum power loss minimization and 

voltage stability in the case of microgrid reconfiguration. CSA is chosen as the algorithm 

in this research with the simulation was compared with PSO and GA as CSA may perform 

better to find the optimal solution when power loss minimization and voltage stability is 

the objective function. 

 

 Thus, in this study, EV charging load was integrated with the IEEE-33 bus system 

and IEEE-69 bus system as the simulations to find optimal power loss and voltage stability. 

EV charging load has a big influence on microgrid power loss and voltage stability 

especially when fast charging is integrated. Reconfiguration of the microgrid can be used 

as a method to reduce power loss and increase voltage stability. CSA is used to discover 

the optimal reconfiguration in respect of power loss minimization and voltage stability. The 

findings between CSA, PSO, and GA were compared and analyzed. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 
 

 

3.1 OVERVIEW 

 

In this research, the microgrid power flow was being evaluated by using the MATLAB 

program. The approximation technique to find bus voltage magnitude and voltage angle is 

by using the Newton-Raphson (N-R) technique. Meanwhile, the microgrid model is based 

on the IEEE-33 bus system and IEEE-69 bus system. IEEE-33 bus system line and bus data 

are based on Baran & Wu (1989) and IEEE-69 bus system line and the bus is based on 

Chiang & Jean-Jumeau (1990). The IEEE-33 bus system is the simulation of a small-scale 

microgrid and the IEEE-69 bus system is the simulation of a medium-scale microgrid. 

 

 Then, the objective of this research is to find the best solution for network 

reconfiguration with EV charging load integrated by finding the optimum voltage stability 

and power loss as a single objective. 

 

 

3.2 POWER FLOW 

 

3.2.1 Power Flow Formulation 

 

Power flow, also known as load flow, is generally used to operate and plan a power system. 

Power flow is calculated from generation, load, and network data. The output of the 
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calculation is power loss, line flow, and voltages of every bus. As these equations are 

nonlinear, the power flow problem was calculated by using iterative methods. The output 

can be solved by calculating power balance equations (Albadi, 2020). In this research, the 

technique used is the N-R technique. 

 

 The power flow objective is to calculate the voltage of each bus which is the 

magnitude and angle by using data of generation, load, and network condition. Line flows 

and power losses can be calculated as the voltage is known. To solve the power flow 

problem, known and unknown variables are needed to be identified, and based on this 

identification, buses are categorized as a generation, slack, and load buses. A slack bus is 

considered a reference bus as both magnitude and angle was provided in the system; thus, 

it is also called a swing bus. Other generators are called PV buses as real power is specified 

but the angle is unknown. Meanwhile, load buses are known as PQ buses because real and 

reactive power loads are determined. But in PQ buses, voltage magnitude and voltage 

angles are unspecified, meanwhile, in PV buses, only the voltage angle is unidentified 

(Albadi, 2020). In this research, only the slack bus and PQ bus are used in the distribution 

system power flow analysis. The slack bus is bus number 1 in all bus system simulations 

and the other buses are PQ buses. So, there is only one generation node in the distribution 

system which is the slack bus. Table 3.1 shows bus type in the power flow problem. 
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Table 3.1: Bus type in power flow problem (Albadi, 2020) 

 

Bus Type Voltage (| ௜ܸ|ߜס௜) Real Power Reactive Power 

Magnitude Angle Generation Load Net ( ௜ܲ) Generation Load Net ( ௜ܳ) 

Slack/Swing Specified Specified Unknown Specified Unknown Unknown Specified Unknown 

Generator/Regulated/PV Specified Unknown Specified Specified Specified Unknown Specified Unknown 

Load/PQ Unknown Unknown Specified Specified Specified Specified Specified Specified 
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3.2.2 Power Flow Equation and Admittance Matrix 

 

Power flow formulation can be modeled in an abstract mathematical model which is the 

admittance matrix. It is also known as the Y-bus matrix. The matrix consists of lines and 

bus values. The matrix is a square matrix with the bus number taken as its dimensions. 

ܻ =  ൥
ଵܻଵ ڮ ଵܻ௡
ڭ ڰ ڭ
௡ܻଵ ڮ ௡ܻ௡

൩  (1) 

whereas. n is the number of buses. 

 

Value of ௜ܻ௜ is equal to summation of admittance connected to ௜ܻ. Meanwhile, 

elements ௜ܻ௝ are the negative values of the admittance between buses ݅ and j. In a large 

system, Y -bus is a sparse matrix. 

 

ଵܻଵ =  ෍ݕ௜௝

௡

௝ୀ଴
௝ஷ௜

(2) 

 

௜ܻ௝ = ௝ܻ௜ =  െݕ௜௝ (3) 

 

Net injected power of any bus can be solved by using bus voltage ௜ܸ, neighbor 

voltage ௝ܸ, and admittance between the bus and neighboring bus, ݕ௜௝. Figure 3.1 shows the 

flow of current to the load bus. 
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Figure 3.1: Flow of current to load bus (Albadi, 2020) 

 

 

௜ܫ =  ௜ܸݕ௜଴ +  ( ௜ܸ െ ଵܸ)ݕ௜ଵ +  ( ௜ܸ െ ଶܸ)ݕ௜ଶ +ڮ +  ൫ ௜ܸ െ ௝ܸ൯ݕ௜௝ (4) 

 

Rearrange the equation as voltage function: 

௜ܫ =  ௜ܸ൫ݕ௜଴ + ௜ଵݕ + ௜ଶݕ + +ڮ  ௜௝൯ݕ െ  ଵܸݕ௜ଵ െ  ଶܸݕ௜ଶ െ െڮ  ௝ܸݕ௜௝  (5) 

 

௜ܫ =  ௜ܸ ෍ݕ௜௝
௝ୀ଴
௝ஷ௜

െ  ෍ݕ௜௝ ௝ܸ
௝ୀଵ
௝ஷ௜

=  ௜ܸ ௜ܻ௜ +  ෍ ௜ܻ௝ ௝ܸ
௝ୀଵ
௝ஷ௜

 (6)
 

 

The power equation of any bus is: 
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௜ܵ =  ௜ܲ + ݆ܳ௜ =  ௜ܲܫ௜(7)  כ 

 

Which also can be expressed as: 

௜ܵ
כ =  ௜ܲ െ ݆ܳ௜ =  ௜ܸ

௜ܫכ   (8) 

 

By substituting ܫ௜ into power equation: 

௜ܵ
כ =  ௜ܸ

כ

ۉ

ۈ
ۇ

௜ܸ෍ݕ௜௝
௝ୀ଴
௝ஷ௜

െ  ෍ݕ௜௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

= ௜ܸ
כ

ۉ

ۈ
ۇ

௜ܸ ௜ܻ௜ +  ෍ ௜ܻ௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

 (9) 

 

Real and reactive power can be calculated by:  

௜ܲ =  ܴ݁

ە
ۖ
۔

ۖ
ۓ

௜ܸ
כ

ۉ

ۈ
ۇ

௜ܸ෍ݕ௜௝
௝ୀ଴
௝ஷ௜

െ  ෍ݕ௜௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

ۙ
ۖ
ۘ

ۖ
ۗ

 =  ܴ݁

ە
ۖ
۔

ۖ
ۓ

௜ܸ
כ

ۉ

ۈ
ۇ

௜ܸ ௜ܻ௜ +  ෍ ௜ܻ௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

ۙ
ۖ
ۘ

ۖ
ۗ

 (10) 

ܳ௜ =  െ݉ܫ

ە
ۖ
۔

ۖ
ۓ

௜ܸ
כ

ۉ

ۈ
ۇ

௜ܸ෍ݕ௜௝
௝ୀ଴
௝ஷ௜

െ  ෍ݕ௜௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

ۙ
ۖ
ۘ

ۖ
ۗ

 = െ݉ܫ

ە
ۖ
۔

ۖ
ۓ

௜ܸ
כ

ۉ

ۈ
ۇ

௜ܸ ௜ܻ௜ +  ෍ ௜ܻ௝ ௝ܸ
௝ୀଵ
௝ஷ௜ ی

ۋ
ۊ

ۙ
ۖ
ۘ

ۖ
ۗ

 (11) 

 

Also, can be expressed as: 
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௜ܲ =  ෍| ௜ܸ|ห ௝ܸหห ௜ܻ௝ห cos൫ߠ௜௝ െ ௜ߜ + ௝൯ߜ
௡

௝ୀଵ

 (12) 

ܳ௜ =  െ෍| ௜ܸ|ห ௝ܸหห ௜ܻ௝ห sin൫ߠ௜௝ െ ௜ߜ + ௝൯ߜ
௡

௝ୀଵ

 (13) 

 

Thus, ܫ௜ can be expressed as: 

௜ܫ =  ௜ܲ െ ݆ܳ௜ 

௜ܸ
כ  =  ௜ܸ ෍ݕ௜௝

௝ୀ଴
௝ஷ௜

െ  ෍ݕ௜௝ ௝ܸ
௝ୀଵ
௝ஷ௜

= ௜ܸ ௜ܻ௜ +  ෍ ௜ܻ௝ ௝ܸ
௝ୀଵ
௝ஷ௜

(14)
 

  

 

3.2.3 Newton-Raphson Technique 

 

The N-R technique is a technique based on Taylor’s expansion approximation, which is 

also known as the method of successive approximation. The objective of the N-R technique 

is to find variable x when the function is ݂(ݔ) = c. This function can be calculated by 

Taylor’s expansion approximation. 

 

 To find variable x, we need to start with an initial estimate of ݔ[଴] and a deviation 

from the correct solution of οݔ[଴]. Thus, the function is: 

݂൫ݔ[଴] +  οݔ[଴]൯ = c (15) 

 

By utilizing Taylor’s expansion into c, the equation can be expressed as:  
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݂൫ݔ[଴] + οݔ[଴]൯

= ݂൫ݔ[଴]൯ +  ݂ᇱ൫ݔ[଴]൯οݔ[଴]  +  
1
2!
݂ᇱᇱ൫ݔ[଴]൯οݔ[଴]ଶ +  

1
3!
݂ᇱᇱᇱ൫ݔ[଴]൯οݔ[଴]ଷ +  … = c (16)

 

 

 As οݔ[଴] is too small, the higher order term (+ ଵ
ଶ!
݂ᇱᇱ൫ݔ[଴]൯οݔ[଴]ଶ +

 ଵ
ଷ!
݂ᇱᇱᇱ൫ݔ[଴]൯οݔ[଴]ଷ + … ) can be neglected and approximation can be calculated by using the 

first two terms. 

݂൫ݔ[଴] +  οݔ[଴]൯ ൎ ݂൫ݔ[଴]൯ + ݂ᇱ൫ݔ[଴]൯οݔ[଴]  = c (17) 

 

 Deviation from the right solution can be calculated iteratively from ݔ[଴] as the 

following equation: 

[଴]ݔ  =  
ܿ െ  ݂൫ݔ[଴]൯
݂ᇱ(ݔ[଴])

 =  
ο݂൫ݔ[଴]൯
݂ᇱ(ݔ[଴])

 (18) 

 

 Thus, the next iteration, which is ݔ[ଵ] improve as follows: 

[ଵ]ݔ = [଴]ݔ  +  οݔ[଴] (19) 

 

 The iterative process is terminated if differences between calculated and scheduled 

value (ο݂[௞] =  c െ  ݂൫ݔ[௞]൯) is not exceeded the acceptable limit หο݂[௞]ห ൑  .ߝ

 

 In the power flow problem aspect, variable x is voltage magnitude and angle (| ௜ܸ|ɴ

௜) at load buses. The variable c is both load bus net real, ௜ܲߜ   ௦௖௛ and reactive power, ݆ܳ௜௦௖௛. 

 

 Thus, the load bus net real power iterative value is:  
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௜ܲ  ௞ାଵ  =  ෍| ௜ܸ| ௞ห ௝ܸห ௞ ௢௥ ௞ାଵห ௜ܻ௝ห cos൫ߠ௜௝ െ ௜ [௞]ߜ + ௝ߜ  [௞]൯
௡

௝ୀଵ

(20) 

 

As many variables are being calculated, the Jacobian matrix can be used as partial 

derivatives is being used in respect to many variables. The Jacobian matrix can be 

expressed as follow:  

݂ᇱ  =

ۏ
ێ
ێ
ێ
ۍ
߲ ௜ܲ

௜ߜ߲
߲ ௜ܲ

߲| ௜ܸ|
߲ܳ௜
௜ߜ߲

߲ܳ௜
߲| ௜ܸ|ے

ۑ
ۑ
ۑ
ې

 = ൤
௉ఋܬ |௉|௏ܬ
ொఋܬ |ொ|௏ܬ

൨  (21) 

 

Thus, the N-R method can solve the power flow problem by using the following 

equation: 

ቈ ௜ܲ  ௦௖௛

ܳ௜௦௖௛
቉  െ  ቈ ௜ܲ  [௞]

ܳ௜
[௞]቉  =  ቈ

ο ௜ܲ [௞]

οܳ௜
[௞]቉  =  

ۏ
ێ
ێ
ێ
߲ۍ ௜ܲ

௜ߜ߲

[௞] ߲ ௜ܲ

߲| ௜ܸ|

[௞]

߲ܳ௜
௜ߜ߲

[௞] ߲ܳ௜
߲| ௜ܸ|

[௞]

 
ے
ۑ
ۑ
ۑ
ې

ቈ οߜ௜ 
[௞]

ο| ௜ܸ|[௞]቉ (22) 

 

 An inverse Jacobian matrix is needed to calculate deviation for all iterations: 

ቈ οߜ௜ 
[௞]

ο| ௜ܸ|[௞]቉  =  ቈ
௉ఋܬ  [௞] |௉|௏ܬ

[௞]

ொఋܬ  [௞] ொ|௏| [௞]቉ܬ
ିଵ

ቈ
ο ௜ܲ [௞]

οܳ௜
[௞]቉  (23) 

 

 After that, the new iteration can be solved by:  

ቈ  ௜ߜ
[௞]

| ௜ܸ|[௞]቉  =  ቈ ௜ߜ  
[௞ିଵ]

| ௜ܸ|[௞ିଵ]቉  +  ቈ οߜ௜ 
[௞]

ο| ௜ܸ|[௞]቉ (24) 
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 The operation is continued until the differences between scheduled and calculated 

values are within the acceptable range, ቈ
ο ௜ܲ [௞]

οܳ௜[௞]቉ ൑  .ߝ

 

 In this research, the number of iteration processes using the N-R technique is 10 

iterations for the IEEE-33 bus system and IEEE-69 bus system for all algorithms used in 

this research. If the solution is not found within 10 iterations, the calculation is considered 

as do not converge. Meanwhile, the acceptable range of ߝ is within 10 ି଼. 

 

 

3.3 IEEE BUS SYSTEM 

 

3.3.1 IEEE-33 Bus System 

 

IEEE-33 bus system have 33 buses, which is 32 buses is load bus and 1 bus is the generator 

bus. In terms of switches, IEEE-33 consists of 37 switches, which are 32 sectionalizing 

switches and five tie switches. The base voltage of IEEE-33 busses system 1s 12.66 kV. 

The total real power load is 3.72 MW, and the total reactive power is 2.30 MVAR. The 

initial tie switch reconfiguration is 33, 34, 35, 36, and 37. The data for all buses and 

switches are shown in table below. Real power and reactive power in data table is the load 

connected to ‘to bus’. IEEE-33 bus system is a power distribution system data for a 

simulation in a small scale microgrid. Table 3.2 shows data of IEEE-33 bus system used in 

this research. 

 

 

 



 

43 
 

 

 

Table 3.2: Data of IEEE-33 bus system 

 

Line No From Bus To Bus R (ȍ� X �ȍ� Real Power 

(kW) 

Reactive Power 

(kVAR) 

1 1 2 0.0922 0.0470 100 60  

2 2 3 0.4930 0.2511 90 40  

3 3 4 0.3660 0.1864 120  80  

4 4 5 0.3811 0.1941 60  30  

5 5 6 0.8190 0.7070 60  20  

6 6 7 0.1872 0.6188 200  100  

7 7 8 0.7114 0.2351 200  100  

8 8 9 1.0300 0.7400 60  20  

9 9 10 1.0440 0.7400 60  20  

10 10 11 0.1966 0.0650 45  30  

11 11 12 0.3744 0.1238 60  35  

12 12 13 1.4680 1.1550 60  35  

13 13 14 0.5416 0.7129 120  80  

14 14 15 0.5910 0.5260 60  10  

15 15 16 0.7463 0.5450 60  20  

16 16 17 1.2890 1.7210 60  20  

17 17 18 0.7320 0.5740 90  40  

18 2 19 0.1640 0.1565 90  40  

19 19 20 1.5042 1.3554 90  40  

20 20 21 0.4095 0.4784 90  40  

21 21 22 0.7089 0.9373 90  40  

22 3 23 0.4512 0.3083 90  50  

23 23 24 0.8980 0.7091 420  200  

24 24 25 0.8960 0.7011 420  200  

25 6 26 0.2030 0.1034 60  25  
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26 26 27 0.2842 0.1447 60  25  

27 27 28 1.0590 0.9337 60  20  

28 28 29 0.8042 0.7006 120  70  

29 29 30 0.5075 0.2585 200  600  

30 30 31 0.9744 0.9630 150  70  

31 31 32 0.3105 0.3619 210  100  

32 32 33 0.3410 0.5302 60  40  

33 21 8 2.0000 2.0000 - - 

34 9 15 2.0000 2.0000 - - 

35 12 22 2.0000 2.0000 - - 

36 18 33 0.5000 0.5000 - - 

37 25 29 0.5000 0.5000 - - 

 

 

 In the IEEE-33 bus system, there are 5 fundamental loops in the microgrid bus 

system. At one time, only one tie switch in a fundamental loop is needed to be open. Thus, 

at one time, five switches were being opened, one switch by each fundamental loop. By 

using this method, all busloads were confirmed to be interconnected with the generator bus. 

Table 3.3 shows fundamental loop of IEEE-33 used in this research. 

 

 

Table 3.3: Fundamental Loop of IEEE-33 bus system 

 

Fundamental 

Loop Number 

Tie-Line 

1 2, 3, 4, 5, 6, 7, 18, 19, 20, 33 

2 9, 10, 11, 12, 13, 14, 34 
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3 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35 

4 
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 32, 

36 

5 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37 

 

 

 

Figure 3.2: IEEE-33 initial configuration 

 

 

There are seven index cases that was being simulated in the IEEE-33 bus system. 

The initial configuration of IEEE-33 for tie and sectionalize switch in all indexes is shown 

in Figure 3.2. Index 0 is a simulation when there is no EV charging station load integrated 

into the microgrid system. Index 1 is a simulation of one fast-charging station with a load 

of 1500 kW connected to bus 2, which is the strongest bus. A strong bus in this IEEE-33 

bus system means the bus is more unlikely to collapse in case of additional load is added 

to the system compared to other buses as the bus has the highest VSI compared to other 
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buses. 1500kW charging load is equivalent to 30 EVs to charge at the same time in one 

station by using a 50kW fast charger. 

 

Index 2 is the simulation of two charging stations connected to bus 2, which is a 

3000kW load, which can cater to up to 60 EVs at the same time. Index 3 is the simulation 

of five charging stations connected to bus 2, which is a 7500kW load, thus, this simulation 

simulates 150 EVs using the charging station at the same time. Index 4 is a simulation of 

two charging stations connecting to the microgrid system, one connected to bus 2 and the 

other connected to bus 19. Bus 19 is the second strongest bus. Thus, a 3000kW load is 

connected to the system. Index 5 is a 1500kW load connected to bus 18. Bus 18 is the 

weakest bus in the microgrid system. Meanwhile, index 6 is 1500kW each are connected 

to bus 18 and bus 17, thus the load connected to the system is 3000kW. Bus 17 is the second 

weakest bus in the system. For example, Figure 3.3 is the illustration of index 1 which is 

one EV charging station load connected to bus 2. Table 3.4 shows index cases of IEEE-33 

bus system. 

 

 

Table 3.4: Index cases of IEEE-33 bus system (Deb, Tammi, et al., 2018) 

 

Index Details EV charging load (kW) 

0 No EV charging load  0 

1 Fast charging load at bus 2 1500 

2 Fast charging load at bus 2 3000 

3 Fast charging load at bus 2 7500  

4 Fast charging load at bus 2 and bus 19 3000 (1500 each bus) 

5 Fast charging load at bus 18 1500 

6 Fast charging load at bus 18 and bus 17 3000 (1500 each bus) 
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Figure 3.3: Index 1 of IEEE-33 bus system (1500 kW at bus 2) 

 

 

3.3.2 IEEE-69 Bus System 

 

IEEE-69 bus system consists of 69 buses, which is 68 buses is load bus and 1 bus is the 

generator bus. In terms of switches, IEEE-69 consists of 73 switches, which are 68 

sectionalizing switches and five tie switches. The base voltage of IEEE-69 busses system 

1s 12.66 kV. The total real power load is 3.80 MW, and the total reactive power is 2.69 

MVAR. The initial tie switch reconfiguration is 69, 70, 71, 72, and 73. The data for all 

buses and switches are shown in the table below. Real power and reactive power in the data 

table is the load connected to ‘to bus’. The IEEE-69 bus system is a power system data for 

a simulation in a medium-scale microgrid system. There are also five fundamental loops in 

the IEEE-69 bus system. Figure 3.4 shows IEEE-69 initial reconfiguration and Table 3.5 

shows data of IEEE-69 used in the research. 
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Figure 3.4: IEEE-69 initial reconfiguration (Nguyen et al., 2016) 

 

 

Table 3.5: Data of IEEE-69 bus system 

 

Line No From Bus To Bus R �ȍ� X �ȍ� Real Power 

(kW) 

Reactive Power 

(kVAR) 

1 1 2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.3660 0.1864 2.6 2.2 

6 6 7 0.3811 0.1941 40.4 30 

7 7 8 0.0922 0.0470 75 54 

8 8 9 0.0493 0.0251 30 22 
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9 9 10 0.8190 0.2707 28 19 

10 10 11 0.1872 0.0619 145 104 

11 11 12 0.7114 0.2351 145 104 

12 12 13 1.0300 0.3400 8 5.5 

13 13 14 1.0440 0.3450 8 5.5 

14 14 15 1.0580 0.3496 0 0 

15 15 16 0.1966 0.0650 45.5 30 

16 16 17 0.3744 0.1238 60 35 

17 17 18 0.0047 0.0016 60 35 

18 18 19 0.3276 0.1083 0 0 

19 19 20 0.2106 0.0696 1 0.6 

20 20 21 0.3416 0.1129 114 81 

21 21 22 0.0140 0.0046 5 3.5 

22 22 23 0.1591 0.0526 0 0 

23 23 24 0.3463 0.1145 28 20 

24 24 25 0.7488 0.2475 0 0 

25 25 26 0.3089 0.1021 14 10 

26 26 27 0.1732 0.0572 14 10 

27 3 28 0.0044 0.0108 26 18.6 

28 28 29 0.0640 0.1565 26 18.6 

29 29 30 0.3978 0.1315 0 0 

30 30 31 0.0702 0.0232 0 0 

31 31 32 0.3510 0.1160 0 0 

32 32 33 0.8390 0.2816 14 10 

33 33 34 1.7080 0.5646 19.5 14 

34 34 35 1.4740 0.4873 6 4 

35 3 36 0.0044 0.0108 26 18.55 

36 36 37 0.0640 0.1565 26 18.55 

37 37 38 0.1053 0.1230 0 0 



 

50 
 

 

 

38 38 39 0.0304 0.0355 24 17 

39 39 40 0.0018 0.0021 24 17 

40 40 41 0.7283 0.8509 1.2 1 

41 41 42 0.3100 0.3623 0 0 

42 42 43 0.0410 0.0478 6 4.3 

43 43 44 0.0092 0.0116 0 0 

44 44 45 0.1089 0.1373 39.2 26.3 

45 45 46 0.0009 0.0012 39.2 26.3 

46 4 47 0.0034 0.0084 0 0 

47 47 48 0.0851 0.2083 79 56.4 

48 48 49 0.2898 0.7091 384.7 274.5 

49 49 50 0.0822 0.2011 384.7 274.5 

50 8 51 0.0928 0.0473 40.5 28.3 

51 51 52 0.3319 0.1114 3.6 2.7 

52 9 53 0.1740 0.0886 4.35 3.5 

53 53 54 0.2030 0.1034 26.4 19 

54 54 55 0.2842 0.1447 24 17.2 

55 55 56 0.2813 0.1433 0 0 

56 56 57 1.5900 0.5337 0 0 

57 57 58 0.7837 0.2630 0 0 

58 58 59 0.3042 0.1006 100 72 

59 59 60 0.3861 0.1172 0 0 

60 60 61 0.5075 0.2585 1244 888 

61 61 62 0.0974 0.0496 32 23 

62 62 63 0.1450 0.0738 0 0 

63 63 64 0.7105 0.3619 227 162 

64 64 65 1.0410 0.5302 59 42 

65 11 66 0.2012 0.0611 18 13 

66 66 67 0.0047 0.0014 18 13 
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67 12 68 0.7394 0.2444 28 20 

68 68 69 0.0047 0.0016 28 20 

69 11 43 0.5000 0.5000 - - 

70 13 21 0.5000 0.5000 - - 

71 15 46 1.0000 1.0000 - - 

72 50 59 2.0000 2.0000 - - 

73 27 65 1.0000 1.0000 - - 

 

 

Table 3.6: Fundamental Loop of the IEEE-69 bus system 

 

Fundamental 

Loop Number 

Tie-Line 

1 3, 4, 5, 6, 7, 8, 9, 10, 35, 36, 37, 38, 39, 40, 41, 42, 69 

2 13, 14, 15, 16, 17, 18, 19, 20, 70 

3 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 40, 41, 42, 43, 

44, 45, 71 

4 4, 5, 6, 7, 8, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 72 

5 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 52, 

53, 54, 55, 56, 57 58, 59, 60, 61, 62, 63, 64, 73 

 

 

There are seven index cases that were being simulated in the IEEE-69 bus system. 

Fundamental loops of the IEEE-69 bus system is shown in Table 3.6. Index cases of IEEE-

69 is shown in Table 3.7. Index 0 is a simulation when there is no EV charging station load 

integrated into the microgrid system. Index 1 is a simulation of one fast-charging station 

with a load of 1500 kW connected to bus 2, which is the strongest bus. A strong bus in this 
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IEEE-69 bus system means the VSI of the bus is the highest, thus, the bus is more unlikely 

to collapse in case of additional load is added to the system compared to other buses. 

 

Index 2 is the simulation of two charging stations connected to bus 2, which is a 

3000kW load, which can cater to up to 60 EVs at the same time. Index 3 is the simulation 

of five charging stations connected to bus 2, which is a 7500kW load, thus, this simulation 

simulates 150 EVs using the charging station at the same time. Index 4 is a simulation of 

two charging stations connecting to the microgrid system, one connected to bus 2 and the 

other connected to bus 3. Bus 3 is the second strongest bus. Thus, a 3000kW load is 

connected to the system. Index 5 is a 1500kW load connected to bus 65. Bus 65 is the 

weakest bus in the system. Meanwhile, index 6 is 1500kW each are connected to bus 65 

and bus 64, thus the load connected to the system is 3000kW. Bus 64 is the second weakest 

bus in the system. For example, Figure 3.5 is the illustration of index 1 which is one EV 

charging station load connected to bus 2. 

 

 

Table 3.7: Index cases of the IEEE-69 bus system 

 

Index Details EV charging load (kW) 

0 No EV charging load  0 

1 Fast charging load at bus 2 1500 

2 Fast charging load at bus 2 3000 

3 Fast charging load at bus 2 7500  

4 Fast charging load at bus 2 and bus 3 3000 (1500 each bus) 

5 Fast charging load at bus 65 1500 

6 Fast charging load at bus 65 and bus 64 3000 (1500 each bus) 
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Figure 3.5: Index 1 of IEEE-69 bus system (1500 kW at bus 2) 

 

 

3.4 OBJECTIVE FUNCTIONS 

 

3.4.1 Power Loss 

 

Total power loss can be evaluated by a power loss summation of all branches in the 

microgrid system. The equation is given as follows:  

௟ܲ௢௦௦ =  ෍ܴ௜ ቆ
௜ܲ
ଶ  +  ܳ௜ଶ

௜ܸ
ଶ ቇ

ே௕௥

௜ୀଵ

 (25) 

 

 Then, the net power loss reduction can be calculated as the ratio of power loss after 

reconfiguration over power loss before reconfiguration. Thus, the value of the net power 
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loss reduction is less than 1 if there is power loss reduction after reconfiguration. The 

formulation based on (Nguyen et al., 2016) is given as follow:  

ο ௟ܲ௢௦௦
ோ  =  ௟ܲ௢௦௦

௥௘௖.

௟ܲ௢௦௦
଴  (26) 

 

 

3.4.2 Voltage Stability Index 

 

The VSI formulation is taken from research by Ranjan, Venkatesh, & Das (2003), which is 

given the formula as below:  

(௞ାଵ)ܫܸܵ =  | ௞ܸ|ସ െ 4( ௞ܲାଵܺ௞ െ ܳ௞ାଵܴ௞)ଶ െ 4( ௞ܲାଵܴ௞ െ ܳ௞ାଵܺ௞)| ௞ܸ|ଶ (27) 

 

which is ܸܵܫ(௞ାଵ) being VSI of ݇ + 1 node,  ௞ܸ being voltage of ݇௧௛  node, ௞ܲାଵ 

being real power loss of ݇ + 1 node, ܺ௞ being  the reactance of ݇௧௛ node, ܳ௞ାଵ being 

reactive power loss of ݇ + 1 node, and ܴ௞ being the resistance of ݇௧௛ node. 

 

In this VSI, the higher the value of VSI, the more stable the voltage stability in the 

microgrid system. Thus, for a minimization function, a deviation must be calculated. A 

voltage stability deviation index (dVSI) can be calculated as follow based on (Nguyen et 

al., 2016) as follows:  

οܸܵܫ = max ൬
1 െ ௜ܫܸܵ 

1
൰ ݅׊          = 2, … . ௕ܰ௨௦ (28) 
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3.4.3 Power Loss And Voltage Stability Index 

 

Then, the objective function is the minimization of total power loss and dVSI based on the 

paper by Nguyen et al. (2016). The equation is: 

= ܨ ݁ݖ݅݉݅݊݅݉  ο ௟ܲ௢௦௦
ோ  + οܸܵ(29) ܫ 

 

 

3.5 CUCKOO SEARCH ALGORITHM 

 

In this research, the target of CSA simulation is to find the minimum value of the objective 

function, which is a total power loss and dVSI as a single objective. The simulation also 

was compared to a single objective of dVSI only and total power loss only to study the 

extent of the algorithm when dealing with two objectives as a single objective. Figure 3.6 

shows the flowchart of microgrid reconfiguration by using CSA via Levy Flight. The steps 

of CSA in this research are: 

i. System data such as branch and bus number, busload, and resistance and 

reactance were loaded in the MATLAB program. 

ii. EV loads were added to microgrid to simulate application of EV loads 

integration to IEEE-33 and IEEE-69 microgrids. 

iii. Bus voltage magnitude and angles together with power loss ( ௟ܲ௢௦௦) are 

evaluated by executing the power flow program in MATLAB. 

iv. Initial configuration, which is before reconfiguration open switch set is 

defined as:  ݔ௜ = ൫ (ݔ௜)ଵ଴ ڮ ௡೐(௜ݔ)
଴ ൯. 

v. The power loss before reconfiguration, ݔ௜ is calculated and denoted as 

௟ܲ௢௦௦
଴ . 

vi. Algorithm parameters is configurated such as tie switch dimension (݊௘), 

nest dimension (݊ௗ), number of nests (n), discoverability probability (݌௔),  
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and step VL]H��Į���ORZHU�OLPLW search space (݈௔), upper limit search space (݈௕) 

and maximum iteration number (N). In this research, both IEEE-33 and 

IEEE-69 bus system have the value ݊௘ of 5. Value of ݊ௗ is 33 in IEEE-33 

bus system and 69 in IEEE-69 bus system. Thus, ݊ௗ is the number of buses 

in the system. Number of nests (n) is 20 for both bus system, Į is 0.25, ݈௔ is 

always 1, ݈௕ is the number of elements in fundamental loops that is not 

repeated in other fundamental loops. In IEEE-33, ݈௕ is 7, 9, 4, 8, and 8 for 

fundamental loop one to five. Meanwhile, in IEEE-69 bus system, ݈௕ is 12, 

17, 13, 8, and 7. Number of iteration N is 40. 

vii. Search space ݊ × ݊ௗ is randomly generated as initial population. Each 

row indicates a set of solution. Meanwhile, every element of ݔ௖ indicates 

sectionalizing switch of each solution. 

௖ݔ = ቌ
ଵଵ(௖ݔ) ڮ ௡೏(௖ݔ)

ଵ

ڭ ڰ ڭ
ଵ௡(௖ݔ) ڮ ௡೏(௖ݔ)

௡
ቍ (30) 

viii. Then, CSA is performed by using the Levy flight method to find potential 

solutions. The formula of Levy distribution is: 

= ݑ ~ ݕݒ݁ܮ > ఒ        1ିݐ  ߣ  ൑  3 (31) 

Levy flight is a random walk based on Levy distribution. The formula for 

finding a new solution with Levy flight as is follows, while t is the current 

iteration number: 

௜ݔ
(௧ାଵ)  = ௜ݔ 

(௧ାଵ)  + ߙ  ْ (ߣ)ݕݒ݁ܮ (32) 

ix. Then, the bus voltage of every element of ݔ௖ is calculated, and the real 

power loss after reconfiguration also were calculated denoted as ( ௟ܲ௢௦௦
௥௘௖.)ᇱ , 

for each element ݔ௖. 

x. After that, real power loss reduction is calculated by: 

(ο ௟ܲ௢௦௦
ோ )ᇱ =  

( ௟ܲ௢௦௦
௥௘௖.)ᇱ

௟ܲ௢௦௦
଴ (33) 

xi. Then, dVSI was calculated for every element of ݔ௖, and the maximum value 

was taken as dVSI value: 
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(οܸܵܫ)ᇱ = max ൬
1 െ ೔(௫೎)ܫܸܵ 

1
൰ ݅׊      = 2, … . ௗܰ (34) 

xii. The value of power loss minimization ratio with dVSI is obtained by: 

ᇱܨ = min((ο ௟ܲ௢௦௦
ோ )ᇱ + (οܸܵܫ)ᇱ) (35) 

While ܨԢ is the minimum value for power loss reduction ratio and voltage 

stability for solution found by using the Levy Flight method. 

xiii. The bus voltage is accepted if the bus voltage per unit value is within the 

limit of the restricted value, which is between ௠ܸ௔௫ and ௠ܸ௜௡. ௠ܸ௔௫ is 1.1 

and ௠ܸ௜௡ is 0.9. If it is not, then 	Ԣ  is set as infinity. 

xiv. Then, a solution was selected randomly in nest ݔ௖, denoted as (ݔ௖)௝. The 

minimum value of objective function  (ݔ௖)௝ is denoted as ܨ௝. 

xv. If the solution selected by the Levy flight method was better,ܨᇱ would 

replace ܨ௜. Else, ܨ௜ is kept as a solution. 

xvi. Then, rejected solution of ݌௔ would be abandoned, and new solutions would 

be built by using the Levy Flight path. 

xvii. The best solution would be preserved. 

xviii. The solution would be ranked to find the best current solution. 

xix. Iteration is increased by 1 and if it does not reach the maximum iteration 

number, repeat step xii. Else, go to step xix. 

xx. The result would be displayed. 
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Figure 3.6: Flowchart of microgrid reconfiguration by using CSA via Levy Flight. 
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3.6 SUMMARY 

 

In summary, the research methodology was designed to simulate the application of EV load 

integrations to IEEE-33 and IEEE-69 microgrids. IEEE-33 microgrids is an application for 

small-scale microgrids meanwhile IEEE-69 is an application for medium-scale microgrids. 

Both the strongest and weakest bus based on VSI were determined to find the effect of EV 

load integrations on microgrids. Thus, power loss and VSI can be calculated and analyzed 

to investigate the EV load's effect on microgrids, and CSA was used to find the extent of 

the CSA to reconfigure the microgrids. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 
 

 

4.1 OVERVIEW 

 

In this chapter, the results and discussion are divided into two parts, subchapter 4.2 is for 

the IEEE-33 bus system representing small-scale microgrids, and subchapter 4.3 represents 

the IEEE-69 bus system representing medium-scale microgrids. Besides that, subchapters 

4.2 and 4.3 are further divided into seven (7) index cases and analyses of the simulation 

results. Finally, subchapter 4.4 summarize this chapter's findings. 

 

 

4.2 IEEE-33 BUS SYSTEM 

 

In the IEEE-33 bus system, seven (7) index cases which are indicated as index 0 to 6, were 

simulated with EV charging load integration cases. Index 0 is the case when no EV charging 

load is connected to the microgrid. Index 1 is 1500kW EV charging load is connected to 

bus 2, index 2 is when 3000kW EV charging load is connected to bus 2 and index 3 is when 

7500kW EV charging load is connected to bus 2. Index 1 to index 3 is when the EV 

charging load is connected to the strongest bus. Besides that, index 4, 3000kW charging 

load is connected to the bus system which is bus 2 and 19 each have 1500kW EV charging 

load. Index 5 is the situation when 1500kW EV charging load is connected to weakest bus 

which is bus 18. Lastly, index 6 is when 3000kW EV charging load is connected to the two 

weakest buses, bus 18 and bus 17, 1500kW for each bus. 
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4.2.1 Without EV Charging Load (Index 0) 

 

In this case, no load from the EV charger is integrated into the microgrid. The result was 

shown in Table 4.1. When no EV charging load was integrated into the microgrid and only 

minimization of power loss is considered, CSA could reduce power loss higher than PSO 

and GA by 5.91 % and 0.21% respectively. While for VSI only, CSA gave a slightly better 

value than PSO and GA by 0.0130 and 0.0102 points respectively. When power loss and 

VSI are both considered as a single objective, CSA shows an objective function score better 

than PSO and GA by 0.0253 and 0.0095 points respectively. GA find a better power loss 

minimization by 0.21% but worse VSI by 0.0115 points compared to CSA but PSO is worse 

than CSA for both power loss minimization and VSI improvement. This shows CSA can 

find a better trade-off between power loss and voltage stability compared to PSO and GA 

in Index 0. Thus, the simulation shows CSA is better than GA followed by PSO when no 

EV charging load is integrated in microgrid.  

 

 

Table 4.1: IEEE-33 for CSA Index 0 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 202.68 

Min Voltage (p.u) 0.9131 

Minimum VSI 0.6970 

Power Loss Switches opened 7   9  14  32  37 7  14  32  35  37 7   9  14  28  32 
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Power Loss (kW) 139.55 151.51 139.98 

% Loss Reduction  31.15 25.24 30.94 

Min Voltage (p.u) 0.9378 0.9360 0.9413 

Minimum VSI 0.7758 0.7687 0.7873 

VSI Switches opened 7   9  14  28  32 7  14  28  35  36 6  11  28  34  36 

Power Loss (kW) 139.98 152.37 150.43 

% Loss Reduction  30.94 24.82 25.78 

Min Voltage (p.u) 0.9413 0.9377 0.9386 

Minimum VSI 0.7873 0.7743 0.7771 

Power Loss 

and VSI 

Switches opened 7   9  14  28  32 7  11  32  34  37 7   9  14  32  37 

Power Loss (kW) 139.98 142.76 139.55 

% Loss Reduction  30.94 29.56 31.15 

Minimum Voltage 

(p.u) 

0.9413 0.9378 0.9378 

Minimum VSI 0.7873 0.7758 0.7758 

Objective 

function score 

0.9033 0.9286 0.9128 

 

 

4.2.2 Index 1 in IEEE-33 Bus System 

 

In Index 1, one (1) EV fast-charging load station is placed on bus 2 which is the strongest 

bus. In this case, a 1500 kW load is connected to the microgrid from EV chargers. The 
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result was shown in Table 4.2. When 1500 kW EV charging load was integrated into the 

microgrid and only minimization of power loss is considered, CSA could reduce power 

loss higher than PSO and GA by 8.81 % and 0.35% respectively. While for VSI only, CSA 

also gave a better value than PSO and GA by 0.0186 and 0.0126 points respectively. When 

power loss and VSI are both considered as a single objective, CSA shows an objective 

function score better than PSO and GA by 0.0247 and 0.0385 points respectively. CSA also 

is better than PSO and GA for both power loss minimization and VSI improvement when 

considered both as a single objective. This shows CSA can find tfhe best solution for 

minimization of power loss and VSI improvement in Index 1 compared to PSO and GA. 

Thus, CSA can find the best microgrid configuration compared to PSO and GA when a 

1500 kW EV charging load is integrated in microgrid.  

 

 

Table 4.2: IEEE-33 for CSA Index 1 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 211.18 

Min Voltage (p.u) 0.9121 

Minimum VSI 0.6940 

Power Loss Switches opened 7   9  14  32  37 7  17  28  34  35 7  10  14  32  37 

Power Loss (kW) 147.80 166.43 148.53 

% Loss Reduction  30.01 21.20 29.66 

Min Voltage (p.u) 0.9369 0.9318 0.9369 

Minimum VSI 0.7727 0.7552 0.7727 
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VSI Switches opened 7   9  14  28  32 7  14  32  35  37 5   9  14  27  36 

Power Loss (kW) 148.23 159.81 172.19 

% Loss Reduction  29.81 24.32 18.47 

Min Voltage (p.u) 0.9404 0.9351 0.9369 

Minimum VSI 0.7842 0.7656 0.7716 

Power Loss 

and VSI 

Switches opened 7   9  14  28  32 7  11  32  34  37 6  11  34  36  37 

Power Loss (kW) 148.23 151.02 153.32 

% Loss Reduction  29.81 28.49 27.40 

Min Voltage (p.u) 0.9404 0.9369 0.9364 

Minimum VSI 0.7842 0.7727 0.7698 

Objective 

function 

0.9177 0.9424 0.9562 

 

 

4.2.3 Index 2 in IEEE-33 Bus System 

 

In Index 2, two (2) EV fast-charging load stations are placed on bus 2 which is the strongest 

bus. In this case, a 3000 kW load is connected to the microgrid from EV chargers. The 

result was shown in Table 4.3. When 3000 kW EV charging load was integrated into the 

microgrid and only minimization of power loss is considered, CSA could reduce power 

loss higher than PSO and GA by 1.45 % and 4.04% respectively. While for VSI only, CSA 

also gave a better value than PSO and GA by 0.0186 and 0.0172 points respectively. When 

power loss and VSI are both considered as a single objective, CSA and GA show objective 

function score better than PSO by 0.0754 points. CSA and GA also are better than PSO for 

both power loss minimization and VSI improvement when considered both as a single 
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objective. This shows CSA and GA can find the best solution for minimization of power 

loss and VSI improvement in Index 2 compared to PSO. Thus, CSA and GA have the same 

result and can find a better configuration compared to PSO when the 3000 kW EV charging 

load is integrated into the microgrid. 

 

 

Table 4.3: IEEE-33 for CSA Index 2 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 222.33 

Min Voltage (p.u) 0.9112 

Minimum VSI 0.6911 

Power Loss Switches opened 7   9  14  32  37 7  11  32  34  37 6   9  14  28  32 

Power Loss (kW) 158.70 161.93 167.67 

% Loss Reduction  28.62 27.17 24.58 

Min Voltage (p.u) 0.9360 0.9360 0.9369 

Minimum VSI 0.7697 0.7697 0.7717 

VSI Switches opened 7   9  14  28  32 7  14  32  35  37 4   9  14  27  36 

Power Loss (kW) 159.13 170.76 187.93 

% Loss Reduction  28.43 23.20 15.47 

Min Voltage (p.u) 0.9394 0.9342 0.9343 
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Minimum VSI 0.7812 0.7626 0.7640 

Power Loss 

and VSI 

Switches opened 7   9  14  28  32 7  14  32  35  37 7   9  14  28  32 

Power Loss (kW) 159.13 170.76 159.13 

% Loss Reduction  28.43 23.20 28.43 

Min Voltage (p.u) 0.9394 0.9342 0.9394 

Minimum VSI 0.7812 0.7626 0.7812 

Objective 

function 

0.9346 1.01 0.9346 

 

 

4.2.4  Index 3 in IEEE-33 Bus System 

 

In Index 3, five (5) EV fast-charging load stations are placed on bus 2 which is the strongest 

bus. In this case, a 7500 kW load is connected to the microgrid from EV chargers. The 

result was shown in Table 4.4. When 7500 kW EV charging load was integrated into the 

microgrid and only minimization of power loss is considered, CSA and GA could reduce 

power loss higher than PSO by 1.21 %. While for VSI only, CSA gave a better value than 

PSO and GA by 0.0205 and 0.0100 points respectively. When power loss and VSI are both 

considered as a single objective, CSA shows an objective function score better than PSO 

and GA by 0.0613 and 0.0103 points respectively. GA find a better power loss 

minimization by 0.16% but worse VSI by 0.0114 points compared to CSA but PSO is worse 

than CSA for both power loss minimization and VSI improvement. This shows CSA can 

find a better trade-off between power loss and voltage stability compared to PSO and GA 

in index 3. Thus, the simulation shows CSA is better than GA followed by PSO when a 

7500 kW EV charging load is integrated into the microgrid.  
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Table 4.4: IEEE-33 for CSA Index 3 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 271.78 

Min Voltage (p.u) 0.9083 

Minimum VSI 0.6824 

Power Loss Switches opened 7   9  14  32  37 7  11  32  34  37 7   9  14  32  37 

Power Loss (kW) 207.39 210.66 207.39 

% Loss Reduction  23.70 22.49 23.70 

Min Voltage (p.u) 0.9332 0.9332 0.9332 

Minimum VSI 0.7605 0.7605 0.7605 

VSI Switches opened 7   9  14  28  32 3   8  14  17  28 6  11  28  34  36 

Power Loss (kW) 207.82 247.64 218.47 

% Loss Reduction  23.54 8.89 19.62 

Min Voltage (p.u) 0.9367 0.9306 0.9340 

Minimum VSI 0.7719 0.7514 0.7619 

Power Loss 

and VSI 

Switches opened 7   9  14  28  32 7  14  32  35  37 7   9  14  32  37 

Power Loss (kW) 207.82 219.58 207.39 

% Loss Reduction  23.54 19.21 23.70 

Min Voltage (p.u) 0.9367 0.9314 0.9332 
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Minimum VSI 0.7719 0.7535 0.7605 

Objective 

function 

0.9927 1.054 1.003 

 

 

4.2.5 Index 4 in IEEE-33 Bus System 

 

In Index 4, 1500kW EV fast-charging load is placed at bus 2 and bus 19 each. Thus, in this 

case, a 3000 kW load is connected to the microgrid from EV chargers. The result was shown 

in Table 4.5. When 3000 kW EV charging load was integrated into the microgrid and only 

minimization of power loss is considered at the two strongest buses, CSA and GA could 

reduce power loss higher than PSO by 5.38 %. While for VSI only, CSA gave a better value 

than PSO and GA by 0.0114 and 0.0101 points respectively. When power loss and VSI are 

both considered as a single objective, CSA shows an objective function score better than 

PSO and GA by 0.0240 and 0.0095 points respectively. GA find a better power loss 

minimization by 0.19% but worse VSI by 0.0114 points compared to CSA but PSO is worse 

than CSA for both power loss minimization and VSI improvement. This shows CSA can 

find a better trade-off between power loss and voltage stability compared to PSO and GA 

in Index 4. Thus, the simulation shows CSA is better than GA followed by PSO when the 

3000 kW EV charging load is integrated into the microgrid to two (2) strongest buses. 

 

 

Table 4.5: IEEE-33 for CSA Index 4 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 
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Power Loss (kW) 225.83 

Min Voltage (p.u) 0.9112 

Minimum VSI 0.6911 

Power Loss Switches opened 7   9  14  32  37 7  14  32  35  37 7   9  14  32  37 

Power Loss (kW) 165.40 177.54 165.40 

% Loss Reduction  26.76 21.38 26.76 

Min Voltage (p.u) 0.9360 0.9325 0.9360 

Minimum VSI 0.7697 0.7572 0.7697 

VSI Switches opened 7   9  14  28  32 7   9  14  32  37 6  11  28  34  36 

Power Loss (kW) 165.83 165.38 176.86 

% Loss Reduction  26.57 26.76 21.68 

Min Voltage (p.u) 0.9394 0.9360 0.9368 

Minimum VSI 0.7811 0.7697 0.7710 

Power Loss 

and VSI 

Switches opened 7   9  14  28  32 7  11  32  34  37 7   9  14  32  37 

Power Loss (kW) 165.83 168.65 165.40 

% Loss Reduction  26.57 25.32 26.76 

Min Voltage (p.u) 0.9394 0.9360 0.9360 

Minimum VSI 0.7811 0.7697 0.7697 

Objective 

function 

0.9532 0.9772 0.9627 
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4.2.6 Index 5 in IEEE-33 Bus System 

 

In Index 5, one (1) EV fast-charging station is placed on bus 18 which is the weakest bus. 

In this case, a 1500 kW charging load is connected to the microgrid from the EV chargers 

to the weakest bus. The result was shown in Table 4.6. When 1500 kW EV charging load 

was integrated into the microgrid and only minimization of power loss is considered at the 

weakest bus, CSA and GA could reduce power loss higher than PSO by 1.54 %. While for 

VSI only, CSA and PSO gave better value than GA by 0.0094. When power loss and VSI 

are both considered as a single objective, CSA shows an objective function score better 

than PSO and GA by 0.0837 and 0.0467 respectively. CSA also is better than PSO and GA 

for both power loss minimization and VSI improvement when considered both as a single 

objective. This shows CSA can find the best solution for minimization of power loss and 

VSI improvement in index 5 compared to PSO and GA. Thus, CSA can find the best 

microgrid configuration compared to PSO and GA when a 1500 kW EV charging load is 

integrated into the microgrid's weakest bus. 

 

 

Table 4.6: IEEE-33 for CSA Index 5 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 774.93 

Min Voltage (p.u) 0.7609 

Minimum VSI 0.3445 

Power Loss Switches opened 7   9  14  17  28 7  17  28  34  35 7   9  14  17  28 
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Power Loss (kW) 428.09 439.97 428.09 

% Loss Reduction  44.76 43.22 44.76 

Min Voltage (p.u) 0.8631 0.8630 0.8631 

Minimum VSI 0.5702 0.5701 0.5702 

VSI Switches opened 3   8  14  17  28 3  13  17  28  35 4   9  17  28  34 

Power Loss (kW) 451.68 471.63 443.34 

% Loss Reduction  41.71 39.14 42.79 

Min Voltage (p.u) 0.8659 0.8659 0.8653 

Minimum VSI 0.5776 0.5776 0.5761 

Power Loss 

and VSI 

Switches opened 7   9  14  17  28 13  17  20  28  35 7   9  14  16  28 

Power Loss (kW) 428.09 483.41 444.47 

% Loss Reduction  44.76 37.62 42.64 

Min Voltage (p.u) 0.8631 0.8584 0.8588 

Minimum VSI 0.5702 0.5580 0.5449 

Objective 

function 

0.9823 1.066 1.029 

 

 

4.2.7 Index 6 in IEEE-33 Bus System 

 

In Index 6, one (1) EV fast-charging station is connected to bus 18 and bus 17 each. Thus, 

in this case, a 3000 kW load is connected to the microgrid from EV chargers. The initial 

configuration in this index has a voltage collapse condition as the VSI of the configuration 
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is below 0. The result was shown in Table 4.7. When 3000 kW EV charging load was 

integrated into the microgrid and only minimization of power loss is considered at the two 

(2) weakest buses, CSA could reduce power loss higher than PSO and GA by 0.04% and 

0.03% respectively. While for VSI only, CSA also gave a better value than PSO and GA 

by 0.0300 and 0.0044 points respectively. When power loss and VSI are both considered 

as a single objective, CSA shows an objective function score better than PSO and GA by 

0.1271 and 0.0157 respectively. CSA also is better than PSO and GA for both power loss 

minimization and VSI improvement when considered both as a single objective. This shows 

CSA can find the best solution for minimization of power loss and VSI improvement in 

Index 6 compared to PSO and GA. Thus, CSA can find the best microgrid configuration 

compared to PSO and GA when 3000 kW EV charging load integrated into microgrid two 

(2) weakest bus and all algorithms can find stable reconfiguration despite the initial 

configuration being collapsed and the calculation of power flow by using the N-R technique 

does not converge. 

 

 

Table 4.7: IEEE-33 for CSA Index 6 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 33  34  35  36  37 

Power Loss (kW) 134600.25 

Min Voltage (p.u) 0.2617 

Minimum VSI -5.5718 

Power Loss Switches opened 7   9  14  17  28 7  14  17  28  35 6   9  14  17  28 

Power Loss (kW) 718.62 767.03 750.27 

% Loss Reduction  99.47 99.43 99.44 
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Min Voltage (p.u) 0.8517 0.8374 0.8414 

Minimum VSI 0.5668 0.5413 0.5513 

VSI Switches opened 7  10  14  17  28 11  14  17  20  28 7   9  14  17  27 

Power Loss (kW) 725.03 840.51 728.18 

% Loss Reduction  99.46 99.38 99.46 

Min Voltage (p.u) 0.8496 0.8422 0.8516 

Minimum VSI 0.5667 0.5367 0.5623 

Power Loss 

and VSI 

Switches opened 7   9  14  17  28 17  20  25  34  35 6   9  14  17  28 

Power Loss (kW) 718.62 995.50 750.27 

% Loss Reduction  99.47 99.26 99.44 

Min Voltage (p.u) 0.8517 0.7942 0.8414 

Minimum VSI 0.5668 0.4417 0.5513 

Objective 

function 

0.4386 0.5657 0.4543 

 

 

4.2.8 Analysis of PSO, GA, and CSA in IEEE-33 Bus System 

 

Overall, CSA shows a better simulation result compared with GA and PSO. CSA also has 

a consistent result for all ten simulations for each index and scenario except for VSI only 

in index 5 as there is only one simulation that shows a worse result. Meanwhile, GA and 

PSO are less consistent to have the same result. PSO is the worst in all three simulation 

algorithms as PSO algorithm solution is easy to be trapped in local optima. Figure 4.1 

shows the comparison of power loss between CSA, PSO, and GA in the IEEE-33 bus 
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system. Figure 4.2 shows the comparison of VSI between CSA, PSO, and GA in the IEEE-

33 bus system. Figure 4.3 shows the score of objective function between CSA, PSO, and 

GA in the IEEE-33 bus system. 

 

 In conclusion, in the IEEE-33 bus system with EV charging load integration, CSA 

has the best result, especially when considering power loss and VSI as a single objective. 

Only index 2 CSA has the same result as GA. Besides that, GA is the second in terms of 

the best simulation result followed by PSO. 

  

 Thus, microgrid reconfiguration can reduce negative impacts on small-scale 

microgrids such as harmonic distortion, power loss, and equipment overloading when EV 

charging loads are integrated into the weakest and strongest bus in IEEE-33. By using CSA, 

a microgrid can be reconfigured better in terms of power loss and VSI compared to GA and 

PSO. As negative impacts on microgrids can be reduced, a microgrid is more reliable to 

cater to EV charging loads in the small-scale microgrid, consequently reducing carbon 

dioxide emission to the environment. 
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Figure 4.1: Comparison of power losses obtained by CSA, PSO, and GA for all cases in 

the IEEE-33 bus system.  
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Figure 4.2: Comparison of VSI obtained by CSA, PSO, and GA for all cases in the IEEE-

33 bus system. 
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Figure 4.3: Comparison of objective function score between CSA, PSO, and GA for all 

cases in the IEEE-33 bus system. 

 

 

4.3 IEEE-69 BUS SYSTEM  

 

4.3.1 Without EV Charging Load (Index 0) 

 

In this case, no load from the EV charger is integrated into the microgrid. The result was 

shown in Table 4.8. When no EV charging load was integrated into the microgrid and only 

minimization of power loss is considered, CSA could reduce power loss higher than PSO 

and GA by 7.68 % and 2.90% respectively. While for VSI only, CSA and GA gave better 

values than PSO by 0.0001 points. When power loss and VSI are both considered as a 

single objective, CSA shows an objective function score better than PSO and GA by 0.0762 
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minimization, but CSA and GA have the same VSI improvement and are better compared 

to PSO when considered both as a single objective. This shows CSA can find the best 

solution for minimization of power loss and VSI improvement as a single objective in Index 

0 compared to PSO and GA. Thus, CSA can find the best microgrid configuration 

compared to PSO and GA when no EV charging load is integrated into the microgrid. 

 

 

Table 4.8: IEEE-69 for CSA Index 0 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 224.98 

Min Voltage (p.u) 0.9092 

Minimum VSI 0.6850 

Power Loss Switches opened 14  56  61  69  70 13  20  42  56  

61 

9  14  58  61  

70 

Power Loss (kW) 99.61 116.76 106.13 

% Loss Reduction  55.73 48.10 52.83 

Min Voltage (p.u) 0.9428 0.9427 0.9428 

Minimum VSI 0.8085 0.8084 0.8085 

VSI Switches opened 5  14  56  61  70 13  20  42  58  

61 

4  14  56  61  70 

Power Loss (kW) 116.21 116.76 116.21 
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% Loss Reduction  48.35 48.10 48.35 

Min Voltage (p.u) 0.9428 0.9427 0.9428 

Minimum VSI 0.8086 0.8084 0.8086 

Power Loss 

and VSI 

Switches opened 14  56  61  69  70 13  20  42  56  

61 

9  14  57  61  70 

Power Loss (kW) 99.61 116.76 106.13 

% Loss Reduction  55.73 48.10 52.83 

Min Voltage (p.u) 0.9428 0.9427 0.9428 

Minimum VSI 0.8085 0.8084 0.8085 

Objective 

function  

0.6343 0.7105 0.6632 

 

 

4.3.2 Index 1 in IEEE-69 Bus System 

 

In Index 1, one (1) EV fast-charging load station is placed on bus 2 which is the strongest 

bus. In this case, a 1500 kW load is connected to the microgrid from EV chargers. The 

result was shown in Table 4.9. When 1500 kW EV charging load was integrated into the 

microgrid to the strongest bus and only minimization of power loss is considered, CSA 

could reduce power loss higher than PSO and GA by 7.62% and 3.56% respectively. While 

for VSI only, CSA and GA gave better values than PSO by 0.0001 points. When power 

loss and VSI are both considered as a single objective, CSA shows an objective function 

score better than PSO and GA by 0.0762 and 0.0252 points respectively. CSA also is better 

than PSO and GA for power loss minimization, but CSA and GA have the same VSI 

improvement and are better compared to PSO when considered both as a single objective. 

This shows CSA can find the best solution for minimization of power loss and VSI 



 

80 
 

 

 

improvement as a single objective in Index 1 compared to PSO and GA. Thus, CSA can 

find the best microgrid configuration compared to PSO and GA when a 1500 kW EV 

charging load is integrated into the microgrid to the strongest bus. 

 

 

Table 4.9: IEEE-69 for CSA Index 1 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 225.03 

Min Voltage (p.u) 0.9092 

Minimum VSI 0.6850 

Power Loss Switches opened 14  56  61  69  70 13  20  42  58  61 9  13  20  56  

61 

Power Loss (kW) 99.66 116.80 107.68 

% Loss Reduction  55.71 48.09 52.15 

Min Voltage (p.u) 0.9428 0.9427 0.9428 

Minimum VSI 0.8085 0.8084 0.8085 

VSI Switches opened 5  14  56  61  70 13  20  42  56  61 9  14  56  61  

70 

Power Loss (kW) 116.26 116.80 106.17 

% Loss Reduction  48.34 48.09 52.82 

Min Voltage (p.u) 0.9428 0.9427 0.9428 
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Minimum VSI 0.8085 0.8084 0.8085 

Power Loss 

and VSI 

Switches opened 14  56  61  69  70 13  20  42  58  61 10  14  55  61  

70 

Power Loss (kW) 99.65 116.80 105.35 

% Loss Reduction  55.71 48.09 53.19 

Minimum Voltage 

(p.u) 

0.9428 0.9427 0.9428 

Min VSI 0.8085 0.8084 0.8085 

Objective 

function 

0.6344 0.7106 0.6596 

 

 

4.3.3 Index 2 in IEEE-69 Bus System 

 

In Index 2, two (2) EV fast-charging load stations are placed on bus 2 which is the strongest 

bus. Thus, in this case, a 3000 kW load is connected to the microgrid from EV chargers. 

The result was shown in Table 4.10. When 3000 kW EV charging load was integrated into 

the microgrid and only minimization of power loss is considered, CSA could reduce power 

loss higher than PSO and GA by 6.58 % and 2.83% respectively. While for VSI only, CSA 

also gave a better value than PSO and GA by 0.0001 and 0.0231 points respectively. When 

power loss and VSI are both considered as a single objective, CSA shows an objective 

function score better than PSO and GA by 0.0763 and 0.0281 points respectively. CSA also 

is better than PSO and GA for both power loss minimization and VSI improvement when 

considered both as a single objective. This shows CSA can find the best solution for 

minimization of power loss and VSI improvement in Index 2 compared to PSO and GA. 
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Thus, CSA can find the best microgrid configuration compared to PSO and GA when a 

3000 kW EV charging load is integrated into the microgrid to the strongest bus. 

 

 

Table 4.10: IEEE-69 for CSA Index 2 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 225.09 

Min Voltage (p.u) 0.9092 

Minimum VSI 0.6850 

Power Loss Switches opened 14  57  61  69  70 10  17  45  58  

61 

10  14  56  63  

70 

Power Loss (kW) 99.71 114.51 106.09 

% Loss Reduction  55.70 49.12 52.87 

Min Voltage (p.u) 0.9427 0.9428 0.9414 

Minimum VSI 0.8085 0.8085 0.7854 

VSI Switches opened 5  14  58  61  70 13  20  42  58  

61 

4  14  57  63  70 

Power Loss (kW) 116.32 116.86 116.72 

% Loss Reduction  48.33 48.08 48.15 

Min Voltage (p.u) 0.9428 0.9427 0.9414 
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Minimum VSI 0.8085 0.8084 0.7854 

Power Loss 

and VSI 

Switches opened 14  55  61  69  70 13  20  42  58  

61 

13  57  62  69  

70 

Power Loss (kW) 99.71 116.86 100.86 

% Loss Reduction  55.70 48.08 55.19 

Min Voltage (p.u) 0.9427 0.9427 0.9414 

Minimum VSI 0.8085 0.8084 0.7855 

Objective 

function 

0.6345 0.7108 0.6626 

 

 

4.3.4  Index 3 in IEEE-69 Bus System 

 

In Index 3, five (5) EV fast-charging load stations are placed on bus 2 which is the strongest 

bus. Thus, in this case, a 7500 kW load is integrated into the microgrid grid from EV 

chargers. The result was shown in Table 4.11. When 7500 kW EV charging load was 

integrated into the microgrid and only minimization of power loss is considered, CSA and 

PSO could reduce power loss higher than GA by 2.53%. While for VSI only, CSA and GA 

have better value than PSO by 0.0002. When power loss and VSI are both considered as a 

single objective, CSA shows an objective function score better than PSO and GA by 0.0762 

and 0.0252 points respectively. CSA also is better than PSO and GA for both power loss 

minimization and VSI improvement when considered both as a single objective. This shows 

CSA can find the best solution for minimization of power loss, but GA is better than CSA 

and PSO for VSI improvement in Index 3 when considering both as a single objective. 

Thus, CSA can find the best trade-off microgrid configuration compared to PSO and GA 

when a 7500 kW EV charging load is integrated into the microgrid to the strongest bus. 
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Table 4.11: IEEE-69 for CSA Index 3 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 225.36 

Min Voltage (p.u) 0.9092 

Minimum VSI 0.6850 

Power Loss Switches opened 14  55  61  69  70 14  58  61  69  

70 

10  14  58  61  

70 

Power Loss (kW) 99.97 99.97 105.66 

% Loss Reduction  55.64 55.64 53.11 

Min Voltage (p.u) 0.9427 0.9427 0.9427 

Minimum VSI 0.8084 0.8084 0.8085 

VSI Switches opened 4  14  55  61  70 18  42  45  56  

61 

4  13  20  57  61 

Power Loss (kW) 116.58 122.58 119.44 

% Loss Reduction  48.27 45.61 47.00 

Min Voltage (p.u) 0.9427 0.9427 0.9427 

Minimum VSI 0.8085 0.8083 0.8085 
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Power Loss 

and VSI 

Switches opened 14  55  61  69  70 13  20  42  58  

61 

10  14  55  61  

70 

Power Loss (kW) 99.97 117.12 105.66 

% Loss Reduction  55.64 48.03 53.11 

Min Voltage (p.u) 0.9427 0.9427 0.9427 

Minimum VSI 0.8084 0.8084 0.8085 

Objective 

function 

0.6352 0.7114 0.6604 

 

 

4.3.5 Index 4 in IEEE-69 Bus System 

 

In Index 4, 1500kW EV charging loads are connected to bus 2 and bus 3 each. In this case, 

a 3000 kW load is connected to the microgrid from EV chargers to two (2) strongest buses.  

The result was shown in Table 4.12. When 1500 kW EV charging load was integrated into 

the microgrid and only minimization of power loss is considered, CSA and PSO could 

reduce power loss higher than PSO and GA by 2.56 %. Meanwhile, in VSI improvement 

only, CSA and GA have a better value than PSO by 0.0001. When power loss and VSI are 

both considered as a single objective, CSA shows an objective function score better than 

PSO and GA by 0.0762 and 0.0252 points respectively. CSA also is better than PSO and 

GA for power loss minimization, but CSA and GA have the same VSI improvement which 

is better than PSO in the objective function. This shows CSA can find the best solution for 

minimization of power loss among all algorithms but have the same result as GA for VSI 

improvement. Thus, CSA can find the best microgrid configuration for objective function 

compared to PSO and GA when the 3000 kW EV charging load is integrated into the 

microgrid to the strongest bus. 
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Table 4.12: IEEE-69 for CSA Index 4 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 225.14 

Min Voltage (p.u) 0.9092 

Minimum VSI 0.6850 

Power Loss Switches opened 14  58  61  69  70 14  58  61  69  

70 

10  13  55  61  

70 

Power Loss (kW) 99.76 99.76 105.52 

% Loss Reduction  55.69 55.69 53.13 

Min Voltage (p.u) 0.9427 0.9427 0.9428 

Minimum VSI 0.8085 0.8085 0.8085 

VSI Switches opened 5  14  55  61  70 13  20  42  58  

61 

4  13  20  56  61 

Power Loss (kW) 116.36 116.91 119.22 

% Loss Reduction  48.32 48.07 47.04 

Min Voltage (p.u) 0.9428 0.9427 0.9428 

Minimum VSI 0.8085 0.8084 0.8085 
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Power Loss 

and VSI 

Switches opened 14  58  61  69  70 13  20  42  58  

61 

10  14  57  61  

70 

Power Loss (kW) 99.76 116.90 105.45 

% Loss Reduction  55.69 48.07 53.16 

Min Voltage (p.u) 0.9427 0.9427 0.9428 

Minimum VSI 0.8085 0.8083 0.8085 

Objective 

function score 

0.6347 0.7109 0.6599 

 

 

4.3.6 Index 5 in IEEE-69 Bus System 

 

In Index 5, one EV fast-charging load station is placed at bus 65 which is the weakest bus. 

In this case, a 1500 kW load is connected to the microgrid from EV chargers. The result 

was shown in Table 4.13. When 1500 kW EV charging load to the weakest bus was 

integrated into the microgrid and only minimization of power loss is considered, CSA could 

reduce power loss higher than PSO and GA by 6.10 % and 3.45% respectively. While for 

VSI only, CSA also gave a better value than PSO and GA by 0.038 and 0.109 points 

respectively. When power loss and VSI are both considered as a single objective, CSA 

shows an objective function score better than PSO and GA by 0.1053 and 0.1245 points 

respectively. CSA also is better than PSO and GA for both power loss minimization and 

VSI improvement when considered both as a single objective. This shows CSA can find 

the best solution for minimization of power loss and VSI improvement in index 5 compared 

to PSO and GA. Thus, CSA can find the best microgrid configuration compared to PSO 

and GA when a 1500 kW EV charging load is integrated into the microgrid to the weakest 

bus. 
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Table 4.13: IEEE-69 for CSA Index 5 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 692.30 

Min Voltage (p.u) 0.8168 

Minimum VSI 0.4700 

Power Loss Switches opened 14  56  64  69  70 10  20  45  56  

64 

13  20  58  64  

69 

Power Loss (kW) 266.91 309.10 290.78 

% Loss Reduction  61.45 55.35 58.00 

Min Voltage (p.u) 0.9126 0.8980 0.9073 

Minimum VSI 0.7275 0.6832 0.7114 

VSI Switches opened 14  56  64  69  70 20  45  58  64  

69 

13  20  42  52  

63 

Power Loss (kW) 266.91 321.58 349.76 

% Loss Reduction  61.45 53.55 49.48 

Min Voltage (p.u) 0.9126 0.9002 0.8844 

Minimum VSI 0.7275 0.6897 0.6181 
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Power Loss 

and VSI 

Switches opened 14  56  64  69  70 10  20  45  58  

64 

14  58  63  69  

70 

Power Loss (kW) 266.91 309.10 293.61 

% Loss Reduction  61.45 55.35 57.59 

Min Voltage (p.u) 0.9126 0.8980 0.8928 

Minimum VSI 0.7275 0.6832 0.6416 

Objective 

function 

0.6580 0.7633 0.7825 

 

 

4.3.7 Index 6 in IEEE-69 Bus System 

 

In Index 6, two (2) 1500kW EV fast-charging loads are placed at bus 65 and bus 64. Those 

buses are the weakest bus in the system. In this case, a 3000 kW load is connected to the 

microgrid from EV chargers. The result was shown in Table 4.14. When 3000 kW EV 

charging load to the two (2) weakest buses was integrated into the microgrid and only 

minimization of power loss is considered, CSA could reduce power loss higher than PSO 

and GA by 3.35 % and 0.94% respectively. Interestingly, when considering VSI only, all 

algorithms show the same VSI improvement. When power loss and VSI are both 

considered as a single objective, CSA shows an objective function score better than PSO 

and GA by 0.0449 and 0.0134 points respectively. CSA also is better than PSO and GA for 

both power loss minimization, but GA is the best in VSI improvement when considered 

both as a single objective. This shows CSA can find the best solution for objective function 

in index 6 compared to PSO and GA. Thus, CSA can find the best microgrid configuration 

compared to PSO and GA when the 3000 kW EV charging load is integrated into the 

microgrid to the two (2) weakest buses. 
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Table 4.14: IEEE-69 for CSA Index 6 

 

Scenario Item CSA PSO GA 

Base Case Switches opened 69  70  71  72  73 

Power Loss (kW) 1757.59 

Min Voltage (p.u) 0.7081 

Minimum VSI 0.2695 

Power Loss Switches opened 14  55  64  69  70 20  42  45  58  

64 

10  14  56  64  

70 

Power Loss (kW) 493.90 552.69 510.46 

% Loss Reduction  71.90 68.55 70.96 

Min Voltage (p.u) 0.8796 0.8796 0.8796 

Minimum VSI 0.6221 0.6220 0.6222 

VSI Switches opened 5  14  57  64  70 4  14  55  64  70 4  14  55  64  70 

Power Loss (kW) 529.20 529.20 529.20 

% Loss Reduction  69.89 69.89 69.89 

Min Voltage (p.u) 0.8797 0.8797 0.8797 

Minimum VSI 0.6222 0.6222 0.6222 

Power Loss 

and VSI 

Switches opened 14  55  64  69  70 14  42  56  64  

70 

10  13  20  58  

64 
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Power Loss (kW) 493.90 572.60 517.50 

% Loss Reduction  71.90 67.42 70.56 

Min Voltage (p.u) 0.8796 0.8796 0.8796 

Minimum VSI 0.6221 0.6220 0.6222 

Objective 

function 

0.6589 0.7038 0.6723 

 

 

4.3.8 Analysis of PSO, GA, and CSA in IEEE-69 Bus System 

 

In the analysis of reconfiguration in the IEEE-69 bus system, CSA also shows a better 

simulation result compared with GA and PSO. CSA also has a consistent result for every 

simulation index compared to GA and PSO. GA is the second most consistent algorithm in 

this research. PSO is the worst in all three simulation algorithms as PSO algorithm solution 

is easy to be trapped in local optima. Figure 4.4 shows the comparison of power loss of 

objective function between CSA, PSO, and GA in the IEEE-69 bus system. Figure 4.5 

shows the comparison of VSI of objective function between CSA, PSO, and GA in the 

IEEE-69 bus system. Figure 4.6 shows the power loss and VSI as a single objective, which 

is the objective function between CSA, PSO, and GA in the IEEE-69 bus system. 

 

 In other words, in the IEEE-69 bus system with EV charging load integration, CSA 

has the best result in power loss and VSI as a single objective in all seven indexes. GA is 

the second in terms of the best simulation result followed by PSO because GA is better than 

PSO in six indexes which are index 0, 1,2 3,4, and 6. Meanwhile, PSO is only better than 

GA in index 5 when dealing with power loss and VSI as a single objective. 
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 Thus, microgrid reconfiguration can reduce negative impacts on medium-scale 

microgrids such as harmonic distortion, power loss, and equipment overloading when EV 

charging loads are integrated into the weakest and strongest bus in IEEE-69. By using CSA, 

a microgrid can be reconfigured better in terms of power loss and VSI compared to GA and 

PSO. As negative impacts on microgrids can be reduced, a microgrid is more reliable to 

cater to EV charging loads in the medium-scale microgrid, consequently reducing carbon 

dioxide emission to the environment. 

 

 

 

Figure 4.4: Comparison of power loss obtained between CSA, PSO, and GA for all cases 

in the IEEE-69 bus system. 
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Figure 4.5: Comparison of VSI between CSA, PSO, and GA for all cases in the IEEE-69 

bus system. 
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Figure 4.6: Comparison of objective function score between CSA, PSO, and GA for all 

cases in the IEEE-69 bus system. 

 

 

4.4 SUMMARY 

 

In conclusion, CSA can find a better microgrid reconfiguration with EV charging load 

integration compared to GA and PSO. CSA is also more consistent to find solutions 

compared to other algorithms. CSA also can find a better solution due to the Levy flight 

pattern to find a solution with Levy distribution elementwise to the potential candidates. 

GA is the second-best among these algorithms followed by PSO. PSO is the worst as PSO 

is easily trapped to local optima. In index 6 of the IEEE-33 bus system, all three algorithms 

can find a stable VSI configuration in the microgrid from the initial collapse configuration 

EV charging load is integrated into the two weakest buses. Thus, CSA, GA, and PSO can 

solve a microgrid reconfiguration problem with power loss and VSI as a single objective 

function, but CSA is the best among these algorithms. 

0.6343 0.6344 0.6345 0.6352 0.6347 0.658 0.6589

0.7105 0.7106 0.7108 0.7114 0.7109 0.7633
0.70380.6632 0.6596 0.6626 0.6604 0.6599

0.7825
0.6723

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6

Po
w

er
 L

os
s

Indexes

CSA PSO GA



 

95 
 

 

 

CHAPTER FIVE 

CONCLUSION 
 

 

5.1 CONCLUSION 

 

To combat global warming, carbon emissions must be reduced worldwide. To realize the 

effort, governments around the world like China and UK are replacing ICE by putting more 

EVs on the road to reduce carbon emissions in the transportation sector. But EV charging 

loads are causing a power loss and voltage instability to the microgrid. To make matter 

worse, charging activities also increase peak load, cause harmonic distortion, and 

equipment overloading. Thus, reconfiguration of the microgrid is needed. To optimize the 

network reconfiguration, an algorithm is needed to find the best configuration. CSA is the 

algorithm in this research to discover the best microgrid configuration in respect of power 

loss and VSI as a single objective. CSA is chosen as the CSA is simple and does not have 

many parameters compared to PSO and GA. 

 

 In this research, the impact of EV charging load on microgrids is assessed. The 

finding is EV charging load increases power loss and reduces voltage stability. At some 

point, in the IEEE-33 bus system, voltage stability collapsed after charging loads were 

integrated into the two weakest buses. After that, an optimum reconfigurable microgrid for 

minimizing power losses and increasing voltage stability by using CSA is developed. CSA 

also performs better compared to PSO and GA. The optimum reconfigurable microgrid is 

done on the IEEE-33 bus system, which is a small-scale microgrid. Finally, the 

reconfigurable microgrid was applied to the medium-scale microgrid of the power 

distribution network. In this research, the finding is CSA is better to find better network 

reconfigurations compared to PSO and GA for medium-scale power distribution networks. 
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The reconfiguration on the medium scale is done on the IEEE-69 bus system and the 

reconfiguration is successful to find power loss reduction and voltage stability as a single 

objective. Thus, this reconfiguration model by using CSA can be applied to the medium-

scale microgrid. 

 

In the IEEE-33 bus system, which is the application on a small-scale microgrid, the 

objective function of CSA from Index 0 to Index 6 is better by between 0.0240 to 0.1271 

points compared to PSO and between 0.0000 to 0.0467 compared to GA. Thus, when 

considering the balance between power loss reduction and VSI, CSA has the best 

simulation result in the IEEE-33 bus system except for Index 3 where CSA and GA have 

the same objective function value. This is followed by GA as the algorithm is better than 

PSO but worse than CSA. Lastly, PSOs have the worse objective function in all indexes.  

 

In the IEEE-69 bus system which is the application on a medium-scale microgrid, 

the objective function of CSA from Index 0 to Index 6 is better by between 0.0449 to 0.1053 

points compared to PSO and between 0.0134 to 0.1245 compared to GA. In other words, 

when considering the balance between power loss reduction and VSI, CSA has the best 

simulation result in the IEEE-69 bus system in all indexes. This is followed by GA as the 

algorithm is better than PSO in all indexes except index 5 which is PSO is better than GA. 

 

 Finally, it can be concluded that all three algorithms can find a better configuration 

compared to the initial configuration. But CSA is the best among these algorithms in power 

loss reduction and has the highest VSI as a single objective. Thus, CSA can be used to solve 

the problem of EV charging load into a microgrid reconfiguration. As power loss and VSI 

can be improved by using microgrid reconfiguration, stability and reliability of small-scale 

and medium-scale microgrids can be improved with EV charging loads integrated into 

microgrids’ system. Carbon dioxide emmision is reduced and one factor of global warming 
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can be reduced and potentially solved as the world are moving to EV in transportation 

sector. 

 

 

5.2 LIMITATIONS AND FUTURE WORK 

 

There are a few limitations to this research. In the future, this research can be expanded to 

a larger scale bus system model such as the IEEE-118 bus system to find CSA performance 

in terms to find the best solution compared to GA and PSO. Besides that, future research 

also can implement an improved version of the CSA algorithm such as by using the ACSA 

which is using Graph Theory to be compared to CSA, PSO, and GA. Furthermore, multi-

objective CSA also can be investigated to find a Pareto optimum between power loss and 

VSI in a bus system.  
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