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ABSTRACT 
 

 

The 5th  generation of cellular communication is a highly competitive market that 

promises some distinct features compared to the legacy LTE (long-term evolution) era. 

Some of these exclusive features include enhanced mobile broadband (eMBB), massive 

machine type communications (mMTC), and ultra-reliable low latency communication 

(URLLC) traffic (1 ms one-way latency, 99.999% reliability). Enabling these cutting-

edge technologies requires a very smooth processing of user data and transmitted 

signals. Channel estimation and acquisition of channel state data is one of the important 

points in this regard because they can eventually enable signal transmission and 

subsequent processing. However, most of the estimators in research nowadays suffer 

from high complexity due to either too many constraints or conditions for unique 

solutions. This is already a significant problem in the communication industry because 

of its high dependency on resource allocation and system overhead. This research 

focuses on the enhancement of the legacy channel estimation processes to fit the 5G 

cellular standards. The industry standard Least Squares (LS) estimator was used as the 

basis for the optimized estimation. A dual residual function was enabled instead of a 

single one to make the estimator adaptive. Results show that making the weight function 

adaptive reduces the error at the receiver and provides a sharper response curve.  A 

comprehensive study was carried out against the trending compressed sensing (CS) 

based semi-blind estimators as a second objective. And finally, the optimized algorithm 

was characterized on MIMO-OFDM systems to show its performance improvements in 

the cases of large arrays. These objectives were carried out through simulation, and 

results were constructively discussed based on the earlier points. Results were compared 

with parameters SNR, SER, PER, and BER. Some potentials regarding the channel 

estimation in MIMO-OFDM were left as pick-up points for future research interests. 
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 البحث  ملخص
ABSTRACT IN ARABIC 

يعتبر الجيل الخامس من الاتصالات الخلوية سوقاً تنافسيًا للغاية ، نظراً لما يقدمه من بعض مقارنة بعصر  
LTE   التطور طويل الأمد( القديم.تتضمن بعض هذه الميزات الحصرية لشبكات الجيل الخامس النطاق(

( ، وحركة مرور mMTC( ، والاتصالات الضخمة من نوع الماكينة ) eMBBالعريض المتنقل المحسّن )
مللي   1( )زمن انتقال أحادي الاتجاه يبلغ  URLLCاتصالات منخفضة زمن الانتقال فائقة الموثوقية ) 

وموثوق  ، المستخدم 99.999  (ثانية  لبيانات  معالجة سلسة  المتطورة  التقنيات  هذه  ٪(.يتطلب تمكين 
لقناة أحد النقاط المهمة في هذا الصدد. والإشارات المرسلة. يعد تقدير القناة والحصول على بيانات حالة ا

لأنه يمكن في النهاية تمكين إرسال الإشارة والمعالجة اللاحقة. ومع ذلك ، يعاني معظم في البحث في الوقت 
صناعة  في  الفريدة  للحلول  جدًا  شروط كثيرة  أو  قيود  بسبب  إما  التعقيد  من  عالية  درجة  من  الحاضر 

صيص الموارد وإدخال النظام. يركز هذا البحث على تعزيز عمليات الاتصالات بسبب اعتمادها على تخ
تقدير القنوات القديمة لتلائم المعايير الخلوية لشبكات الجيل الخامس. تم إعطاء الأولوية لمنطقتين مختلفتين 

 ( الصغرى  المربعات  تحسين  تم   ، أولاً   ، الدراسة  هذه  التربيعي LSفي  الخطأ  لمتوسط  الأدنى  والحد   )
(MMSE  لإشارات )5G .   .تم تمكين وظيفة متبقية مزدوجة بدلاً من وظيفة واحدة لجعل المقدر متكيفًا

تظهر النتائج أن جعل وظيفة الوزن قابلة للتكيف يقلل من الخطأ في المستقبل ويوفر منحنى استجابة أكثر 
على الاستشعار   كهدف ثان ، تم إجراء دراسة شاملة لاستكشاف المقدرات شبه العمياء القائمة   .حدة

( أنظمة  CSالمضغوط  على  المحسّنة  الخوارزمية  تمييز  تم   ، وأخيراً   .)MIMO-OFDM   لإظهار
المحاكاة وتمت  الأهداف من خلال  هذه  تنفيذ كل  تم  الكبيرة.  المصفوفات  الأداء في حالات  تحسينات 

و   SNRتائج مع المعلمات  مناقشة النتائج بشكل بناء بناءً على النقاط المذكورة أعلاه. تمت مقارنة الن
SER    وPER    وBER  تركت بعض التوجيهات المتعلقة بتقدير القناة في .MIMO-OFDM 

 كنقاط التقاط للبحث في المستقبل.
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1 

 

CHAPTER ONE 

1 INTRODUCTION 
 

 

1.1 BACKGROUND 

 

The 5th generation of the mobile system era promises a lot of enabling technologies that 

are supposed to take the legacy LTE standards to a whole new level. Some of the few 

groundbreaking properties of this cellular system include Enhanced Mobile Broadband 

(eMBB), Massive Machine Type Communications (mMTC) and Ultra-Reliable Low 

Latency Communication (URLLC, <1ms) (Shafi et al., 2017). To enable these cutting-

edge features, the next-generation cellular system will adopt a few new technologies 

and amendments (Beltran, Ray, & Gutiérrez, 2016).  One of the most critically 

acclaimed ones is the millimetre wave (mmWave) Massive MIMO system, which lies 

in the vast range of 30Ghz-300Ghz (Rappaport et al., 2017).  This technology's key 

features include elevated user throughput and enhanced spectral and energy efficiencies. 

Not to mention the increase in the capacity of mobile networks through the joint 

capabilities of the ultra available bandwidth in the mmWave frequency bands and high 

gains using new techniques as spatial multiplexing obtained  via massive antenna arrays 

(Rappaport et al., 2017). 

 

Although the potentials of what could be gained in the mmWave range are 

promising, the difficulties in building and sustaining such an infrastructure are also very 

demanding (Xiao et al., 2017). Nevertheless, much research has already been 

conducted, and even more proposals regarding the solutions are starting to arise. One 

of the major considerations among these is the Ultra-Dense Network or UDN (Kamel, 

Hamouda, & Youssef, 2016). It refers to the ultra-dense deployment of the small-scale 

BS within the coverage of bigger cell BSs. The cell types are classified as metro, micro, 

pico or femtocell in a decreasing manner. 

 

The Massive MIMO is another major part of this new generation of cellular 

communication schemes. It is characterized by increasing the number of antennas for 

transmission and reception several times (Buzzi et al., 2016). Clearly, this intends to 
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achieve the already discovered benefits of the MIMO on a large scale. Using spatial 

multiplexing can enhance the capacity of the current cellular infrastructure (D. Liu et 

al., 2016). The large number of available degrees of freedom through numerous 

antennas can improve spectral efficiency. With the help of hybrid beamforming, further 

reduction in interference is possible (Ahmed Alkhateeb & Heath, 2016). It also helps 

reduce latency, one of the three major targets. The full benefit of Massive MIMO is 

only obtained when it’s deployed in the aforementioned mmWave region. Because of 

the small size of the apertures, low power-consuming components and avoiding costly 

non-linear A/D converters, a cost-efficient infrastructure is possible (Hemadeh, 

Satyanarayana, El-Hajjar, & Hanzo, 2018).  The maximum benefits for mmWave 

Massive MIMO are feasible, provided that different antenna pairs at the transmitter and 

the receiver undergo independent fading channel characteristics. For this, the antenna 

elements are spaced at  ≤ 0.5λ, which gets even smaller as we go deep in the mmWave 

region. Apparently, this allows for more antenna elements to be placed in close vicinity 

of each other. The feasibility of optimal performance is also heavily dependent on the 

availability of the CSI, which is the task of the channel estimation portion. Because the 

contribution of channel estimation is crucial for the receiver, this section is discussed 

separately at the end of this chapter. 

 

However, small apertures mean low radiation power and, thus, high attenuation 

(Ghosh, Maeder, Baker, & Chandramouli, 2019). Therefore, mmWave systems must 

have antenna characteristics of high directivity, configurable, etc. But since this brings 

up the question of the economic viability, an alternative and even more promising aspect 

of the 5th generation cellular system comes into focus: the contribution of hybrid 

beamforming or precoding (Ahmed et al., 2018). But since that is another major area of 

the current research and also out of the scope of this work, we won’t discuss it any 

further here. 

 

Since the no of antennas at the BS increases exponentially at mmWave, the 

channel characteristics turn deterministic, and the channel orthogonality becomes 

asymptotic (Zhang, Ge, Li, Guizani, & Zhang, 2017). So, the no of UE that can be 

supported simultaneously decreases owing to fluctuating coverage area. The path-loss 

models for mmWave also show an increased degree of moderate path-loss, and the 

NLOS signals become more vulnerable to obstacles like solid bodies and buildings (i.e. 
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less penetration power) (Hong, Baek, & Ko, 2017). It is due to the smaller size of the 

wavelength compared to the obstacles. So the signals in this frequency range are more 

vulnerable to shadowing, diffraction, blockage etc.  

 

Signal processing in mmWave is far more challenging than that of µWave. It’s 

largely because of the increasingly random signal in this frequency range (Sun et al., 

2016). Various models have been proposed assuming different criteria to characterize 

the signal behavior in mmWave effectively. Reportedly these models usually perform 

well to delineate a certain parameter while considering the behaviour of other 

parameters constant. However, since the performance parameters of signal in mmWave, 

like the attenuation is, random and heavily dependent (correlated) on other relevant 

parameters, it’s far more challenging to characterize the behaviour of signals in this 

frequency range (Hemadeh et al., 2018; B. Wang et al., 2018).   

 

The 3GPP has taken some new initiatives to alleviate this problem. For instance, 

starting from release 15, the available bandwidth is divided into two frequency ranges, 

namely FR1(<6Ghz) and FR2(23Ghz-53Ghz). For FR1, both TDD and FDD duplexing 

methods are being deployed, while in the higher frequency range FR2, only TDD is 

available for now. The subcarrier spacing in these ranges can be a power of two multiple 

of 15kHz or (2n×15kHz). Also, for the new release, the frame structure is renewed too. 

For instance, newer units like Bandwidth Parts(BWP) are being utilized further to 

facilitate the UE configuration to the BS.  

 

The smallest physical resource is the resource element in the 5G New Radio (5G 

NR). Unlike the legacy LTE configuration, the Resource Blocks or RBs that carry these 

resource elements are evaluated in the frequency domain only. Precoding in mmWave 

is of even more importance than it was for LTE since the attenuation in mmWave is 

heavily dependent on beam steering and alignment (Sohrabi & Yu, 2017; Venugopal, 

Alkhateeb, Gonzalez Prelcic, & Heath, 2017). In addition, newer multiplexing 

techniques like Filtered-OFDM or F-OFDM are being considered, further dividing the 

band into subbands for more configurability. As it stands now, one of the major 

problems with the fifth generation of cellular networks will surely be the ‘complexity’. 

It’s clear from the already published numerous studies that the system overhead or 

complexity is increasing with leaps and bounds to make the new 5G era more 
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configurable and user-friendly. So, the researchers also consider simplicity to balance 

the trade-off between features and resource allocation. It is one of the reasons for this 

study to optimize and, more importantly, to make the estimation of channel parameters 

more resource friendly and thus aid in less complex and more feature-friendly cellular 

communication. 

 

 

1.2 PROBLEM DELINEATION 

 

The channel estimation or the process of acquiring CSI (Channel State Information ) is 

increasingly difficult in the 5G domain mainly due to the vast amount of instantaneous 

data to process and a pre-beamforming low SNR (Qin, Gui, Cheng, & Gong, 2018). But 

to reap most of the benefits from hybrid precoding, which is being well investigated at 

the moment, an efficient channel estimation (CE) algorithm is crucial. Without a 

substantially accurate knowledge of CSI, the accuracy of the precoding is very limited. 

Thus, these two aspects of signal processing are of great importance at the moment, and 

a lot of studies are focusing on a joint evaluation of hybrid precoding and estimation 

algorithms. Due to the numerous no of antennas and the large dimension of the channel 

matrix, the calculations required to determine the channel parameters are almost 

exponentially difficult. Owing to a high no of degrees of freedom, researchers are trying 

to exploit that the transmitted signal in mmWave is sparse in some domains. This lead 

to the idea of compressive/compressed sensing (CS) theories that involve representing 

the channel matrix in a domain in which most of its elements are sparse or zeros, thus 

reducing the number of calculations. Through this sparse representation, CS theories 

allow a signal to be sampled at a rate far lower than that required by the Nyquist 

criterion.  But current CS algorithms present some complexity as most of these 

algorithms are NP times hard to compute. Even so, the CS methods are certainly one of 

the leading candidates for the CE process as it dramatically reduces the no of parameters 

to be estimated (Uwaechiaet al., 2019). Some of the recent research for the mmWave 

channel estimation assumes perfect CSI at the transmitter or CSI-Tx (Ahmed Alkhateeb 

et al., 2014; Dai et al., 2019; Uwaechia et al., 2019), which is itself, a potential topic for 

further exploration. On the other hand, some works took a more practical approach by 

assuming partial CSI knowledge at the transmitter (A. Alkhateeb et al., 2013). Another 

portion of the research on estimation in mmWave focused on determining the angle of 
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arrival (AoA) and angle of departure (AoD) efficiently by presenting them as a sparse 

recovery problem and then proposing greedy or other types of algorithms to solve it.  

 

So few of the significant problem regarding the estimation performance, such as 

complexity, applicability and the role of channel statistics, are still at large and requires 

further study for the 5th generation of mmWave cellular networks.- 

 

 

1.3 RESEARCH OBJECTIVES 

 

The intentions behind this work can be broadly put into three sections: 

1. To Optimize the conventional training algorithms: As found in the literature, 

using static weights and a non-adaptive scheme reduces the efficiency of the 

legacy algorithms like LS. The first objective is to eliminate this problem by 

switching to a dual residual scheme. 

2. To Adaptively estimate channel based on the Characterization of the new 

algorithms on  MIMO-OFDM systems: This study is based on the MIMO-

OFDM system; hence the results will reflect the effect of the proposed algorithm 

on a standard MIMO-OFDM system. The results are shown as criteria such as 

BER, SER, PER etc. 

3. To evaluate Performance evaluation against trending CS-based methods: 

Compressed sensing-based methods are trending because of their efficiency. 

The last objective is to analyse the performance of the proposed algorithm 

against the benchmark CS one to show the superiority of the optimized LS 

method. 

 

 

1.4 SCOPE OF THE RESEARCH 

 

This research work is intended to be done with computer simulation software. We plan 

to utilize Matlab as the primary simulation platform. With the help of a communication 

toolbox to facilitate the new subchannel construction and thus run simulations according 

to the optimized algorithms. The simulations will be run in an x64-bit program, and the 

codes of the simulations can be found in the Appendix. Note that since the simulations 
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involve multiple criteria evaluation, the simulation parameter may be changed from 

code to code. It is intended to present the simulation results in terms of bit error rate 

(BER), mean square error (MSE), symbol error rate (SER) and or throughput. This 

research doesn’t involve any experimental data; thus, no apparatus or machine outside 

the computer software will be used. 

 

 

1.5 ORGANIZATION OF THE THESIS 

 

This thesis work is divided into six chapters. The first chapter is this one. The 

subsequent chapters are the literature review, methodology, paradigm, results & 

discussion and conclusion. Below is a short note on each of the containing chapters of 

this thesis- 

 

Chapter 1: Contains the preface of the thesis and the organization of the rest of the 

chapters. 

 

Chapter 2: Entails the studies used for this thesis work. It also discusses the features 

and limitations of this research and the research work(s) used for 

benchmarking this thesis. 

 

Chapter 3: The methodology chapter briefly compares the techniques used for the 

research works stated in Chapter 2. Discusses their potential benefits and 

limitations and, based on these observations, derives the scheme(s) used to 

obtain the objectives of this research. 

 

Chapter 4: Defines the setup of this thesis work, including method of obtaining results, 

simulation environment and method, type of statistical analysis used etc. 

Note that this thesis work is entirely simulation-based, but data outside the 

simulation environment may be added if necessary. The chapter includes 

the results obtained via simulation and compares them for benchmarking. 

It also demonstrates how the objectives are achieved and the amount of 

improvement done. 
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Chapter 5: The final chapter of this thesis deals with the conditions of the target 

objectives of this thesis. It also discusses the problems faced during the 

pursuit of the goals and also sheds light on the potential research objectives 

for the following 

 

 

1.6 CHAPTER SUMMARY 

 

The significance and contributions of this research have been demonstrated in this 

chapter. The existing problems and their potential solutions were also discussed. The 

intentions behind this study and possible outcomes were presented. Quick takeaways 

from the literature review have been proposed as a summary. The scope of the research 

has also been looked upon. At the end of the chapter, an outlook and total overview of 

the thesis have been summarized. Furthermore, what this study is about and limited to 

is also discussed.  
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CHAPTER TWO 

2 LITERATURE REVIEW 
 

 

 

2.1 INTRODUCTION 

Much work has been done through the years in signal processing for cellular networks 

(Zhang, Ge, Li, Guizani, & Zhang, 2017). Especially starting from the LTE era, the 

process of acquiring channel state information or CSI, known as channel estimation, 

has gained immense attention due to its ability to reduce the overhead to the system and 

increase the throughput. The CSI is usually estimated at the receiver and fed back to the 

transmitter unless otherwise specified. Although the CSI feedback system is also an 

integral part of the estimation procedure, most research regarding channel estimation 

doesn’t explicitly provide any feedback algorithm since the amount of feedback is 

generally kept very small and tolerable for most OFDM systems. That being said, for 

the 5th generation cellular network, it’s said that with an increased no of antennas 

(Massive MIMO), the feedback amount is expected to increase substantially. However, 

it’s not a part of this study. 

 

There are three types of conventional channel estimation procedures; Blind, 

Semi-blind & training/pilot based. Of these three, the semi-blind and especially the 

pilot-based channel estimations have gained popularity due to their flexibility and 

robustness against errors. Most widely researched pilot-based estimation techniques 

include the least square (LS) method, the Minimum Mean Squared Error(MMSE) 

method, and the Linear MMSE (LMMSE). There are, however, some other lesser-

known modifications of these methods like Normalised Least Mean Square (NLMS) 

and Recursive Least Squares (RLS) (Masud & Kamal, 2010), Space Alternating 

Generalized Expectation-maximization (SAGE) (Ketonen, Juntti, Ylioinas, & 

Cavallaro, 2013),  Iterative-Compensated MMSE (IC-MMSE) (Y. Liu & Sezginer, 

2011) and so on. All these modified algorithms have in common that the researchers 

added weighted values, statistical info or similar criteria to make up for certain 

drawbacks in these proposed algorithms. For instance, adding further taps in the LS 

algorithm can decrease the estimation errors (Van de Beek et al., 1995), which led to 

numerous variations in these algorithms. This study intends to discover the appropriate 
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approaches to these modifications that will suit the mmWave MMIMO OFDM systems. 

Despite being old, these algorithms are still large in practical cellular networks. They 

arguably can have the same amount of contribution to the 5th generation of cellular 

networks as any other new contenders like the compressed sensing (CS) algorithms. 

Which we shall focus on as another objective of this study. 

 

The rest of this chapter is assembled as follows; First, a short history of 

pilot/training-based estimation is given, followed by the current trends in this domain 

and finally, the existing research gap. Next, a brief introduction to compressed sensing 

(CS) based theories is given along with current works in this manner. The CS section is 

kept short since optimising them in this study is not our concern; they’ll be used to 

characterize the performance trade-off with overhead in contrast to the pilot-based 

estimations. The final section of this chapter will include a comparative demonstration 

of different trending algorithms, their limitations and possible amelioration. Finally, the 

chapter will be concluded with a brief summary. 

 

 

2.2 PILOT-TRAINING-BASED CHANNEL ESTIMATION 

 

As mentioned in the introduction, pilot-based channel estimation involves determining 

the channel impulse response in the frequency domain with the help of a set of 

predetermined symbols. The impulse response is selected from the knowledge of the 

received symbol matrix and the pilot symbols. There are three pilot structure types: 

block, comb, and lattice. Block type involves inserting the pilot symbols for all the 

subcarriers for a particular instant and then sending them periodically. So, this type of 

pilot training is helpful for slow-fading (frequency selective) channels. 

On the other hand, comb-type pilots are useful for fast-fading channels since pilots are 

inserted following the time axis. In the lattice-type pilot, symbols are inserted in both 

time and frequency axes to ease interpolation. A generalized picture can be 

comprehended from Figure 2.1. 
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Figure 2.1 Organization of a general OFDM system (Hamamreh et al., 2018) 

 

 

  Pilot-based channel estimators are highly adjustable because of their simplicity. 

And any additional available info can be added to each iteration step to stretch the 

performance boundary further. In light of these features, the literature discussed in this 

chapter mainly focuses on pilot-based training. A short comparison of the differences 

in signal processing between microwave and millimetre waves is given in Table 2.1. 

 

Table 2-1 Comparison between µWave and mmWave 

 

 

Parameters µWave mmWave 

Gain Larger About the order of two times 

smaller. 

Path loss Lower for a certain BS-UE 

distance. 

Higher than µWave for a 

certain BS-UE distance. 

Shadowing Small and independent of 

blockage and NLOS propagation. 

Larger than µWave and 

dependent on several 

random variables also 

affected by blockage and 

LOS/NLOS propagation. 

Interference They are affected by proximity, 

distance-dependent and result in 

background interference for 

increasing no of interferers. 

High-attenuation by 

blockage and antenna gain 

patterns obscure in terms of 

distance and demonstrates 
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an ‘On-Off’ kind of 

behaviour. 

SINR They are affected by proximity 

and distance-dependent, 

resulting in background 

interference for an increasing 

number of interferers. 

High-attenuation by 

blockage and antenna gain 

patterns obscure in terms of 

distance and demonstrates 

an ‘On-Off’ kind of 

behaviour. 

Antenna array 

conFigureuration 

The BS side has massive arrays. Both the BS and UE have 

massive antenna array 

capacities. 

DSP Moderate level of complexity. Highly complex 

Call handover It is generally done at the cell 

perimeter, less frequently. 

More frequent due to 

susceptibility to blockage,  

beamforming etc. 

Gain Larger About the order of two times 

smaller. 

Path loss Lower for a certain BS-UE 

distance. 

Higher than µWave for a 

certain BS-UE distance. 

Shadowing Small and independent of 

blockage and NLOS propagation. 

Larger than µWave and 

dependent on several 

random variables also 

affected by blockage and 

LOS/NLOS propagation. 

Interference They are affected by proximity 

and distance-dependent, 

resulting in background 

interference for the increasing 

number of interferers. 

High-attenuation by 

blockage and antenna gain 

patterns obscure in terms of 

distance and demonstrates 

an ‘On-Off’ kind of 

behaviour. 

SINR Has a more lenient change from 

the cell centre to the cell 

perimeter. 

Suffers from rapid random 

fluctuations caused by 

blockage, efficiencies of 
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beam alignment and 

steering. 

Antenna    The BS side has massive arrays. Both the BS and UE have 

massive antenna array 

capacities. 

DSP Moderate level of complexity. Highly complex 

Call handover It is generally done at the cell 

perimeter, less frequently. 

More frequent due to 

susceptibility to blockage,  

beamforming etc. 

 

 

2.3 CONTEMPORARY WORKS AND RESEARCH GAPS 

 

Although conventional channel estimation methods have been the topic of interest for 

a very long, the study behind them hasn’t waned in recent years. Introducing new 

statistical techniques like the Compressed Sensing (CS) based methods have sparked a 

new interest in the tradeoff in performance and simplicity between these two domains 

of channel estimation algorithms. Although we’re primarily focusing on LS and 

MMSE-based methods, this research's secondary objective is to find the performance 

gap between this trending CS domain and the conventional channel estimation methods. 

 

2.3.1 Channel estimation in FBMC Systems 

 

The Filter Bank Multicarrier (FBMC) system is an emerging technology that is 

supposed to mitigate some existing concerns in the OFDM systems, like out-of-bound 

(OOB) radiations and uplink synchronization errors.  It is an adjustment of OFDM and 

targets to overcome some of its limitations, albeit at the cost of increased signal 

processing. FBMC boasts some improvements in efficient BW utilization because of 

the redundancy of CP, spectrum efficiency and the allocation for robust narrowband 

jammers. At the same time, it imparts the difficulties of sensitive synchronization issues 

and very complex signal processing requirements. But because of its features, it’s being 

increasingly studied in contemporary signal processing works. For instance, judging the 

effects of timing and frequency offsets in mmWave signal processing is very important. 

Because the successful recovery of the transmitted symbols greatly depends on it. It’s 
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found in the studies of (Aminjavaheri et al., 2015) that if we assume an ideal channel 

response and ignore the fading effect, the transmitted data symbols can be presented as- 

 

�̂�𝑚𝑘
(𝑙)

 = ⟨𝑦(𝑡), ℎ𝑚𝑘(𝑡)⟩ 

= 𝑋𝑚𝑘
(𝑙)

+ 𝐼𝑀𝐴𝐼 +  𝜂 

(2.1a) 

(2.1b) 

 

where ℎ𝑚𝑘(𝑡) denotes the receiver basis corresponding to the (m, k) time-frequency 

point, I_MAI is the multiple access interface if the waveform is non-orthogonal, and η 

is the associated noise. From equation (2.1b), it can be seen that the transmitted symbols 

for the lth user can be estimated whether the waveform is orthogonal like OFDM, 

FDMA or non-orthogonal like GFDM (Generalized Frequency Division Multiplexing).   

 

 

 

 

Figure 2.2 BER performance of different waveforms depending on TO and CFO 

differences and user synchronization (Aminjavaheri et al., 2015) 

 

One can easily comprehend the performance upper hand of FBMC from  

Figure 2.3. A smooth-edge windowing algorithm should be implemented on both the 

transmitter and receiver sides to reduce sensitivity caused by timing offset and carrier 

frequency offset (CFO). Since we can see the difference when users are quasi-

synchronized, they’re TOs in the range of CP.  
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  FBMC with Offset QAM (OQAM) shows great potential using sharp pulse 

shaping filters in both frequency and time domains. In their work (Singh et al., 2019), 

the authors presented the conventional semi-blind, training-based and data-aided 

channel estimation schemes for the FBMC, as mentioned earlier, which are still popular 

choices for the OFDM-based systems. Their work showed that semi-blind estimation 

schemes with OFDM-FBMC perform better than the same system using pilot-training-

based estimation (Singh et al., 2019). They also show that although using second-order 

channel statistics can significantly increase system overhead, it contributes to a lesser 

MSE. In the presence of channel estimation errors, they derived  

the expression for BER of their MIMO-FBMC system as, 

 

�̅�𝑏 ≅ [
1

2
(1 − 𝜇0) ]

𝐷+1

∑(𝐷 + 𝑞𝑙)

𝐷

𝑞=0

[
𝑞

2
(1 + 𝜇0)]

𝑞

 

(2.2a) 

 

where the 𝜇0 = √
�̅��̅̅̅�,�̅�

2+ �̅��̅̅̅�,�̅�
 is dependent on the post-processing SNR γ̄ . and D is the 

difference between no of transmitted symbols and no of received symbols. They also 

included a comparison of overhead between different estimation schemes. From 

equation (2.2a), it’s evident that the secret behind a better estimator lies withing the 

maximization of 𝜇0 or the post-processing SNR. 

 

 

 

Figure 2.3 Performance upper hand of the semi-blind MIMO-FBMC and data-aided 

MIMO-FBMC over conventional least squares MIMO-FBMC (Singh et al., 2019) 
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Figure 2.3 shows that semi-blind FBMC has the best performance among 

different MIMO systems because of the use of second-order channel statistics and is 

very close to the one where a perfect CSI is assumed. Furthermore, the FBMC system 

has the advantage of being more spectrally efficient. Because cyclic prefixes (CP) are 

redundant for this system, the authors emphasized that using the data-aided estimation, 

channel statistics, and training symbols yields better BER performance for the MIMO-

FBMC system as compared to the conventional LS methods that only rely on the pilot 

training. 

 

This work insinuates that the OFDM estimation performance in terms of BER 

can also be enhanced if data-symbol estimates are used besides the training symbol 

estimates. In light of this, the simple conventional estimates like the LS can be further 

adjusted for Massive MIMO if the data-symbol estimates are considered in the 

algorithm. 

 

2.3.2 Channel estimation with GSM 

 

Spatial modulation (SM) is a  modulation technique that uses only one transmit RF 

chain and one antenna element in a multiple transmit antenna array and thus sends the 

information symbol through the chosen antenna. It means less inter-antenna 

synchronization, less hardware complexity and, in a sense, less cost for a transmitting 

system. General Spatial Modulation, or GSM, is an extension or generalization of this 

idea that enables multiple transmit antennas to be active simultaneously. Thus GSM can 

allow much higher data rates which come with the cost of adequately detecting the 

signal at the receiver. Numerous researchers are working on finding low-complexity 

detection schemes which are essential in the case of GSM because of high transfer rates.  

 

Thus, Massive MIMO systems with GSM are a promising area of channel 

estimation research. Spatial modulations have been shown to have some attractive 

characteristics over conventional modulation schemes like reduced power consumption, 

redundancy of antenna synchronization and cancellation of inter-antenna interference. 

Exploiting the system's double-sparsity and using compressed sensing algorithms can 

also lead to better performance than conventional blind and semi-blind algorithms 

(Kuai et al., 2019). The blind CE estimates the channel offset on the signal without 
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using any pilot signal. So if H is the impulse response of the channel, X is the transmitted 

symbols, then the blind estimation problem for the observed data matrix Y can be 

summarized as, 

 

(�̂�, 𝑋)̂ = arg𝑚𝑎𝑥𝐻,𝑋(𝑋, 𝐻|𝑌) (2.3a) 

The parameters in (2.3a) are used in blind and semi-blind algorithms to devise 

various estimators. The angle of arrival, or AoA, it’s estimated using the following 

expression- 

 

sin 𝜃𝑞 = sin 𝜗𝑞
𝐷𝐹𝑇 + 𝜍𝑞 ;      𝑤ℎ𝑒𝑟𝑒 𝜍𝑞 ∼ 𝑈 [−

1

2�́�
,
1

2�́�
] (2.3b) 

 

 

Here ϑ_q^DFT is the DFT sampling grid. and U are denoting the uniform distribution. 

Based on this, different types of blind and semi-blind algorithms can be devised.  

 

 

 

Figure 2.4 BER performance of different schemes using GSM in large-scale fading 

(Kuai et al., 2019) 
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GSM allows multiple antennas to be active simultaneously and thus send 

multiple symbols at the same time to different users. Double sparsity is often exploited 

in contemporary articles for channel estimation, which means both the clustered channel 

sparsity in the angular domain and the inherent sparsity of the signal in spatial 

modulation are accounted for. Blind and Semi-blind detection algorithms show 

increased efficiency in spatially modulated systems if substantially accurate channel 

statistics are available  

 

Exploiting the signal's sparsity has led to numerous channel estimation methods, 

like compressed sensing. However, especially for the problem of multiuser detection, 

some studies have shown that utilizing random and structured sparsity learning 

algorithms makes it feasible to get better results than pilot symbols, albeit with 

increased complexity to some extent. The significant difference between structured and 

random sparsity is that in random sparsity, the entries of the transmitted signal matrix 

are independent, whereas, in structured sparsity, it’s highly specific; that is, each row 

of the transmitted signal matrix X corresponds to only one active packet in the 

observation window (Bjornson et al., 2017; Ding et al., 2019; Zhang et al., 2018). 

 

 
 

 

Figure 2.5 SER & MSE for random sparsity-based estimation vs training-based 

estimation (Ding et al., 2019) 

 

However, in systems like Massive MIMO, where numerous antennas are 

applied, the channel statistics' availability, processing and accuracy are also of great 

concern. Even though methods like the Semi-blind algorithms have superior 
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performance over the conventional training-based methods, the adjustment of the 

channel statistics in these algorithms puts another restrain on the estimation algorithm. 

In training-based methods, this complexity is avoided. 

 

A recent study by Pan et al. (2019) showed that evaluating the channel 

estimation and decoding performance together can enable a good overview of the 

overall BER performance of the OFDM system (Pan et al., 2019). 

 

The authors demonstrated the performance of joint ML( Max Likelihood) 

decoding, conventional mismatched  ML decoding and a novel scheme of what they 

call as separate ML decoding along with the addition of MMSE channel estimation.  

Figure 2.6  BER vs SNR performance when 16QAM(Left) and QPSK(Right) 

modulation is used with joint estimation 

 

They used two modulation schemes, 16QAM and QPSK, to show the 

performance overview. Figure 2.2 shows that the BER performance achieved by the 

joint ML-decoder is identical to that achieved by the separate MMSE-ML decoder. 

Also, the joint ML decoder and the separate MMSE-ML decoder marginally outperform 

the mismatched ML decoder. They mathematically proved that these two detection 

schemes are identical in terms of performance, although conventionally, it’s thought 

that joint detection schemes are superior. A possible reason can be the estimation error 

in the separate decoding scheme. They also showed that MMSE algorithms have the 

best performance in terms of overall system efficiency. 
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 Nevertheless, another potential candidate for this purpose can be the LS estimate 

since it has the advantage of simplicity over the MMSE method. Although the MMSE 

method yields better results when accurate secondary channel statistics are available, 

resource friendliness can be crucial when a complex system like Massive MIMO is 

considered. 

 

 The increase in wireless communication entities also paves the way for security 

issues like eavesdropping and spoofing. Pilot Spoofing Attack (PSA) happens when an 

eavesdropper sends an identical pilot as the legitimate user. In these security issues, 

accurate CSI through channel estimation is paramount. The pilot spoofing attack (PSA) 

happens during the uplink pilot training phase. A combined baseband is usually 

considered at the BS to incorporate the compromised pilot with the legitimate one (W. 

Wang et al., 2019). 

 

𝒀𝒑 = ∑(√𝑃𝑢𝛽𝑢𝑘𝒉𝑘
𝐻𝒔𝑘 +√𝑃𝑒𝛽𝑒𝑘𝒈𝑘

𝐻𝒔𝑘) + 𝑁

𝐾

𝑘−1

 (2.4a) 

 

Where P, β, h, g and s mean the signal's power, path loss, and small-scale 

Rayleigh fading of the user and the attacker and the pilot signal, respectively. The 

notations u and e mean the user and the eavesdropper, respectively. N is used to 

incorporate AWGN. Then by using the process of elimination on equation (2.4a), it is 

shown that the MMSE estimator of the contaminated signal block unit can be expressed 

as, 

 

𝒉 𝑘 = 
√𝑃𝑢𝛽𝑢𝑘

Σ
𝒚𝑘 + 

𝑃𝑢𝛽𝑢𝑘
Σ𝑘

𝒉𝑘 + 
√𝑃𝑢𝑃𝑒𝑘𝛽𝑢𝑘𝛽𝑒𝑘

Σ𝑘
𝒈𝑘 + 

√𝑃𝑢𝛽𝑢𝑘
Σ𝑘

𝒏𝑘 (2.4b) 

 

One can easily distinguish between the legitimate user and the eavesdropper 

from equation (2.4b). The result of this smart separation is also apparent as the CSI of 

the legitimate user can be obtained with even more accuracy, as can be seen from  

Figure 2.3 (W. Wang et al., 2019). 
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Figure 2.7 NMSE of different channel estimators where N = 64 and K =4  

 

The authors showed that it’s comparatively easy for eavesdroppers to ‘spoof’ or 

copy the training sequence from the BS and send an identical but malicious copy to the 

MU. It can dramatically reduce the link quality and not to mention the safety of the info 

concerning MU. Moreover, this physical layer security breach can rapidly fluctuate 

degrees of freedom (DoF) to zero (Basciftci et al., 2018). To figure out this kind of pilot 

spoofing attack in TDD systems, the authors proposed a two-step channel training-

based estimation scheme that first detects the attacker's presence and then effectively 

separates the contaminated data bits of the training sequence from the ones that the BS 

sends. The authors also derived a lower bound on a max achievable uplink and downlink 

‘secrecy’ rate. Later, the estimation errors arriving from using a limited number of 

samples and antennas were also calculated, and an estimate of the achievable 

improvement under MMSE precoding was derived. The authors showed enhanced 

performance of their double training scheme in terms of normalized MSE (NMSE). 

 

 This double training scheme can be applied, and its performance bound on the 

max achievable uplink-downlink rate can be studied for the multi-cell Massive MIMO. 

Also, a parallel NMSE account can be derived for the LS and other conventional 

estimation schemes. 
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 Molecular communication (MC) is a recent invention focusing on 

communicating among medical apparatus and nanorobots. In MC, the bio-

nanomachines are the entities that communicate as transmitter and receiver. To transmit 

the molecules, they need a liquid or gaseous medium. Thus these kinds of systems are 

often called ‘Diffusive’ systems. The channel estimation, equalization and detection of 

such a Diffusive MIMO or DMIMO system are studied (Mohammadreza Rouzegar & 

Spagnolini, 2017). They derived training-based estimation schemes and decision-based 

feedback equalizers for the DMIMO system. Since the transmission of MC systems 

isn’t static but susceptible to Brownian motion, the estimation schemes and equalizing 

algorithm were based on a block-type system. Numerical results in terms of MSE and 

Cramér-Rao(CRB) show that their equalization method successfully figures ISI and 

ILI(Inter link interference), and the channel estimation scheme has an improved upper 

bound performance. 

 

 Although there are significant differences between MC and wireless systems, 

the same idea of achieving a minimum CRB can be applied for both of them in terms 

of estimation MSE. Furthermore, for Judging the similarity of the systems in terms of 

heavy traffic and data collision, an assessment, equalization and detection scheme 

identical but optimal for the wireless system can also be proposed. 

 

Feng M and Jin H proposed (Feng & Hong 2020) an improved algorithm based 

on DFT that enhances channel estimation in OFDM systems by accounting for both 

noises outside the cyclic prefix (CP) and inside CP. Their study reveals that most of the 

data symbols of the OFDM signal are concentrated around the peak amplitude of the 

time domain signal, and the other components can be considered as noise or irrelevant. 

As such, their improved DFT scheme used statistical median inside and outside the CP 

to effectively cancel out the remaining noise even after the LS algorithm. Furthermore, 

the DFT algorithm is easy to apply, and the BER performance gain was clear after the 

modification. Finally, they demonstrated the performance of their algorithm against 

conventional DFT and LS via the BER calculation and the MSE. 

 

 However, their results can be further generalized if the number of multipath 

components is increased. There is generally larger multipath in practical Massive 



 

22 

MIMO scenarios, especially in dynamic situations. Also, accounting for the quality of 

available channel statistics, an estimate for the MMSE can be extended. 

 

 Apart from the Compressed Sensing (CS) algorithms which exploit the sparsity 

of the spatially correlated MMIMO channels, authors Yilmaz & Erdogan (2019) 

proposed a Compressed Training based Semi-blind algorithm for channel estimation 

that doesn’t rely on the sparsity of the MMIMO channels. So, it’s equally applicable to 

both sparse and dense channels. The authors exploited the channel reciprocity in TDD 

MMIMO systems to significantly reduce the training length from the no of users = k 

symbols to log2k symbols utilizing the uplink pilot section and the uplink data section. 

Their scheme involves presenting the LS estimate as a convex cost function problem 

and finding the infinity norm or l ∞ norm of the whole packet. According to the authors, 

instead of finding the estimate of the channel matrix H, finding the linear equalization 

explicitly using both data and training sessions yielded a better result. They argued that 

non-convex cost function-based adaptive algorithms suffer from inaccuracies due to 

undesired minima and slow convergence issues resulting from undesired saddle points.      

 

 Nevertheless, presenting the estimation error as a convex cost function has limits 

on itself as although it’s not an NP hard problem to solve, still in the case of multi-user 

MMIMO the calculation complexity Amelunxen, Lotz, McCoy, & Tropp, (2014) will 

exponentially rise especially in FDD systems. A comparative analysis of the above 

literature is given below for clarity- 

 

 

Table 2-2 Features and limitations of mentioned research works 

 

 

Article Methodology Features Limitations Remark 

(Pan et al., 

2019) 

FDD Massive 

MIMO 

Efficient separate 

ML decoding. 

Easy account of 

joint decoding 

performance for 

It can be 

extended to 

the LS 

algorithm 

also. 

It shows the 

combined 

efficiency 

when both the 

detection and 
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complex MIMO 

systems 

estimation are 

considered. 

(Singh, 

Mishra, 

Jagannatha

m, & 

Vasudevan, 

2019a) 

FBMC-MIMO The use of sharp 

FT filters makes 

CP redundant. 

Account for 

statistical info of 

data symbols 

further improves 

the estimation 

performance 

Doesn’t 

account for 

the channel 

reciprocity in 

the case of 

TDD 

systems. 

The SVD 

operations 

and the 

exploitation 

of statistical 

info result in 

far higher 

computation

al 

complexity 

than the LS 

method. 

The 

availability of 

channel 

statistics 

becomes 

crucial in the 

overall 

complexity of 

the algorithm. 

(Kuai et al., 

2019) 

Massive 

MIMO; GSM 

Exploiting 

clustered channel 

sparsity and 

inherent sparsity in 

GSM significantly 

reduces pilot 

overhead. 

Proposed Blind 

estimation method 

reaches Genie-

The 

performance 

of the 

proposed 

blind 

algorithms 

depends on 

the 

availability 

of perfect 

Spatial 

modulations 

offer some 

significant 

advantages 

over 

conventional 

modulations, 

such as 

reduced power 

consumption, 

redundancy of 
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aided algorithm 

performance 

The Semi-blind 

algorithm 

performs best 

under short-pilot 

transmissions. 

CSI at the 

transceiver. 

Bilinear 

recovery 

algorithm is 

not 

applicable 

due to 

scheme 

constraints. 

antenna 

synchronizatio

n and inter-

antenna 

interference 

(IAI). 

(W. Wang et 

al., 2019) 

TDD Massive 

MIMO 

A two-step 

channel estimation 

process protects 

the system from 

unauthorized 

access. 

Using Eigen Value 

Decomposition(E

VD), contaminated 

symbols are 

automatically 

detected and 

removed from 

circulation. 

MMSE precoding 

scheme allows us 

to determine the 

lower bound on 

the achievable 

downlink secrecy 

maximization. 

Channel 

reciprocity is 

required as a 

prerequisite, 

so only 

applicable to 

TDD 

systems. 

Applicable 

for only 

single-cell 

scenarios. 

Physical layer 

security can be 

a major 

concern for 

the current 5G 

era since 

denser and 

denser cell 

structures are 

being 

employed in 

operation. 
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(Rouzegar 

& 

Spagnolini, 

2017) 

Diffusive 

MIMO 

(DMIMO) 

Accounts for 

multi-entities 

within the system 

Uses conventional 

low-complexity 

pilot training 

algorithms. 

A separate 

Interleaving 

encoder is 

required to 

exploit the 

time 

diversity. 

The tradeoff 

of 

complexity 

for 1dB gain 

over the ML 

and LS 

methods 

isn’t 

significant. 

The effect of 

inter-link 

interference 

(ILI) in 

DMIMO is 

very 

significant and 

plays a key 

role in 

determining 

the 

performance 

of the channel 

impulse 

response 

(CIR) 

estimation 

schemes. 

(Feng & 

Hong, 2020) 

Massive 

MIMO 

The low 

complexity of the 

proposed DFT 

algorithm. 

Doesn’t require 

any channel 

statistics. 

Doesn’t rely on 

channel 

reciprocity. 

In denser 

urban areas, 

the algorithm 

must be 

extended to 

account for 

larger 

multipath 

components. 

It can be 

further 

enhanced if 

channel 

statistics are 

Although 

acquiring 

channel 

statistics adds 

to the 

overhead, an 

efficient 

feedback 

system can 

reduce this 

burden to a 

certain extent. 
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taken into 

account. 

(Yilmaz & 

Erdogan, 

2019) 

TDD Massive 

MIMO 

Proposed 

algorithm free 

from slow 

convergence 

problems caused 

by the existence of 

saddle points. 

The cost function 

minimization 

problem has lower 

complexity 

compared to 

contemporary 

algorithms. 

Significantly 

reduces the 

required training 

length. 

Algorithm 

complexity 

eventually 

rises in FDD 

systems. 

 

Convexity of 

the l1 and l∞ 

minimization 

problems is 

becoming 

popular due to 

the emergence 

of CS-based 

methods. The 

authors thus 

also provide a 

linkage 

between these 

two methods. 

 

 

2.4 BENCHMARKING 

 

For initial benchmarking purposes, we’re taking the study of Pan et al. (2019), 

which provides a good starting point for our optimization since the algorithm 

studied here is suitable for general FDD Massive MIMO systems. Also, because it’s 

efficient for MMIMO systems to be characterized by the combined performance of 

decoding and estimation, note that at any stage of this research, if deemed necessary, 

we’re willing to adopt or change our benchmarking parameters, which only time 

will say. 
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2.5 CHAPTER SUMMARY 

 

This chapter discusses some of the numerous contemporary contributions in channel 

estimation and signal processing, from which this study is inspired. Different 

researchers have tried to exploit different aspects of the MMIMO systems to achieve 

the same goal, improving the quality and robustness of conventional and contemporary 

channel estimation algorithms. Furthermore, because the communication in mmWave 

will have some crucial problems, as indicated in the literature, an efficient CSI-

acquiring structure will go a long way in incorporating the signal processing standards 

of LTE into 5G NR and future releases. 
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CHAPTER THREE 

3 METHODOLOGY 

 

 

3.1 INTRODUCTION  

 

Channel estimation techniques can be broadly categorised into Blind, Semi-blind and 

Training based. Since we’re focusing on training-based estimation schemes, the 

algorithms and methodology from hereon will be about this regime. In the field of pilot-

aided training, various approaches can be taken. Some researchers have opted for a soft 

estimate of data symbols via a max-a-posterior (MAP) decoder to reduce iteration error 

subsequently (Hardjawana et al., 2010). A vital feature of this scheme is the joint 

cancellation of ICI from the subcarriers. Including the Doppler spread information at 

the receiver also shows good performance lower bound on some systems (Aboutorab, 

Hardjawana, & Vucetic, 2013). The Doppler spread information becomes very useful 

in high mobility scenarios. The Adaptiveness of the estimator is a very attractive feature 

that allows the receiver to update the estimator parameters without channel and noise 

statistics, significantly reducing the calculation complexity (Masud & Kamal, 2010). 

Although channel and noise statistics can substantially minimize the iteration errors, but 

also exponentially adds to the complexity. Linear MMSE or LMMSE has superior 

performance over LS when the considered SNR is small and not rapidly changing, but 

in varying SNR regions, it loses efficiency to LS  (Khlifi & Bouallegue, 2011). Using a 

minimal degree of channel statistics can yield about ~10% improvement in max 

throughput and spectral efficiency if the estimation algorithms have decision-directed 

iteration steps (Ketonen et al., 2015).  

 

By exploiting the null-subcarriers and adding compensation for each iteration 

process, the traditional MMSE algorithm can produce more accurate CSI with reduced 

complexity (Y. Liu & Sezginer, 2012). 
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Figure 3.1 Estimator workflow 

 

 In light of these approaches, we’ll take an adaptive iteration approach that shows 

significant performance without the added complexity of channel statistics. Another key 

feature of this approach is that it can be extended to most other algorithms and thus 

enhance their performance.  

 

Start 

Initialize parameters 

𝑋𝑓 = 𝑋�́� ; 𝑋𝑡 = 𝑋𝑡́  

OFDM block 

𝑋�̂� = 𝑋�́� 

Improve pilot pattern 

with dual residue 

(frequency axis) 

𝑋�̂� = 𝑋�́� 

𝑋�̂� = 𝑋𝑡́  

Improve pilot pattern 

with dual residue 

(time axis) 

𝑋�̂� = 𝑋𝑡́  

CSI 

𝑋�̂�~ 𝑋𝑡́  𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒? 

END 

Yes 

No 

No 

No 

Yes 

Yes 
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As a final remark, the hypothesis of this research can be put into a workflow as 

depicted in Figure 3.1.   

 

3.2 SYSTEM MODEL 

  

For this study, we’re considering a flat block-fading Massive MIMO system with  

t, r – as the no of Tx and Rx antennas. A block-fading system means that the fading can 

be assumed constant during the transmission of one symbol. In the frequency domain, 

we can express the received signal vector as, 

 

𝒚𝑖  =   𝑯𝒑𝒊 + 𝒛𝒊 (3.1) 

 

Where, H is the r×t  random channel matrix, zi is the r×t complex Gaussian 

noise with zero means, and pi is the t×1 complex vector of the transmitted signal. For 

simplicity reasons, we treat H as random and its elements as independent and identically 

distributed (IID).  Hence, during the estimation process, any estimate of H at a certain 

time instant will mean a particular sample of this random matrix that pertains to the 

current block in consideration. For the estimation of H, let’s assume n ≥ t training 

vectors p1, p2.........pn to be transmitted, now the related r×n matrix of the received 

signal Y = [ y1, y2.......yn] can be defined as, 

 

Y =  

 

HP + Z   (3.2) 

 

Assuming N subcarriers, the symbols for the training matrix P can be described as- 

 

 

P =  

 
[

𝑃[0] 0 ⋯ 0
0 𝑃[1] ⋯ ⋮

⋮ ⋯ 𝑃[2] 0
0 ⋯ 0 𝑃[𝑁 − 1]

] 

 

(3.3a) 

 

Where, P[k] denotes the pilot at the kth subcarrier. The mean and variance of this pilot 

matrix are 0 and σ_x^2- respectively, with k = 0, 1, 2…….N-1. Since P  is a diagonal 

matrix, we assume all the subcarriers are orthogonal, i.e., ICI-free. Since we know the 

channel gain = H[k] (impulse response in the time domain) for each subcarrier, the 

received signal matrix can then be defined in equation (3.3), 
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Y   

≈  

 

[

𝑌[0]

𝑌[1]
⋮

𝑌[𝑁 − 1]

]=[

𝑃[0] 0 ⋯ 0
0 𝑃[1] ⋯ ⋮

⋮ ⋯ 𝑃[2] 0
0 ⋯ 0 𝑃[𝑁 − 1]

] [

𝐻[0]

𝐻[1]
⋮

𝐻[𝑁 − 1]

]+ [

𝑍[0]

𝑍[1]
⋮

𝑍[𝑁 − 1]

] 

 

=  𝑃𝐻 +  𝑍 

 

(3.3a) 

 

 

(3.3b) 

 

 

where the channel vector H is given by – H= [H[0], H[1]……….H[N-1]] T and Z is the 

Gaussian noise vector Z = [Z[0], Z[1]……..Z[N-1]] T with mean = 0 and  

variance = σ_z^2. For the estimation algorithms, we denote H ^as the estimate of H. 

 

3.3 LEAST SQUARES CHANNEL ESTIMATOR 

 

The idea behind the least squares channel estimator is to determine H ^in such a way as 

to minimize the cost function- 

 

J(�̂�)  
 

= ‖𝑌 − 𝑃�̂�‖
2
 

= (Y - P�̂�)H(Y - P�̂�) 

= YHY - YHP�̂� - �̂�HPHY +   �̂�H PH P�̂� 

(3.4a) 

(3.4b) 

(3.4) 

Now by setting its derivative concerning H ^ to zero, we get 

𝜕𝐽(�̂�)

𝐽�̂�
  

 

=-2(PHY)* + 2(PHP�̂�)*  = 0  (3.5) 

Having PHPH ^= PHY  solves for the LS estimate of H ^ as- 

𝐻𝐿𝑆
^  = (PHP)-1PHY  

= P-1Y 

 (3.6) 

 

 

Let’s denote the components of the channel estimate matrix as (H_LS ) ^[k]. Where 

k = 0, 1, 2…..N-1. Since we assumed that P is diagonal, then we can write the channel 

estimate for each subcarrier as- 
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𝐻𝐿𝑆
^ [𝑘] = 

 

𝑌[𝑘]

𝑃[𝑘]
 

 (3.7) 

The mean square error (MSE) of LS estimation can be found as 

 

MSELS  = E{(H- 𝐻𝐿𝑆
^ )H(H- 𝐻𝐿𝑆)} 

= E{(H-P-1Y)H(H-P-1Y)})  

= E{(P-1Z)H(P-1Z)}  

= E{ZH(PPH)-1Z}              

= 
𝜎𝑧
2

𝜎𝑥
2 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

(3.8) 

 

Notice that the system SNR is inversely related to the MSE of the LS algorithm. 

It’s because, mathematically, the MSE is the average of the unit square error, which in 

the case of LS, translates into the ratio of AWGN and signal power in the frequency 

domain.  The chief advantage of the LS algorithm is it’s simplicity in application since 

no channel statistics or Priori information is required here. The algorithm model in that 

region shows that the redundancy check step at the end of the conventional algorithm 

only adds a negligible amount of distance improvement when MMIMO-OFDM scenery 

is considered. Besides that, it greatly affects the total pilot overhead, as seen from the 

algorithm steps. If we increase the total number of subcarriers to facilitate the increase 

in cell users, the pilot overhead will exponentially increase. To accomplish this, the BS 

transmitter has to be adapted to emit an increased number of signal blocks per unit of 

time. 

 

The proposed method exploits these tradeoffs to offer a better. A recent study 

(Pan et al., 2019)  also showed that evaluating the channel estimation and decoding 

performance together could enable a good overview of the overall BER performance of 

the OFDM system. The authors demonstrated the performance of joint ML  

(Max Likelihood) decoding, conventional mismatched ML decoding and a novel 

scheme that they call separate ML decoding, and the addition of MMSE channel 

estimation. They used two modulation schemes, 16QAM and QPSK, to show the 

performance overview. They mathematically proved that these two detection schemes 

are identical in terms of performance, although conventionally, it has been thought that 

joint detection schemes are superior. The account estimation error in the separate 
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decoding scheme is a possible reason. They also showed that MMSE algorithms have 

the best performance in terms of overall system efficiency. In our methodology, we 

demonstrated that the cutoff from the checking portion of the algorithm has less effect 

on performance and more effect on the system overhead. Recent studies also showed 

that the effect of the numbers of subcarriers gets significant with an increasing no of 

users. And this has a negative effect on the CE algorithm. 

 

 

3.4 ESTIMATOR ACCURACY CONSIDERATIONS 

 

As can be guessed from the characteristics of estimators, their accuracy largely depends 

on the observed sample and the pertaining PDF of that data. As discussed below, we 

will see that the estimator's accuracy can be substantially effected depending on the 

degree of correlation of the PDF with the data in question. 

 

 

3.4.1 Dependency of the PDF on the channel co-efficient 

 

If we treat a single sample of the transmission as- 

 

𝑦[0] = ℎ + 𝑧[0]   (3.9) 

Where, y is the received bits, h is the unknown channel coefficient and z is the random 

Gaussian noise. 

 

Where, the AWGN z[0]~(0,σ2) and we want to estimate h, we can speculate that 

the variance σ2 will be smaller for a better estimate. From the definition of unbiased 

estimators, we can recall that for the best-unbiased estimation ĥ = y[0]. From this, it’s 

apparent that the estimator's accuracy increases as the variance decreases. Since we are 

considering AWGN, the probability density function (PDF) pa(y, h) of the unknown 

channel parameter can be defined as, 
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𝑝𝑎(𝑦[0]; ℎ) =
1

√2𝜋𝜎𝑎2
𝑒
[−

1

2𝜎𝑎
2(𝑦[0]−ℎ)

2]
 

 

 (3.10) 

 

When we consider the PDF as a function of the unknown parameter h for a certain y[n], 

we can term it as the likelihood function. The acuteness of this likelihood function will 

show how accurately we can estimate our unknown parameter using our proposed 

optimized legacy algorithms. The sharpness is usually calculated as the negative of the 

2nd derivative of the logarithm of the likelihood function at its max. It’s referred to as 

the curvature of the logarithmic-likelihood function. For instance, consider the  

log-likelihood function of Equation (3.8) as, 

 

𝑙𝑛 𝑝(𝑦[0]; ℎ) =  − 𝑙𝑛√2𝜋𝜎2 − 
1

2𝜎2
(𝑦[0] − ℎ)2 

(3.11) 

Where, the σ^2 is the variance of the random Gaussian noise. 

The 1st derivative is- 

 

𝜕 𝑙𝑛 𝑝(𝑦[0]; ℎ)

𝜕ℎ
=  

1

𝜎2
(𝑦[0] − ℎ) 

 (3.11) 

So we can calculate the negative of the 2nd derivative as- 

−
𝜕2 𝑙𝑛 𝑝(𝑦[0]; ℎ)

𝜕ℎ2
= 

1

𝜎2
 

 (3.12) 

Apparently, the curvature is inversely proportional to  σ2, which in this case is the 

variance. So for our case, we can write from equation (2.10), 

 

−
𝜕ℎ2

𝜕2 𝑙𝑛 𝑝(𝑦[0]; ℎ)
=  𝑣𝑎𝑟(ℎ̂) 

 (3.13) 

Where, var(h ̂ ) indicates the variance of the unknown channel coefficient h to be 

estimated. 
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In the proposed wireless channel estimation model, the wireless channel  

Co-efficient will certainly depend on the value of y[0] since we know that the 

covariance matrices are highly correlated in MIMO-OFDM systems. So to put it more 

precisely, we can present equation (2.11) more compactly. So the expectancy or the 

average of the lower bound will be, 

 

−𝐸 [
𝜕2 𝑙𝑛 𝑝(𝑦[0]; ℎ)

𝜕ℎ2
] =  𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 

 (3.14) 

Equation (2.12) measures the average curvature of the log-likelihood function. As 

we can see, the expectation or mean is taken with respect to p(y[0]; h), turning it into a 

sole h-dependent function. From equation (2.12), we can guess a couple of intuitive 

assumptions. For instance, the likelihood function, which depends on y[0], is a random 

variable. Also, the larger the curvature of the likelihood function, the smaller the 

variance of the unknown parameter h. 

 

3.4.2 The Cramer-Rao Lower Bound Delimitation 

 

We shall also derive the Cramer-Rao lower bounds for our scenario, which is a very 

common and effective way to judge the accuracy of the estimation process and its 

deviation from the actual value of the parameter. For our case, we can indicate the 

received signal vector as a function dependent on the unknown parameter h, which we 

wish to estimate via the algorithm- 

 

𝑦[𝑛] =  𝑥[𝑛; ℎ] + 𝑧[𝑛]  (3.15) 

Where, y is the received bits, x is the transmitted bits, and z is the random noise matrix. 

 

We can explicitly note the dependence on the received signal vector on h. From  

equation (3.15), we can define the likelihood function p(y; h) as, 

 

𝑝(𝑦; ℎ) 
= 

1

√2𝜋𝜎2
𝑁 𝑒

[−
1

2𝜎2
∑ (𝑦[𝑛]−𝑥[𝑛;ℎ])2𝑁−1
𝑛=0 ]

 
(3.16a) 

Through differentiating once we get- 
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𝜕 𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ
=  1

𝜎2
∑(𝑦[𝑛] − 𝑥[𝑛; ℎ]

𝑁−1

𝑛=0

)
𝜕𝑥[𝑛; ℎ]

𝜕ℎ
  

(3.16𝑏) 

Differentiating for the second time results in- 

 

𝜕2 𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
 = 

1

𝜎2
∑{(𝑦[𝑛] − 𝑥[𝑛; ℎ])

𝜕2𝑥[𝑛; ℎ]

𝜕ℎ2
− (

𝜕𝑥[𝑛; ℎ]

𝜕ℎ
)
2

}

𝑁−1

𝑛=0

 
(3.16𝑐) 

Now we take the expected value as- 

 

𝐸 (
𝜕2 𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
) = −

1

𝜎2
∑(

𝜕𝑥[𝑛; ℎ]

𝜕ℎ
)

2𝑁−1

𝑛=0

 
(3.16) 

So that we can finally state that- 

𝑣𝑎𝑟(ℎ̂) ≥  
𝜎2

∑ (
𝜕𝑥[𝑛; ℎ]

𝜕ℎ
)
2

𝑁−1
𝑛=0

 
(3.17) 

The degree of dependence of the transmitted signal is demonstrated by this 

bound. From equation (3.16), we can say that signals sensitive to small changes in the 

unknown parameter h result in better estimation performance. It should also be noted 

here that any nonlinear transformation of the signal space will result in a rapid 

declination of the estimator's accuracy. It is because any non-linear transformation 

transfers the estimator from the unbiased domain to the biased domain. So as long as 

the linearity of the CRLB is maintained, we can expect an unbiased estimate of the 

unknown parameter.  

 

We can now take a look at how the algorithm looks according to the discussion 

so far, 

 

Input: �̅�,ȳ,z̄  

Output: î for j attempts 

Initialization: set residual r0 = ȳ ; î = 0 ; h = s ; j = 1 ; stage = 1 

while ≠  (‖𝑟‖2 < ‖𝑟𝑗−1‖2) 

Step 1: Start; Initial select 𝑠𝑗 = 𝑚𝑎𝑥(|𝑖 ∗ 𝑟𝑗−1, ℎ|) 
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Step 2: Create test vector 𝐿𝑗 = ∅ ∪ 𝑠𝑗 

Step 3: Finalize test vector 𝐿 = max (|𝑖𝐿𝑗
∗ | , ℎ) 

Step 4: Residual 𝑟 =  �̄� − 𝑖𝐿𝑖𝐿
∗𝑦̄  

Step 5: If ‖𝑟‖2 < ‖𝑟𝑗−1‖2   → 𝑠𝑡𝑒𝑝 7 𝒆𝒍𝒔𝒆 → 𝑠𝑡𝑒𝑝 4 ; ℎ = ℎ + 1 

Step 6: Update 𝐿 = ℎ × 𝑠  or 𝐿𝒋 = 𝐿; 𝑟𝑗 = 𝑟; j=j+1 

Step 7:  𝑖  =  𝑖𝐿
∗�̄� ; end loop ;  Stop 

 

After Step 5, where the comparison is done to determine if the current residual factor 

meets the threshold or not, in Step 7, an intuitive weight adjustment is done where one 

can see that it adds another layer or offset, which furthers the estimator to the ideal 

value. 

 

 

3.5 PHASE ESTIMATION 

 

Theoretically, a phase estimator doesn’t exist that attains the CRLB and, at the same 

time, is unbiased. As a result, it is desirable to look for an MVU estimator instead, which 

theoretically is still possible to obtain, at least for this case.  

 

An unbiased estimator that attains the CRLB as a sample mean estimator is 

considered efficient in that it efficiently uses the sample space data. On the other hand, 

an MVU estimator may or may not be efficient. So it shows that an estimator that 

doesn’t attains the CRLB still be considered an MVU estimator if it’s variance is 

uniformly less than the other estimates. Again, taking the expectancy equation (3.16), 

the CRLB can even be expressed in a slightly more comfortable form as below; note 

that all the parameters remain unchanged, 

 

𝐸 [(
𝜕𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
)
2

] = −𝐸 (
𝜕2 𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
) 

(3.18) 

Where, the parameters bear the same meaning as in equation (3.17) 

So that the variance can be expressed in a more compact form- 
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𝑣𝑎𝑟(ℎ̂) 

 

> 
1

𝐸 [(
𝜕𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
)
2

]

 
(3.19) 

The parameter at the denominator on the right side of equation (3.18) is called Fisher 

information and is defined by- 

𝐼(ℎ)  = −𝐸 (
𝜕2 𝑙𝑛 𝑝(𝑦; ℎ)

𝜕ℎ2
) (3.20) 

It should also be noted here that any nonlinear transformation of the signal space 

will result in a rapid declination of the estimator's accuracy. It is because any non-linear 

transformation transfers the estimator from the unbiased domain to the biased domain. 

So as long as the linearity of the CRLB is maintained, we can expect an unbiased 

estimate of the unknown parameter. It is one of the reasons CRLB is used unanimously 

for parameter estimation. 

 

Incorporating the effect on phase, we can further enhance our previous 

algorithm as follows, 

 

 x̄ , ȳ , z̄  

 ĥ for k attempts 

 set residual r0 = ŷ ; î = 0 ; i=s ; j = 1 ; attempt = 1 

 ( ra>rb )  

 Step 1: Start ; select 𝑓𝑗 = 𝑚𝑎𝑥(|𝑖 ∗ 𝑟𝑗−1, ℎ|) 

 Step 2: Create test vector- 𝐿𝑗 = ∅ ∪ 𝑠𝑗                

 Step 3: Finalize test vector 𝐿 = max (|𝑖𝐿𝑗
∗ | , ℎ) 

 Step 4: Residual ra = ȳ - iLi*ȳ ; Resudual rb = ȳ - hLhL
*ȳ* 

 Step 5: Check ra ~ rb  ; ra>rb → step 6 else → step 2 :  î = î*fj(ĥ) 

 Step 6: If ‖𝑟‖2 < ‖𝑟𝑗−1‖2   → 𝑠𝑡𝑒𝑝 7 𝒆𝒍𝒔𝒆 → 𝑠𝑡𝑒𝑝 4 ; ℎ = ℎ + 1   

 Step 7: Update L = i × f or Lj = L ; rj = r ; j = j+1 

 
Step 8:   

 Stop 
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As can be seen, incorporating a dual residue factor instead of one can further improve 

the estimation by allowing a two-step justification process. 

 

 

3.6 SPARSITY BASED ESTIMATION  

 

In recent years it’s become somewhat of a trend to exploit the sparsity of uncompressed 

signals. Technically, most natural signals are sparse, meaning signals that haven’t yet 

gone under compression or another kind of processing. Sparse means that some domain 

must exist where most of the components of that signal can be rendered zero. Therefore 

that signal can be reconstructed using samples much less than that depicted by Nyquist 

in his famous formula. Compressed or compressive sensing is one of the most popular 

schemes currently exploiting the sparsity of natural signals like the image. Compressed 

sensing is comprised of three major steps: sparse approximation, sparse representation 

and sparse reconstruction. One thing that should be noted for compressed sensing is that 

although compressed sensing is based on a fairly old statistical theory, its application to 

signal to process hasn’t seen the light in the past ten years. The main reason behind this 

is that each step in compressed sensing requires enormous calculation power that wasn’t 

possible until recently. Now in the age of powerful AI-based supercomputers are more 

than capable of dealing with these kinds of calculations. If the appropriate type of 

reconstruction is used, the performance upper bound of compressed sensing is immense, 

leading to its popularity in signal processing. One of the objectives of this research is to 

compare the performance of the optimized methods with the compressed sensing 

estimation. Since because of superior performance, compressed sensing algorithms are 

taken as a benchmark on the performance side, while on the resource allocation side, it 

has a hefty effect. 

 

 

3.7 RESEARCH PARADIGM 

 

For this thesis work, we are focusing on developing our model for acquiring channel 

state information or CSI based on pilot training-based channel estimators like LS, 

MMSE, LMMSE etc. However, the cost of the equipment for transmission in the EHF 

band, our research work is limited to simulations via only Matlab simulation. It’s 
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intended to benchmark against existing models and demonstrate the performance upper 

hand without the use of highly constraint-based algorithms. Having said that, these 

simulations will include results based on SER, BER, MSE and or other criteria if 

possible. 

 

 

3.8 CHAPTER SUMMARY  

 

In this chapter, the foundation for the adaptive algorithm has been laid. It was shown 

that the redundancy present in the conventional estimator could be exploited if used 

with an adaptive weight factor. Different characteristics affecting the estimator's 

performance have also been analysed mathematically. The process of parameter 

estimation and it’s amelioration in the new algorithm has been thoroughly explained. 

Based on the framework laid in this chapter, the results of the simulations and 

discussions on that will be carried out in the successive chapters. 
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CHAPTER FOUR 

4 RESULTS AND DISCUSSIONS 
 

 

 

4.1 INTRODUCTION 

 

This chapter includes the simulations of the modified channel estimators and their 

benchmarking. This work evaluates performance via the most common criterion for 

estimators such as MSE, SER, BER & PER. It should be noted that this study is only 

interested in estimating the amplitude and phase shifts of the transmitted symbols and 

doesn’t concern about offsetting or equalization. The equalization of the estimators at 

the receiver is to be considered as a future study or an extension of this thesis. Also to 

be noted is that the algorithms used aren’t based on Monte Carlo theory; thus, the 

simulations are generic and not completely unbiased. This is left as another future 

recommendation for this type of study. All simulations are performed on the Matlab® 

2020b platform and thus may slightly differ in appearance from previous works. Also, 

for the sake of simplicity, we assumed a single-cell MIMO-OFDM system which may 

be extended to a multi-cell scenario. Although it’s not part of this study, a precoding 

scheme that follows the modified channel estimators can further enhance the throughput 

of the wireless system. For benchmarking purposes, the conventional estimator is 

usually given inside the same graph unless there are weighted versions of the same 

estimator. 

 

 

4.2 ESTIMATION PERFORMANCE 

 

For the least square estimator, combining it with adaptive weight has positive effects on 

the estimator convergence. Instead of adding a static weight, the resultant reception gets 

better if the weight function adapts itself each time a new signal block is received. This 

was done by splitting the weight function into two residue parameters and redefining it 

in each estimation as the ratio of their convoluted sum. We can comprehend this from 

Figure 4.1. 
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Figure 4.1 MSE comparison. 

 

The BER response follows with a static offset for non-adaptive estimators, as 

seen in Figure 4.2. The rapid converging curves mean that with increased SNR per bit, 

the iterations perform better and show faster and less error-prone estimation. It should 

be mentioned here that the convergence of the curve is also subjected to the channel 

model adopted, i.e. if there is a LOS path or not. For instance, we adopted a Rayleigh 

fading for our channels because the NLOS path was chosen for the transmissions. 

Because the Rician model assumes at least one LOS path, so if a Rician model is used, 

it may result in a slightly different composition. But the overall response will all be the 

same as this study’s objective is to examine the overall response of the channel 

estimation performance. 

 

 

SNR in dB 

Benchmark 
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Figure 4.2 BER comparison. 

 

It is to be noted that the dropping nature of the curves in the aforementioned 

result is natural; that is, it’s common for communication systems to have a decreasing 

BER curve with increasing SNR. Another important reason for decreasing error rates 

with increasing SNR is the noise floor. The noise floor is the ambient power in the 

operating RF spectrum and can depend on frequency, location, temperature and 

bandwidth. Transmitter powers are tuned accordingly to operate well above the noise 

floor. The important point to note is how the curves act before converging to a 

negligible value. In that light of information, we can see that the BER curve for our 

proposed method has a much sharper response compared to the other alternative 

methods. It has to do with the inherent quality of the algorithm that allows a much 

smaller margin for errors between successive estimations.  

 

It is interesting to note that the proposed scheme is comparable to the results 

obtained by the l1 minimization norm when the sparsity of the signal is exploited 

 

Benchmark 
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Figure 4.3 Packet error rate comparison. 

 

But since it doesn’t require the additional steps necessary for sparse 

reconstruction, it can be concluded that in terms of system overhead, it will be more 

resource friendly. A lower packet error rate also measures the Tx efficiency, an 

important criterion for data and control channels. The figure shows that the higher the 

system is operated from the noise floor, the better the algorithm performs. As 

mentioned, there are quite a few elements to incorporate before determining the noise 

floor for the coverage area. But that analysis is out of the scope of this research and can 

be taken as a future work instead. The packet error rate curve demonstrates how the data 

are dealt with after transmission and before reception as a whole. 

 

Since we know that in practical cellular systems, it’s impossible to transmit a 

vast amount of user data continuously, they are sent as packets of information. And 

that’s why it can be somewhat informative to see the system's behaviour as data units 

or packets. For Figure 4.4, the comparison is made based on the performance of 

difference l minimization techniques compared to our proposed method. l minimization 

techniques are popular for their performance upper hand but are difficult to compute. 

The less the no of minimization, the harder it is to compute usually. So even compared 

to these techniques, we can see the substantial comparability of our method with the 

aforementioned ones. 

 

 

Benchmark 
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Figure 4.4 Comparison of the proposed scheme with benchmarking schemes. 

 

As for the dispersion of data as packets, we can see from Fig 4.5 that an 

adaptive scheme lowers the possible data compromise to reduce the overall PER. An 

overall reduced PER will also mean that the probability of failure of successive 

packets will be further reduced. It should be noted that a system with filter banks has 

been used for this simulation, unlike the simulation in Figure 4.3. 

 

 

 

Figure 4.5 Packet error rate comparison of the proposed method 

 

Ideal 

Proposed 

Semi-blind 

Blind 

Benchmark 

Benchmark 
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Figure 4.5 also shows that the proposed algorithm can improve the conventional 

scheme for band-limited systems. It can be seen that the effective operating range for 

this system starts around 35dB and drops fast ongoing.  

In another simulation the benchmark paper using convex optimization was 

compared to the proposed model. The resulting curves can be seen from the graph 

below- 

 

 

As we can see from Figure 4.6 even without using the convex optimization 

algorithm, the resulting error rates are similar and get’s gradually better in higher signal 

to noise ratios. This is partially due to the absence of additional constraints that adds 

noise to the base model. Furthermore, in complex systems the additional constraints 

may add extensive load which will in turn increase the total system overload on the 

transmitter or the receiver.  

 Convex optimization may only be used in cases where the error rate at the 

receiver is too high to be detected. In these cases the no of redundancies have to be 

increased because the optimization algorithm alone will not be sufficient enough. From 

the figure below it can also be inferred that if the receiver is planned to work in a specific 

SNR range then the no of redundancies can be reduced to specifically address that SNR 

range. Since we are only interested in that specific range the outliers outside that range 

can be safely ignored without compromising any substantial efficiency. It can also be 

seen that the proposed model has good SNR in the beforementioned range. 

Figure 4.6 Comparison between convex optimized model (benchmark) and 

proposed model. 
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To confirm the validity of the previous simulation , a subcarrier no lower than the 

standard had been taken. This is to study if the no of subcarrier has any substantial effect 

on the proposed algorithm compared to the benchark one. The achieved results are 

shown below: 

 

  

From Figure 4.7 it can be seen that even in sub-standard scenarios the proposed 

model work better than the benchmark convex model. And again we see that in higher 

operating range it gives a much clearer picture of it’s efficiency. 

 Although systems that use <256 subcarriers per channel is not standard and not 

used commercially these days, in non commercial scenarios like experimental setups 

this result can be beneficial. Usually in laboratory scenarios where higher frequencies 

and higher subcarriers per channel may not be viable the proposed algorithm can still 

perform at an optimal efficiency to yield the best possible error rate per transmission 

attempt. 

 One of the reasons that may cause the convex model to have poor performance 

under sub-par conditions is the algorithm doesn’t give substantial error reduction when 

the no of subcarriers and tap is lower than it’s standard values. Here no of taps is also 

important since it how affects the delay calculation and also the effects of fading. But 

most importantly, since this simulation is done under sub-standard conditions it will not 

affect transmission under standard situations where the convex curve will pick up with 

the increasing no of subcarriers and taps on the channel. What should be inferred from 

Figure 4.7 Analysis of the proposed model with the convex model in sub-standard 

scenarios 
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this graph is that under identical no of taps and subcarriers the proposed model still 

outperforms the benchmark model. 

Another interesting phenomenon can be detected once we double the tap on the channel. 

Like mentioned above taps are used to calculate delays and affect the ways multipaths 

are treated. In the next simulation the tap was doubled and it gave a surprising result 

when compared to the convex optimization algorithm: 

 

 

 We can see from Figure 4.8 that doubling the tap no surprisingly flattens both 

of the curves. Also can be noticed that both of the curves has much less variance 

compared to when the taps are halved. The convex optimization model is especially 

affected since it heavily depends on the approximation of the delay at limited intervals. 

If the taps are increased without increasing the no of subcarriers the resulting curve is 

flattened since the delays and multipaths have to be calculated and compensated again 

from the beginning. The proposed curve isn’t affected that much since the redundancies 

are reduced and the weight is made adaptive. Which results in a much stables response. 

If we see the previous graphs it can be seen that the proposed model is much unaffected 

compared to the convex model. 

 And the much reduced variance in both of the curves can be explained from the 

structure of both of these algorithms. The convex model uses sparse approximation 

which treats the signal block as basically empty matrix. When a sparse matrix is gone 

Figure 4.8 Doubled-Tap comparison between benchmark model and proposed 

algorithm 
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through delay and other types of attenuation the effects will be very little since most of 

the elements are zero. And for the proposed model, because the residue weight function 

is calculated as a mean of the two previous approximation, it also reduces the affect of 

no of taps. 

For the last simulation between the convex optimization model and the proposed model 

the carrier frequency was chosen as the deciding parameter. All the other parameters 

were kept constant to see the affect of variance in channel frequency. The resulting 

graph can be seen below: 

 

 

 If we go back to Figure 4.7 we can see that Figure 4.8 is almost identical to it 

apart from the lower SNR range. Also both of the curves in either cases has a similar 

kind of response.  

 This is  because in higher SNR especially for the mmWave range the change in 

doppler frequency has very little effect. This effect can be magnified by employing more 

subcarriers in a certain channel. It is not included for the sake of minimizing 

redundancy. However, at higher range after 25dB the difference between the convex 

model and the proposd model becomes more evident. This is due to the same reason 

aforementioned, in higher SNR the benchmark model constraints take a heavy toll on 

the complexity which adds further noise to the overhead. Fortunately most commercial 

Figure 4.9 Affect of channel frequency change on different models 
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transmitter and receiver has some offsetting function which compensates some of this 

added noise generating from a combination of thermal noise and white noise.  

 In another simulation, a Rician channel model instead of Raleigh one was 

adopted to see how the change affects the noise profile. It is worthwhile to mention that 

even though in most cases a Raleigh model fading is adopted because it is considered 

that no direct line-of-sight is available but in certain cases a Rician profile may be 

suitable. In the previous simulations the Rayleigh profile was used. The algorithms were 

adopted then to simulate the effect of a Rician profile which assumes at least one line-

of-sight path. The results can be seen from the graph below-  

 

It is quite evident from Figure 4.10 that in terms of SER the proposed model 

shows significant improvement over the convex optimization model. The erratic 

response of the curves at higher SNR is indicator of adoption of the Rician model which 

considers phasor sum of several copies of the transmitted signal in the receiver. Like 

mentioned before this sum has to contain at least one LOS component and the other 

components can be any delfected signal. 

It should be noted that the erratic behavior in Figure 4.10 which appears around 

~15dB will continue in even higher SNR ranges. In fact in much higher SNRs than 

standard operating range the sudden ramping of the signals should increase technically 

since the thermal noise and other internal noise elements will add up. That is why in 

commercially operated stations Rician models are almost never adopted and their utility 

is often times limited to only experimental cases. However it should be mentioned too 

Figure 4.10 Rician profile analysis between the benchmark model and proposed. 
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that the erratic behavior is proportional to the distance of the transmitter and the receiver 

in this case since the further they are the higher are the chances that the random 

components have a higher phase shift. 

Another distribution that has caught attention recently is the Weibull model 

which also has good indoor and outdoor noise floor. To simulate the Weibull model the 

Monte-Carlo Simulations (MCS) settings have to be used. For that, the MCS built in 

function in Matlab was adopted. The advantage of the MCS setting is that higher no of 

trials can be put to more precisely delineate the performance upper bound of the channel 

model under the proposed algorithm. As with the previous simulations, the proposed 

model was compared against the convex model as a benchmark and the following 

results were obtained: 

 

 In Weibull envelope the difference between the proposed and the convex model 

is much subtler as compared to Figure 4.10. However, this subtle difference is an 

indicator of the affect of Weibull’s probability density function or PDF on the 

algorithm. Since the PDF of Weibull is of Gaussian type, using the MCS package the 

distribution function was numerically estimated first. Then the function was 

incorporated into the proposed algorithm to simulate the effects of a Weibull noise 

envelope. Nevertheless, despite being in a smaller margin the BER can be still 

substantially different as is apparent from Figure 4.11. The question may arise as to why 

industrially this distribution isn’t adopted since it evidently has better performance than 

Figure 4.11 Weibull Profile analysis against benchmark. 
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other noise envelope. It is because creating the noise profile with MCS is very hardware 

consuming and in higher trials the system overhead can be extremely high to adopt. 

Hence like the Rician profile it’s usually limited to experimental cases only. 

 The Nakagami distributions are also a recent trending method of estimating the 

attenuation margin. To compare the proposed model attenuation using Nakagami 

distribution the Matlab built-in Chi distribution function was adjusted so that the 

resulting PDF follows the Nakagami definition of Gamma function. However the 

Nakagami distribution can also be obtained using the Gamma function itself. But in our 

case owing to the configuration of the proposed algorithm, it’s quite difficult to achieve 

the satisfactory random variable to generate the distribution. Hence we follow the 

former mentioned procedure to generate the distribution using Chi functions instead.  

 

From the Figure 4.12 it’s evident that in terms of error rates and attenuation the 

Nakagami profile does not differ too much from the Weibull profile. The reason is 

inherent in the derived PDF in both of these distributions. Weibull fading which is based 

on the identically named distribution has similar characteristics PDF under certain 

conditions. The generated random functions can have identical definition in some 

cases.This is why it is seen that both in the cases of Figure 4.11 and Figure 4.12 the 

around the ~25dB range the benchmark convex model start deteriorating abruptly 

especially in the case of Nakagami profile. 

Figure 4.12 Comparison between proposed model and benchmark using Nakagami 

profile 



 

53 

As with the case of Weibull model, Nakagami distribution although gaining 

attention recently but still is not adopted as an industry standard for commercial signal 

processing and wireless networks. Nevertheless, it’s still a useful profile for analysis 

when there are multiple numbers of multipaths and the resulting signal has to be offset 

at the receiver. 

The point-to-point(p2p) performance of the proposed model can be analysed 

under two different scenarios. Since we are assuming a frequency selective wireless 

media in our simulations, it can be simulated in both coherent and noncoherent 

configuration. The effect of addition of the forward error correction (FEC) to the 

proposed method can be identified from the two scenarios. First for the coherent 

simulation, the FEC function is added to the code and the required parameters are passed 

as the elements. This function is called from inside the code during simulation to 

simulate a coherent point-to-point OFDM signal.  

 

 There are two different curves in the coherent configuration simulation. From 

Figure 4.13 the black dotted curve indicates the theoretically achievable error rates with 

FEC and the green continuous line expresses the actual performance. It is evident that 

both of the curves match at higher SNR even though the simulated one start from a 

lower point. This phenomena may be labelled as the inherent error of rounding in each 

iteration which is done to speed up the simulation and save memory. In higher SNR and 

higher iterations the rounding becomes negligible hence the actual curve converges with 

Figure 4.13 Simulation of the proposed algorithm in Coherent p2p configuration. 
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the theoretical one. In theorical curve there is no rounding so we get a smooth 

converging curve as expected.  

 Both small scale and large scale fading has effect on the algorithm which also 

affects both of the configurations. But this effect is not apparent from this graph. 

Nevertheless these fadings are always incorporated and has to be offset at the receiver. 

 A similar approach is taken while simulating the noncoherent or differential 

configuration. Unlike the coherent configuration in noncoherent the channel phase and 

other realization factors are neither known by the receiver and neither by the transmitter. 

So the receiver has to depend on the channel statistics to accurately recover the 

transmitted signal with minimal error. As mentioned elsewhere in this thesis, 

eventhough channel statistics is not needed for some estimators like the LS but it still 

can be incorporated into the algorithm however. And just so it will add some additional 

system overhead and some errors too in the overall statistics of utilizing this statistics 

of the coefficients effectively. The graph is shown below: 

 

 The coherent configuration curve was overlapped from the previous simulation 

for clarification purposes. From Figure 4.14 it can be seen that the noncoherent or 

differential configuration also has impressive performance and also begin to converge 

with the ideal theoretical curve in higher SNRs. The reason noncoherent curve has 

higher average error rate is caused by the additional error in the processing of the 

channel statistics. This additional error can still be further minimized with the help of 

other built-in Matlab functions. But usually the error caused by inefficient channel 

Figure 4.14 Simulation of the proposed algorithm in Noncoherent p2p configuration. 
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statistics processing is unsubstantial compared to the overall error and this is overlooked 

usually.  

 It should be however mentioned that in more complex systems like the ones 

employing separate optimization algorithms this error can become substantial. In those 

cases however the statisticians already add some offsetting functions to keep the margin 

of error relatively small. 

 

The peak to average power ratio or PAPR is a very important metric to judge the 

efficiency of any wireless system. As we know a smaller value means that the amplifier 

in the transmitter can work more efficiently with a smaller overhead on the user 

interface. However it is interesting for another reason that is to see how the cumulative 

distribution function or CDF response in a given operating region under different 

estimators. In Figure 4.15 such a graph is shown. 

 It can be seen that the prosed model works just as fine and has an almost similar 

response to compressed sensing methods using sparse representation. In fact from 

Figure 4.15 it can also be interpreted that using a separate optimization algorithm such 

as the convex optimizer will still yield a similar performance as the proposed model. 

This further corroborates our objective 3 which was to analysis and compare our 

proposed model against CS based methods that may use optimization algorithms.  

 The CDF has a few derived functions which can also be plotted against the 

PAPR range. A few common functions from this category are the Folded CDF and the  

Figure 4.15 Plot of the CDF of different estimators against PAPR 
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Tail distribution CDF. It should be mentioned here that the CDF and it’s derivatives can 

have a lot of cases where the variables are not identical i.g they’re complex or dependant 

on other functions. For the Figure 4.15 only the general case was shown for the sake of 

simplicity. 

 In the next simulation the total no of bits were changed to see how overall the 

CDF changes as more bits are added to the transmitted signal. Theoretically when more 

bits are added the resulting curve should be flatter as the distribution should be more 

evenly distributed. The resulting graph is below: 

 

It may not be so apparent from Figure 4.16 but if we compare point to point with 

previous Figure 4.17 we can see that in similar PAPR range the responses here are much 

more flatter spread. This is partly because the increased no of bits to be estimated using 

the algorithm increases the overall probability of an accurate estimation. And since the 

algorithm uses dual residue functions a two fold increase in the number of transmitted 

bits results in a proportional increase in estimation accuracy. 

 The plot also shows that the cumulative distribution function eventhough not 

heavily affected by changes in no of bits or bits/symbol,  it does show a improved 

response which may well be in the benefit of large industrial transmitters. This is 

because unlike the experimental cases in industrial cellular networks the transmitters 

and receivers has to deal with huge chunks of sybols which adds up the error. Hence a 

Figure 4.16 Plot of CDF of the proposed model. 



 

57 

incremental CDF means that the estimation performance will not fall bellow the defined 

standard. 

 It can be concluded now from the previous 4 simulations that the proposed 

model doesn’t require a separate optimization algorithm to generate similar results. 

These simulations were all done comparing with the benchmark algorithm  that uses 

convex optimization which utilizes sparsity of the mmwave channel. 

To summarize the previous 4 results, it can be said that even though optimization 

algorithms are beneficial if we intend to estimate sparse signals; it’s not essential for 

the proposed model. It should be bear in mind that optimization algorithms like the 

convex one still can be used of course, but it may require further offsetting since these 

algorithms add some noise with their estimation process. To summarize the results, we 

can look at the table below: 

 

Table 4-1 Comparison results between convex algorithm and the proposed model. 

Parameter Action Observation 

Subcarrier Halved The proposed model 

works better. The higher 

the SNR the more obvious 

the performance becomes 

No of Taps Doubled Flattens both of the 

curves. The variance is 

reduced so is the response 

from the curvesm. The 

proposed model clearly 

shows much les BER. 

Doppler Frequency Increased 5 fold No comparable 

difference. Has the similar 

kind of response while the 

subcarrier was halved.  

Overall - Comparing 1 factor at a 

time, the proposed model 

outperforms the 

benchmark in all cases. 
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 In the above simulations, only 1 factor was changed at a time because it’s 

technically not possible to simulate multiple parameters using the abovementioned 

algorithms. A 3D plot may be derived but using the convex optimization model which 

has a separate algorithm for helpting function itself; it not possible using the user’s 

operating system configuration. 

All of the simulations above support the research objectives. The figures in the 

beginning show direct improvements of the proposed algorithm over benchmark and 

the latter ones are supporting graphs that corroborates the assumed outcomes. For a 

brief outlook, all the figures in this chapter and their corresponding objectives are 

mentioned here: 

Table 4-2 Simulation results & their corresponding objectives. 

Figure No. Corresponding Objectives Remarks 

4.1 1,2 MSE improved 

4.2 1,2 BER improved 

4.3 1,2 PER improved 

4.4 2,3 SER improved 

4.5 3 Adaptibility increased 

4.6 2,3 Comparison with CS 

method 

4.7 2 Comparison in sub-

standard scenarios 

4.8 2,3 Double-Tap comparison 

4.9 1,2,3 Frequency response 

4.10 2,3 Rician profile analysis 

4.11 2,3 Weibull profile analysis 

4.12 2,3 Nakagami profile analysis 

4.13 2,3 Coherent P2P analysis 

4.14 2,3 Differential P2P analysis 

4.15 1,2,3 CDF analysis 

4.16 1,2 CDF analysis 
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It should be noted that the purpose of Table 4.2 is to demonstrate the relativity of the 

objectives and the simulations. The elaborated explanations were provided after the 

respective simulations. 

Due to the resource constraints of the system and lab facilities; the no of graphs 

and simulations were kept as many as possible. Like abovementioned, the convex 

optimization algorithm uses several dedicaed calculating functions which require 

immense computing power that maybe only available in a working super computer. 

Nonetheless, the already provided simulations sufficiently proves the superiority of the 

proposed algorithm. 

 It should be noted that sudden rises and falls in the resulting carves can be 

regarded as outliers. Outliers are points in a graphs who are the most furthest from the 

fitting. Appropriate curve fitting may also be used to reduce these outliers. In any case, 

outliers never define the response of the curve but only the performance of the fitting. 

In the provided simulations no dedicated curve fitting algorithms were used for the sake 

fo simplicity and system resource. 

 For the similar reasons, the range of the SNRs are kept in the standard zone 

because any further range are not the subject of this discussion and also doesn’t effect 

the analysis of the results. Also in majority of scholarly articles the simulations zone is 

usually kept from 10dB-30dB. For this reason it’s easier to benchmark any analysis 

because they are all in the commercial operating range.  

 A few parameters weren’t changed at all during any of the analysis. The 

configuration of the pilot matrix is one of them. Pilot symbols aren’t changed when  

they transmitted with the data symbols during a symbol period and they’re predefined 

in most cases. It is to facilitate their detection and uncoding at the receiver. Although 

adaptive pilots are possible. But it will require additional processing at the receiver to 

offset the phase shifts to properly differentiate the pilot from the data blocks. In the later 

5G releases starting from 5G NR a new subcarrier structure was proposed. This structure 

involved further space for control channels and data channels which rendered the need 

of adaptive pilots surplus.   

 

 

4.3 CHAPTER SUMMARY 
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In this chapter, several simulations were shown on the proposed scheme. The MSE 

comparison is used to judge the mean distance between the ideal and obtained curves 

in terms of square units. The BER is an overall indicator of estimator performance. 

Packet error rate comparison is useful when different estimators are compared in data 

blocks instead of units. It was also shown that the SER curve of different minimization 

techniques could vary depending on the method of channel state acquisition. To display 

the performance advantage of the proposed formula, we also showed an F-OFDM 

implementation which also showed a promising result. There are still some potential 

aspects though in this technique which is discussed in the following chapter 
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CHAPTER FIVE 

5 CONCLUSION 
 

 

 

5.1 INTRODUCTION 

 

There are some limitations to the simulations used in this thesis work. For instance, 

technically, the no of iterations required to get the best result is infinite. But for obvious 

reasons, it isn’t possible to get perfect results even if the algorithm is flawless. Not to 

mention, the speed of the simulation is also heavily dependent on the performing 

machine. For these common reasons, researchers usually take advantage of techniques 

like Monte Carlo simulations to get the probability distribution of the scheme's 

performance. Since channel estimation is heavily based on processing a large number 

of samples or bits in this case, when running these kinds of simulations, it is apparent 

to keep an eye on the process's time consumption of the process not only memory 

overhead.      

 

 

5.2 RESULTS AND FUTURE WORKS  

 

The objectives stated in Chapter 1 have been achieved in the sense that we assume one 

or few things for simplicity. And because of the lack of technology to test the proposed 

model, the thesis work will lack some of the practical aspects. Having said that, the 

author intends to bring the idea and importance of channel estimation in signal 

processing in light of the new features enabled by the fifth generation of cellular 

technology. 

 

As for the first objective, which was to optimize the performance of the legacy 

pilot-based estimation techniques, it can be said, based on the results obtained, that the 

most common drawback of the legacy algorithm is the incorporation of random noise 

and the secondary channel statistics, namely the coefficient matrices. Both of these 

shortcomings have been addressed in the proposed algorithm as it employs intuitive, 

adaptive distance minimization and the adoption of weighted measurements. The results 
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in chapter five can also be apprehended that in the effective SNR range of cellular 

communication, the proposed algorithm performs fairly well compared with its legacy 

counterparts. Not to mention the effect Adaptively estimating the weight function can 

also speed up the cellular process, especially the connection setup and discharge. It 

should also be mentioned here that the purpose of the algorithm is to amend the existing 

limitations of these pilot-based algorithms, not to evolve them. As such, the proposed 

algorithm doesn’t add any overhead but instead minimizes the overhead caused by 

adding redundancies in the algorithms.  

 

 The second objective was a comparative study against semi-blind or blind 

compressive sensing-based methods. From the simulation results, we can see in terms 

of performance (BER), the proposed method is close enough to be called an alternative 

to the complex CS-based methods. And, of course, in terms of simplicity and system 

overload, it is fundamental that since the proposed method doesn’t use any separate 

optimization algorithm, it is fundamentally less resource-demanding. Of course, one 

can always pursue this as a potential aspect of further research with more parameters on 

focus. 

 

 The third objective was to estimate the  RF channel adaptively instead of using 

fixed weights that are easier to calibrate but give poor results when there’s an increasing 

number of subcarriers. As it was discussed in the previous chapter, adaptive weight was 

used to make the algorithm more fluid since it was shown that the likelihood of the 

packet and bit error rate is substantially reduced. And thus leading to a more robust and 

system friendly estimator. 

 

5.3 CHAPTER SUMMARY 

 

In this final chapter, the achievement and the future possibilities of this research work 

were discussed. It was also shown that a moderate complexity estimator with above-

average performance is the best choice for the current 5G standards since it imparts 

much new functionality requiring more system resources. The adaptive algorithm boasts 

better performance than the legacy ones while keeping the complexity moderate. 

Although the performance aspect of the estimator was mainly focused on in this study, 
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a future study can be solely based on the statistical complexity reduction of this method 

which the author desired to leave for simplicity.  
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APPENDIX 1: MATLAB CODES 

 

 

1. OFDM system BER  

clc; 
cd '(File directory)' 

 

// Define parameters // 

m=input() ; 
N=input() ; 
M=input() ; 
pilotFrequency=input() ; 
E=input(); 
Ncp=input() ; 
L=input(); 
typ=input(); 

 

// Dataset generation //  

D=randi ([0 M-1],m,N); 

 

// Defining Tx,Rx // 

switch typ 
    case 1 
        Tx=qammod(D,M); 
        Rx=qamdemod(D,M); 
    case 2 
        Tx=pskmod(D,M); 
        Rx=pskdemod(D,M); 
    otherwise 
        error('Error, Constellation not found!'); 
end 

 

// Mapping //  

D_Mod = Tx; 

 

// Series to parallel conversion // 

D_Mod_serial=D_Mod.'; 

 

// Defining pilot & data locations // 

PLoc = 1:pilotFrequency:N;  
DLoc = setxor(1:N,PLoc); 

// Insert pilots // 

D_Mod_serial(PLoc,:)=E*D_Mod_serial(PLoc,:); 



 

69 

figure; 
imagesc(abs(D_Mod_serial )) 

//  IFFT // 

d_ifft=ifft(D_Mod_serial); 

 

// Parallel to series // 

d_ifft_parallel=d_ifft.'; 
 

// CP addition // 

CP_part=d_ifft_parallel(:,end-Ncp+1:end);  
ofdm_cp=[CP_part d_ifft_parallel]; 

 

// Channel generation // 

h= randn(1,L) + 1j * randn(1,L); 
h = h./norm(h);   
H = fft(h,N);   
d_channelled = filter(h,1,ofdm_cp.').';  
channel_length = length(h);  
H1_power_dB = 10*log10(abs(H.*conj(H)));  

 

// Add AWGN //  

count=0; 
snr_vector=0:4:40; 
for snr=snr_vector 
    SNR = snr + 10*log10(log2(M)); 
    count=count+1 ; 
    disp(['step: ',num2str(count),' of: ',num2str(length(snr_vector))]) 
    ofdm_noisy_NoCH=awgn(ofdm_cp,SNR,'measured' ) ; 
    ofdm_noisy_with_chann=awgn(d_channelled,SNR,'measured' ) ; 

 

// Data reception // 

cp_removed_NoCH=ofdm_noisy_NoCH(:,Ncp+1:N+Ncp); 
cp_removed_with_chann=ofdm_noisy_with_chann(:,Ncp+1:N+Ncp); 
parallel_NoCH=ofdm_cp_removed_NoCH.'; 
parallel_chann=ofdm_cp_removed_with_chann.'; 

 

// FFT //  

parallel_fft_NoCH=fft(parallel_NoCH) ; 
parallel_fft_channel=fft(parallel_chann) ; 

 

// Channel estimation // 

    TxP = D_Mod_serial(PLoc,:);  
    RxP = parallel_fft_channel(PLoc,:);  
    Hpilot_LS= RxP./TxP;  
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    for r=1:m 
        H_MMSE(:,r) = MMSE(RxP(:,r),TxP(:,r),N,pilotFrequency,h,SNR); 
    end 
    for q=1:m 
    HData_LS(:,q) = interpolate(Hpilot_LS(:,q).',PLoc,N,'spline');  
    end 

 

// Parallel to series // 

LS_parallel1=HData_LS.'; 
MMSE_parallel1=H_MMSE.'; 

 

// De-map // 

received_NoCH=demod(Rx,(parallel_fft_NoCH.'),1000) ; 
received_chann_LS=demod(Rx,(parallel_fft_channel.')./HData_LS_parallel1) 
;  
received_chann_MMSE=demod(Rx,(parallel_fft_channel.')./(HData_MMSE_paral
lel1)) ;  

 

// Removing data // 

no_pilots=D(:,DLoc);  
Rec_d_NoCH=received_NoCH(:,DLoc);  
Rec_d_LS=received_chann_LS(:,DLoc);  
Rec_d_MMSE=received_chann_MMSE(:,DLoc);  

 

// BER calculation //  

[~,r_NoCH(count)]=symerr(D_no_pilots,Rec_d_NoCH) ; 
[~,r_LS(count)]=symerr(D_no_pilots,Rec_d_LS) ; 
[~,r_MMSE(count)]=symerr(D_no_pilots,Rec_d_MMSE) ; 
end 
figure; 
semilogy(snr_vector,r_NoCH,'-+');hold on 
semilogy(snr_vector,r_LS,'-o'); 
semilogy(snr_vector,r_MMSE,'-s'); 
grid ; 
hold off; 
H_power_esti_dB_LS     = 
10*log10(abs(HData_LS_parallel1.*conj(HData_LS_parallel1)));  
H_power_esti_dB_MMSE     = 
10*log10(abs(HData_MMSE_parallel1.*conj(HData_MMSE_parallel1)));  
figure;hold on; 
plot(H_power_dB(1:8:end),'+k','LineWidth',3); 
plot(H_power_esti_dB_LS(1,(1:8:end)),'or','LineWidth',3); 
plot(H_power_esti_dB_MMSE(1,(1:8:end)),'Sb','LineWidth',1); 
 title('Real time and Estimated'); 
    xlabel('Time'); 
    ylabel('Magnitude'); 

 

2. MSE calculation for MMSE vs MSE perspective 
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// Define parameters and indices // 

clc; 
  
num_samples=500;                     
lamda = 1; 
  
constrain = 'L2'; 
x=rand(1,num_samples);               
m=5;                                 
b=-2;                                
  
ya=m*x + b;                          
SNR=10;                              
y=awgn(ya,SNR);                      
  
epochs = 1000;                
mm=randn();                  
bm=randn();                  
eta=2e-4;                    
ym=mm*x + bm;                
  
e=y-ym;                      
E=mean(e.^2); 
 

// Load Tx // 

for i=1:epochs 
    mm=mm + 2*eta*x*e'; 
    if(strcmp(constrain,'L1')) 
        mm = mm - 2*eta*lamda*mm./abs(mm); 
        if(lamda>0) 
            lamda = lamda - eta*abs(mm); 
        end 
    elseif(strcmp(constrain,'L2')) 
        mm = mm - 2*eta*lamda*mm; 
        if(lamda>0) 
            lamda = lamda - eta*mm.^2;             
        end 
    end 
    bm=bm + 2*eta*sum(e); 
    ym=mm*x + bm;                
    e=y-ym;                      
    E=[E mean(e.^2)];            
    E2=[E mean(e.^2.1)];           
end 

 

// Plot dataset //  

hold on; 
  
plot(10*log10(E)) 
plot(14*log10(E)) 
  
  
grid minor 
hold off; 
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[m b 0;mm bm lamda] 
 

3. Rician flat channel interpretation 

 

// Defining matrices // 

 
EbNo = 0:60;  
K = [4.0; 0.6];  
M = [4; 8; 16; 64; 256];  

 

// Interpolation and modulation // 

  
for k = 1:length(K)  
    for m = 1:length(M)  
        mess = randi([0, M(m)-1], 100000, 1);  
        if M(m) >= 16  
            mod_mess = qammod(mess, M(m), pi/4, 'gray');  
            ric_bit(:, m, k) = berfading(EbNo,'qam',M(m),1,K(k));  
        else  
            mod_mess = pskmod(message, M(m), pi/4, 'gray');  
            ric_bit(:, m, k) = berfading(EbNo, 'psk', M(m), 1, K(k));  
        end  
        Es = mean(abs(mod_msg).^2);  
        No = Es./((10.^(EbNo./10))*log2(M(m)));  
  
        h = sqrt( K(k)/(K(k)+1)) +...  
        sqrt( 1/(K(k)+1))*(1/sqrt(2))*(randn(size(mod_msg))... 
         + 1j*randn(size(mod_msg)));  
        ric_msg = mod_msg.*h;  

 
     for c = 1:100  
         for jj = 1:length(EbNo)  
                nois_mod = ric_mess +...  
                sqrt(No(jj)/2)*(randn(size(mod_mess))+... 
                1j*randn(size(mod_mess))); %AWGN  
                nois_mod = nois_mod ./ h;  
                if M(m) >= 16  
                    demod_mess = qamdemod(nois_mod, M(m), pi/4, 'gray');  
                else  
                    demod_mess = pskdemod(nois_mod, M(m), pi/4, 'gray');  
                end  
                [number,BER(c,jj)] = bit_e(mess,demod_mess);  
            end  
        end  
        sum_bit(:,m, k) = sum(BER)./c;  
    end  
end 

// Data plotting //  
 
figure(1)  
  
semilogy(EbNo, sum_bit(:,1,1), 'b-o', EbNo, sum_bit(:,2,1), 'r-o',...  
EbNo, sum_bit(:,3,1), 'g-o', EbNo, sum_bit(:,4,1), 'c-o',... 
EbNo, sum_bit(:,5,1), 'k-o',...  
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EbNo, ric_bit(:,1,1), 'b-', EbNo, ric_bit(:,2,1), 'r-',... 
EbNo, ric_bit(:,3,1), 'g-', EbNo, ric_bit(:,4,1), 'c-',... 
EbNo, ric_bit(:,5,1), 'k-', 'LineWidth', 1.5)  
grid on  
  
figure(2)  
  
semilogy(EbNo, sum_bit(:,1,2), 'b-o', EbNo, sum_bit(:,2,2), 'r-o',...  
EbNo, sum_bit(:,3,2), 'g-o', EbNo, sum_bit(:,4,2), 'c-o',... 
EbNo, sum_bit(:,5,2), 'k-o',...  
EbNo, ric_bit(:,1,2), 'b-', EbNo, ric_bit(:,2,2), 'r-',... 
EbNo, ric_bit(:,3,2), 'g-', EbNo,ric_bit(:,4,2), 'c-',... 
EbNo, ric_bit(:,5,2), 'k-','LineWidth', 1.5) 
grid on 
 

4. OFDM system initialization 

 

// Defining funcions //  

 
OFDM.N=input(); 
OFDM.m=input(); 
OFDM.M=input(); 
OFDM.L=input(); 
OFDM.PoQ=input(); 
OFDM.Phase_Off=input(); 
OFDM.Symbol=input(); 
OFDM.Ncp=input(); 

 

// Initializing baseband Tx,Rx // 

 
if OFDM.Symbol == 1 
    OFDM.Symbol = 'binary'; 
else 
    OFDM.Symbol = 'gray'; 
end 
if OFDM.PoQ == 1 
    hTx = 
comm.PSKModulator('M',OFDM.M,'PhaseOffset',OFDM.Phase_Off,'SymbolOrder',
OFDM.Symbol); 
    hRx = 
comm.PSKModulator('M',OFDM.M,'PhaseOffset',OFDM.Phase_Off,'SymbolOrder',
OFDM.Symbol); 
else 
    hTx = 
modem.qammod('M',OFDM.M,'PhaseOffset',OFDM.Phase_Off,'SymbolOrder',OFDM.
Symbol); 
    hRx = 
modem.qamdemod('M',OFDM.M,'PhaseOffset',OFDM.Phase,'SymbolOrder',OFDM.Sy
mbol); 
end 

 

// Data generation, mapping & sampling // 

 
OFDM.dat=randi([0 OFDM.M-1],OFDM.m,OFDM.N/OFDM.L); 
OFDM.map=modulate(hTx,OFDM.DATA); 
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OFDM.parallel=OFDM.map.'; 
OFDM.upsampled=upsample(OFDM.parallel,OFDM.L); 
ofdm.am=ifft(OFDM.upsampled,OFDM.N); 
ofdm.serial=ofdm.am.'; 
ofdm.CP_part=ofdm.serial(:,end-OFDM.Ncp+1:end);  
ofdm.cp=[ofdm.CP_part ofdm.serial]; 
 

// Rx initializing //  

 
SNRstart=0; 
SNRincrement=4; 
SNRend=30; 
c=0; 
r=zeros(size(SNRstart:SNRincrement:SNRend)); 
for snr=SNRstart:SNRincrement:SNRend 
    c=c+1; 
    ofdm.noisy=awgn(ofdm.cp,snr,'measured'); 
    ofdm.cpr=ofdm.noisy(:,OFDM.Ncp+1:OFDM.N+OFDM.Ncp); %remove the 
Cyclic prefix 
    ofdm.parallel=ofdm.cpr.'; 
    OFDM.ademod=fft(ofdm.parallel,OFDM.N); 
OFDM.downsampled=downsample(OFDM.amdemod,OFDM.L); 
    OFDM.rserial=OFDM.downsampled.'; 
    OFDM.Umap=demodulate(hRx,OFDM.rserial); 
    [n, r(c)]=symerr(OFDM.DATA,OFDM.Umap); 
    disp(['SNR = ',num2str(snr),' step: ',num2str(c),' of 
',num2str(length(r))]); 
end 

 

// Plotting //  

 
snr=SNRstart:SNRincrement:SNRend; 
semilogy(snr,r,'-
ok','linewidth',2,'markerfacecolor','r','markersize',8,'markeredgecolor'
,'b');grid; 
title(‘Error Rate vs SNR'); 
ylabel('SER'); 
xlabel('SNR [dB]'); 
legend(['SER N = ', num2str(OFDM.N),' ',num2str(hTx.M),'-',hTx.type]); 

 

5. Visualizing spectrum  

 
fprintf(); 
  
fileName = matfilename(); 
filePath = matfilename(); 
filePath = filePath(1:end-size(fileName, 2)); 
  
path(genpath([filePath 'files']), path); 
  
fprintf(); 
  
guiMain; 
  
fprintf(); 
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clearvars fileName filePath 
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