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  ABSTRACT 

 

Accessing healthcare services by several stakeholders for diagnosis and treatment has 
become quite prevalent owing to the improvement in the industry and high levels of patient 
mobility. Due to the confidentiality and high sensitivity of electronic healthcare records 
(EHR), the majority of EHR data sharing is still conducted via fax or mail because of the 
lack of systematic infrastructure support for secure and reliable health data transfer, delaying 
the process of patient care. As a result, it is critically essential to provide a framework that 
allows for the efficient exchange and storage of large amounts of medical data in a secure 
setting, where the storing the data over the cloud do not remain secure all the time. Since the 
data are accessible to the end user only by using the interference of a third party, it is prone 
to breach of authentication and integrity of the data. This thesis introduces the development 
of a Patient-Centered Blockchain-Based EHR Management (PCBEHRM) system that allows 
patients to manage their healthcare records across multiple stakeholders and to facilitate 
patient privacy and control without the need for a centralized infrastructure. In addition, the 
proposed system ensures a secure and optimized scheme for sharing data while maintaining 
data security and integrity over the Inter Planetary File System (IPFS). Further, the proposed 
system introduces a sophisticated End to End Encryption (E2EE) functionality by combining 
the ECC (Elliptic Curve Cryptography) method and the Advanced Encryption Standard 
(AES) method. This is to enhance the security of system, reduce the computational power 
for memory optimization, and ensure authentication and data integrity. We have also 
demonstrated how the proposed system design enables stakeholders such as patients, labs, 
researchers, etc., to obtain patient-centric data in a distributed and secure manner that is 
integrated using a web- based interface for the patient and all users to initiate the EHR sharing 
transactions. Finally, the thesis enhances the proposed PCBEHRM system with deep learning 
artificial intelligence capabilities to revolutionize the management of the EHR and offer an 
add-on diagnostic tool based on the captured EHR metadata. Deep learning in healthcare now 
had become incredibly powerful for supporting clinics and in transforming patient care in 
general and is increasingly applied for the detection of clinically important features in the 
images beyond what can be perceived by the naked human eye. Chest X-ray images are one 
of the most common clinical methods for diagnosing several diseases. The proposed 
enhancement integrated deep learning feature is a developed lightweight solution that can 
detect 14 different chest conditions from an X-ray image. Given an X-ray image as input, our 
classifier outputs a label vector indicating which of 14 disease classes does the image fall 
into. The proposed diagnostic add-on tool focuses on predicting the 14 diseases to provide 
insight for future chest radiography research. Finally, the proposed system was tested in 
Microsoft Windows@ environment by compiling a smart contract prototype using Truffle 
and deploying it on Ethereum using Web3. The proposed system was evaluated in terms of 
the projected medical data storage costs for the IPFS on blockchain, and the execution time 
for a different number of peers and document sizes. The results show that the proposed 
system achieves a reduced storage cost of 73.4172% and a 76% in execution time in 
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comparison to other proposed systems in the open literature. The Results of the study 
conclude that the proposed strategy is both efficient and practicable. The add-on deep 
learning diagnostic feature flags any present diseases predicted from the health records and 
assists doctors and radiologists in making a well-informed decision during the detection and 
diagnosis of the disease. 
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ثحبلا صخلم  

 

 ریبك دح ىلإ اًدئاس جلاعلاو صیخشتلل ةحلصملا باحصأ نم دیدعلا لبق نم ةیحصلا ةیاعرلا تامدخ ىلإ لوصولا حبصأ
 ةیاعرلا تلاجسل ةیلاعلا ةیساسحلاو ةیرسلل ارًظن .ىضرملا لقنت نم ةیلاعلا تایوتسملاو ةعانصلا يف نسحتلا ببسب
 دیربلا وأ سكافلا ربع متت ةینورتكللإا ةیحصلا تلاجسلا تانایب ةكراشم ةیبلاغ لازت لا ، (EHR) ةینورتكللإا ةیحصلا
 ةیاعر ةیلمع ریخأت ىلإ يدؤی امم ، قوثومو نمآ لكشب ةیحصلا تانایبلا لقنل ةیتحتلا ةینبلل يجھنم معد دوجو مدع ببسب
 ةیبطلا تانایبلا نم ةریبك تایمك نیزختو لدابتب حمسی لمع راطإ ریفوت ةیاغلل يرورضلا نم ، كلذل ةجیتن . ىضرملا
 لوصولا نكمی لا تانایبلا نلأ ارًظن .تقولا لاوط اًنمآ ةباحسلا ربع تانایبلا نیزخت لظی لا ثیح ، ةنمآ ةئیب يف ةءافكب
 .تانایبلا ةملاسو ةقداصملا قرخل ةضرع يھف ،ثلاث فرط لخدت مادختسا للاخ نم لاإ اھیلإ

 Blockchain ىلع مئاقلا (PCBEHRM) ةینورتكللإا ةیبطلا تلاجسلا ةرادإ ماظن ریوطت ةحورطلأا هذھ مدقت
 باحصأ نم دیدعلا ربع مھب ةصاخلا ةیحصلا ةیاعرلا تلاجس ةرادإب ىضرملل حمسی يذلاو ضیرملا لوح روحمتملاو
 ماظنلا نمضی ،كلذ ىلإ ةفاضلإاب .ةیزكرم ةیتحت ةینب ىلإ ةجاحلا نود ھیف مكحتلاو ضیرملا ةیصوصخ لیھستو ةحلصملا
 يبكوكلا تافلملا ماظن ربع اھتملاسو تانایبلا نمأ ىلع ظافحلا عم تانایبلا ةكراشمل اًنسّحمو اًنمآ اطًطخم حرتقملا

(IPFS). فرط ىلإ فرط نم ریفشت ةفیظو حرتقملا ماظنلا مدقی ،كلذ ىلع ةولاع (E2EE) عمجلا للاخ نم ةروطتم 
 ةوقلا لیلقتو ،ماظنلا نامأ زیزعتل اذھ .(AES) مدقتملا ریفشتلا رایعم ةقیرطو )يجلیلھإ ىنحنم ریفشت) ECC ةقیرط نیب
 .تانایبلا لماكتو ةقداصملا نامضو ، ةركاذلا نیسحتل ةیباسحلا

 ،تلاجسلا تابث نامضو ،اھعیزوت ایازمل ارًظن تلاجسلا نیزختل ذیفنتلل IPFS و Ethereum blockchain مادختسا مت
 مكحت ةسایس دوجو نامضل .)ةیبطلا ریراقتلا ، لاثملا لیبس ىلع( ةیبطلا ةیفصولا تانایبلل يزكرملالا نیزختلاب حامسلاو
 لوصولا يف مكحتلا لوكوتورب ىمسی يكذ Ethereum دقع ةحورطلأا تحرتقا ،ةقثلاب ةریدجو ةعزومو ةنمآ لوصولا يف
 ىضرملا لثم ةحلصملا باحصأ حرتقملا ماظنلا میمصت نكّمی فیك اضًیأ انحضوأ دقل .(PCAC) ضیرملا ىلع زكترملا
 لماكتت ةنمآو ةعزوم ةقیرطب ضیرملا لوح روحمتت تانایب ىلع لوصحلا نم ،كلذ ىلإ امو ،نیثحابلاو تاربتخملاو
 .ةینورتكللإا ةیحصلا تلاجسلا ةكراشم تلاماعم ءدب نیمدختسملا عیمجو ضیرملل تنرتنلإا ةكبش ىلع ةھجاو مادختساب

 ةرادإ يف ةروث ثادحلإ قیمعلا ملعتلل يعانطصلاا ءاكذلا تاردقب حرتقملا PCBEHRM ماظن ةحورطلأا ززعت ،ارًیخأ
 ةینورتكللإا ةیحصلا تلاجسلل ةیفصولا تانایبلا ىلع دمتعت ةیفاضإ صیخشت ةادأ میدقتو ةینورتكللإا ةیحصلا تلاجسلا
 لیوحت يفو تادایعلا معدل قدصی لا لكشب اًیوق نلآا ةیحصلا ةیاعرلا لاجم يف قیمعلا ملعتلا حبصأ .اھطاقتلا مت يتلا

 نكمی ام زواجتی امب روصلا يف اًیریرس ةمھملا تازیملا نع فشكلل دیازتم لكشب ھقیبطت متیو ماع لكشب ىضرملا ةیاعر
 نم دیدعلا صیخشتل اعًویش ةیریرسلا قرطلا رثكأ نم ةدحاو ةینیسلا ةعشلأاب ردصلا روص دعت .ةدرجملا نیعلا هارت نأ
 ردص ةلاح 14 فاشتكا ھنكمی ارًوطم نزولا فیفخً لاح ةحرتقملا ةززعملاو ةجمدملا قیمعلا ملعتلا ةزیم دعت .ضارملأا
 ةیمست ھجتم جارخإب انیدل فنصملا موقی ،تلاخدمك ةینیسلا ةعشلأا ةروص ىلإ رظنلاب .ةینیسلا ةعشلأا ةروص نم ةفلتخم
 ىلع ةحرتقملا ةیصیخشتلا ةیفاضلإا ةادلأا زكرت .ةروصلا اھیف عقت يتلا رشع ةعبرلأا ضرملا تائف نم ةئف يأ ىلإ ریشی
 .لبقتسملا يف ردصلل يعاعشلا ریوصتلا ثاحبلأ ةبقاث ةرظن ریفوتل اضًرم 14 ـب ؤبنتلا

 

 مادختساب دقعلل يكذ يلوأ جذومن عیمجت قیرط نع @ Microsoft Windows ةئیب يف حرتقملا ماظنلا رابتخا مت ،ارًیخأ
Truffle ىلع هرشنو Ethereum مادختساب Web3. ةیبطلا تانایبلا نیزخت فیلاكت ثیح نم حرتقملا ماظنلا مییقت مت 

 .تادنتسملا ماجحأو ءارظنلا نم فلتخم ددعل ذیفنتلا تقوو ،blockchain ىلع IPFS ـل ةعقوتملا

 ةمظنلأاب ةنراقم ذیفنتلا تقو يف ٪76و ٪73.4172 ةبسنب ةضفخم نیزخت ةفلكت ققحی حرتقملا ماظنلا نأ جئاتنلا ترھظأ
 ةزیم لمعت .ةیلمعو ةلاعف ةحرتقملا ةیجیتارتسلاا نأ ىلإ ةساردلا جئاتن تصلخ .ةحوتفملا تایبدلأا يف ةحرتقملا ىرخلأا
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 يیئاصخأو ءابطلأا دعاستو ةیحصلا تلاجسلا نم ةعقوتم ةیلاح ضارمأ يأ زییمت ىلع قیمعلا ملعتلل ةیفاضلإا صیخشتلا
 .ھصیخشتو ضرملا فاشتكا ءانثأ رینتسم رارق ذاختا يف ةعشلأا
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CHAPTER ONE 

INTRODUCTION 
 

1.1 BACKGROUND OF STUDY 

Medical and healthcare researchers emphasize the importance of their ability to collect and 

analyze multi-source data in order to identify potential community health hazards, provide 

case-specific therapies, and deliver focused medicine (Kumari A et al. 2018), which could 

promote informed clinical decision making and lead to improved patient care quality. This 

information can help to improve personal health information systems such as patient health 

records (PHR) and patient portals. Patients frequently do not have easy access to their 

historical data, while clinicians retain primary ownership. 

Incorporating blockchain, AI, and other readily available technologies into a business's 

DNA is the key to success (Tanwar S et al. 2020). To enhance medical research and attain 

patient-centricity, the industry needs to use technology to produce user- and customer-centric 

interfaces and data-driven decisions for creative ways to data processing and improved 

outcomes (Campanella P et al. 2016, Siyal AA et al. 2019). For example, artificial 

intelligence (AI) could assist in identifying and prioritizing patients for drug monitoring and 

development, which is essential for regulated drug production and accelerated timeframes 

(Tanwar S et al. 2020). Using numerical drug design methodologies and AI, clinical trial data 

was evaluated for repurposing marketed pharmaceuticals, exploring the efficacy of 

medication formulations, and dose measurement (Tagde P et al. 2021). Blockchain facilitates 

the development of a system that creates and manages content blocks known as ledgers, 

incorporating secure and automated data analysis. All health-related information will be 

recorded and analyzed securely, allowing physicians, healthcare providers, and payers to 

receive rapid updates. However, storing massive records on the blockchain, such as complete 

electronic medical records or genetic data records, would be expensively inefficient due to 

the large computational resources required. This is a major drawback of blockchain 

technology, as it makes data queries within a blockchain difficult. Implementing AI 

algorithms into the blockchain, however, can help overcome this drawback (Tagde P et al. 
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2021).  To comprehend health trends and patterns, artificial intelligence began to learn and 

reason like a clinician. It collects unstructured data from a variety of sources, including the 

patient, the radiologist, and the pictures. AI is also capable of conducting complex 

computational processes and evaluating enormous quantities of patient information fast. 

However, some doctors are still hesitant to use AI in healthcare, particularly in positions that 

may affect a patient's health, due to the significant capabilities that AI may bring, which have 

proved that it can execute numerous dynamic and cognitive processes faster than a person. 

The automobile sector has already demonstrated its capacity to utilize AI to produce 

autonomous automobiles. However, some businesses have already identified machine 

learning-based methods for detecting fraud and identifying financial dangers and 

demonstrating AI’s maturity level (Shahnaz A et al. 2019). 

The following section discusses the main terms and principles of intelligent technology in 

healthcare. We look at how intelligent technologies evolve and the security criteria for their 

implementation in the healthcare industry sector. In addition, the advent of modular IT 

systems has been observed since the implementation of healthcare provisions in the 1970s. 

Healthcare 1.0 is the name given to this period. Because of a lack of funding, healthcare 

services were limited and not coordinated with digital systems during this period. On the 

other hand, bio-medical machines had not yet been built and did not integrate with 

networked electronic devices. Paper-based medications and reports were commonly used 

in healthcare institutions during this period, resulting in increased costs and time. 

From 1991 to 2005, the Healthcare 2.0 period was observed. During this time, health and 

information technology were merged to form the foundations of today's healthcare systems. 

This process saw the introduction of automated monitoring, which provided doctors with 

imaging systems for assessing patients' health. Simultaneously, new user-enabled 

innovations in the healthcare sector started to evolve, coinciding with the advent of social 

media. Healthcare services began to build online communities to exchange information and 

expertise, store data on cloud servers, and provide mobile access to documentation and 

patient records, allowing both the provider and the patient to have constant access. During 

this time, critics shared their dissatisfaction with the misleading facts and the invasion of 

patients' privacy. Healthcare systems used networked electronic health management 
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practices combined with clinical imaging systems to help doctors get more reliable, 

accurate, and timely access to patient’s data.  

Healthcare 3.0 debuted simultaneously as Web, allowing users to customize how patient 

healthcare records were distributed. User interfaces became simpler and more tailored, 

allowing for more customized and optimized experiences. Electronic Healthcare Records 

(EHRs) and wearable and implantable devices were also introduced, allowing for real-time, 

ubiquitous monitoring of patients' healthcare. Similarly, EHR systems (Vora J et al. 2018) 

emerged that incorporated stand-alone non-networked systems, such as social media 

networks, to store patient’s data. 

Finally, the care period proliferated, inspired by the idea of Industry 4.0, in which Hi-

tech and Hi-touch systems are implemented, using cloud computing, fog, and edge 

computing, big data analytics, AI, and machine learning to create blockchains that allow 

for real-time access to patient's clinical data (Tanwar S et al. 2020). The fundamental goal 

of this period is to improve virtualization, allowing for real-time personalized healthcare. 

The emphasis is now on teamwork, coherence, and integration, using AI technology to 

make healthcare more predictive and personalized. 

By considering the above scenario, this paper aims to identify the potentiality of AI-

blockchain to manage EHRs and show the challenges and future scopes. This systematic 

review explores research that offers conceptual solutions, experimental results, prototypes, 

and blockchain implementations for managing EHRs. 

  

1.2 RESEARCH QUESTIONS 

1. How can we design a blockchain framework that ensures the security and 

integrity of healthcare medical records while maintaining time efficiency? 

2. What cryptographic techniques and consensus mechanisms can be employed 

to enhance the security aspects of the proposed blockchain framework? 

3. How can artificial intelligence models effectively filter and mine metadata 

from big healthcare datasets for the purpose of diagnosis sharing and decision-

making? 
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4. What are the key challenges and opportunities in integrating AI models into the 

healthcare metadata filtration process? 

5. How can end-to-end encryption be implemented to provide patients with 

centralized control over their medical records while maintaining security and 

accessibility? 

6. What are the usability and acceptance factors associated with a patient-centered 

approach to medical records management? 

7. How does the performance of the developed system compare to existing 

systems proposed in the open literature in terms of security, efficiency, and 

usability? 

8. What are the key performance metrics and evaluation criteria that should be 

considered when benchmarking the system? 

1.3 PROBLEM STATEMENT 

The problem statement can be summarized in the following points. 

1. Lack of management and distributed data, where anyone can access the medical 

data, because it is readable by anyone without authorization. 

2. Medical records in database are vulnerable and can be easily tampered with, altered, 

modified or deleted completely. 

3. Processing, accessing and retrieving are time-consuming because it is based on a 

centralized database for saving medical data from patient medical records to 

diagnostics reports and doctor’s prescriptions. 

4. Medical data need to end2end encryption to ensure the security ,integrity and 

confidentiality. 

5. The numbers of medical records are heterogeneous massive Bigdata and it has 

proven to be a challenge so far to have a one solution fits all to secure them. 

6. The handling of metadata is another challenge that calls for emerging AI 

technologies to be applied together with blockchain solutions to secure the data and 

reduce cost. 

7. all recent standards require decentralization, distributed access and metadata 

maximum use without patient rights infringements. 
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1.4 OBJECTIVES 

1. To develop a secure time-efficient blockchain framework for healthcare medical 

record management system 

2. To utilize AI models for bigdata metadata filtration, mining and diagnosis sharing 

decision-making process 

3. To enhance distributive accessibility and security of patient’s medical records using 

e2e encrypted patient-centered control of medical records management plans 

4. To evaluate and benchmark the performance of the developed system against other 

systems proposed in the open literature. 

1.5 MOTIVATION 

Content organizations traditionally utilize cloud databases to consolidate various types of 

health information, such as electronic health records (EHRs), electronic medical records 

(EMRs), clinical images, patient health records (PHRs), and personal data such as body 

measurements and home-checking gadget information. It is important to note, however, 

that a centralized database presents a vulnerability to cyberattacks, which can compromise 

the security and privacy of EHRs (Madine et al., 2020). Additionally, stakeholders and 

healthcare providers encounter challenges in sharing health information due to differences 

in standards and formats. 

Furthermore, if a patient's EHR is deleted from a hospital's database, the record is 

permanently lost, exacerbating the problem. Therefore, any proposed system must be 

tamper-proof to prevent unauthorized parties from accessing the information (Saidi et al., 

2022). Another issue with current healthcare systems is that patients have limited control 

over their health records as they are managed by service providers (Makridakis et al., 2019). 

As the amount of healthcare data continues to increase, security and scalability have 

become major concerns. Figure 1.1 illustrates the current system architecture for managing 

health records. 
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Figure 1.1. Overview of the current system. 

1.6 RESEARCH SCOPE 

The study in this thesis will involve the design and implementation of the proposed system 

in an actual testbed. No simulation studies will be considered. The system will be developed 

by using Ethereum blockchain platform with IPFS and Ganache. Truffle is a framework of 

this DApp, AngularJs as a front-end, and executed it on web3, back-end executed using 

Python. Furthermore, AI algorithms executed using Python and import all the required 

libraries to achieve our proposed system. However, it will be benchmarked against other 

systems reported in the open literature. The system will be evaluated in terms of its security, 

user-friendliness, distributive accessibility, time efficiency, and data analytics capabilities. 

 

1.7 RESEARCH PHILSOPHY 

The finding of this study will assume to provide a AI-Blockchain solution that can manage 

healthcare medical records from different heterogeneous sources, like IoT devices, 

ambulance records, EHR records, out-patient records, in-patient records, etc, with a high-

security level to data and allow for better confidentiality. furthermore, the system aims by 

being designed in a distributive manner, to give more freedom to the patients themselves 

to control the level of accessibility and record management needed. 
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1.8 RESEARCH METHODOLOGY 

 
Figure 1.2 System Flowchart. 

1.9 THESIS BREAKDOWN 

In Chapter 1, the general idea of the project is demonstrated. The essential components 

such as background, problem statement, methodology, scope and organisation of report are 
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discussed under this chapter. Chapter 2 discusses the literature review that related to the 

proposed system which comprise of the compilation of published articles related to 

Blockchain and Artificial intelligence and E2E encryption. In Chapter 3, the methodology 

of the proposed system is described with methods and procedures that will be used to 

achieve the stated objectives of this system. For Chapter 4, this chapter contains the results 

and analysis the results by comparing with the recent related studies of this archiving 

blockchain and AI or encryption methods application. The concluding section, Chapter 5 

summarises the findings of the system and also contains the summarize of novelty of the 

proposed system with contribution and  future works of the system.   
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 INTRODUCTION 

Electronic health records (EHRs) typically contain sensitive information, including 

medical history, personal details such as age and weight, and laboratory test results. 

Therefore, it is crucial to ensure that this information remains secure and private. Hospitals 

in some countries, such as the United States, are subject to strict government scrutiny to 

ensure that patient data is protected (Ma S et al. 2021). However, deploying and 

implementing healthcare systems presents several challenges. As previously mentioned, 

centralized server models are vulnerable to single-point attack constraints and malicious 

insider assaults. Patients who store their data in these EHR systems lose control over their 

information, as they cannot determine who accesses it or for what purposes, leading to a 

potential violation of personal privacy. Malicious insiders could also leak the information to 

other organizations, resulting in consequences such as insurance coverage being denied based 

on leaked medical records. Meanwhile, sharing data is becoming increasingly important, 

especially as the population becomes more mobile. Shared data can improve medical service 

delivery by taking advantage of the interconnectedness between different healthcare 

organizations. However, overcoming the "Information and Resource Island" (information 

silo) due to privacy concerns and restrictions is challenging. Furthermore, information silos 

lead to data redundancy and bureaucracy. 

To address these issues, the United States Congress enacted the Health Insurance 

Portability and Accountability Act (HIPAA) in 1996 (Nosowsky R and Giordano TJ. 2006). 

HIPAA established standards to protect the privacy and security of personal health 

information and implemented several programs to combat fraud and abuse in the healthcare 

system. The act includes five rules that help to safeguard patient privacy and improve 

healthcare delivery: 

• The privacy rule. Regulations governing the use and dissemination of patient health 

information in the treatment and operations of healthcare organizations. 
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• The rule of Transactions and Code Sets. All health plans must uniformly engage in 

healthcare transactions. 

• The rule of security. The security rule supplements privacy by limiting access to 

computer systems and preventing interception of communications via open networks. 

• The Rule of Unique Identifiers. To secure patient personal information, only the 

National Provider Identifier (NPI) is used to identify covered entities in standard 

transactions. 

• The Rule of Enforcement. For breaking HIPAA rules, there will be an investigation 

and fines. 

ISO 27789 (Kubo et al. 2019) is another typical audit trail for EHRs that keeps personal 

health information auditable across systems and domains. A secure audit record must be 

created every time an operation is triggered by a system that complies with ISO 27789. As a 

result, a collaborative and open data-sharing system is essential, as it simplifies auditing and 

post-incident inquiry or forensics in the event of alleged misbehavior (e.g., data leakage). 

Forensic scholars also do highlight this concept (forensic-by-design) (Kubo et al. 2019, 

Davenport et al. 2019). 

When the next generation of secure EHR systems has been generated, we should follow 

the next requirements based on the relevant standards listed above: 

• Data accuracy and integrity: e.g., unauthorized data modification is not allowed and 

can be detected.  

• Data security and privacy.  

• Efficient data sharing mechanism (Feng Q et al. 2019).  

• The patient control mechanism allows the patient control mechanism of EHRs (e.g., 

the patients will have control over their records and can get a notification if there is 

unauthorized access or loss of their data). 

Data auditing and accountability (e.g., forensic by design (Kubo et al. 2019, Davenport et 

al. 2019). 

• The decentralization of power. In contrast to the centralized approach, blockchain 

does not require a semi-trusted third party. 
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• Safety and security. The blockchain-based decentralized system is resistant to a single 

point of failure and insider attacks. 

• The use of a pseudonym. Each node is assigned a pseudonymous public address to 

safeguard its true identity. 

• Impermanence. using the cryptographic hash function in one way, it will make the 

computationally hard to delete or change any records of any record of any block 

included in the chain. 

• Independence. Patients have control over their data and can share it in a variety of 

ways thanks to the settings of special items in the smart contract 

• Mechanism of motivation. Blockchain's incentive structure can encourage 

competitive institutions to collaborate and share information to advance medical 

services and research. 

• Transparency. Can track every operation in the blockchain because every previous 

transaction is recorded in the chain. 

 

Based on the following explanation, blockchain technology can be used to achieve the 

previously mentioned requirements. 

 

A. BENEFITS OF USING BLOCKCHAIN AND ARTIFICIAL 

INTELLIGENCE. 

   The coronavirus epidemic can be dealt with in a variety of ways using blockchain and 

AI. There are many real-world applications for the blockchain that can be put to good use in 

the fight against the coronavirus outbreak. Blockchain could be used to monitor the spread 

of coronavirus infections around the world by installing blockchain network client software 

on users' mobile devices. One of the most important aspects of blockchain is its ability to 

protect user privacy, allowing early identification of epidemics while prohibiting the 

publication of user information. It also helps with epidemic and treatment management by 

making vaccine trials more efficient and transparent, as well as keeping track of all 

fundraising activities and donations. When it comes to combating the Coronavirus, AI has a 

range of approaches to help. AI may be used to identify viruses and anticipate how they will 
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spread by analyzing the accumulated knowledge of environmental factors (Tanwar et al. 

2020), healthcare access, and the transmission method. By classifying coronavirus inside 

localized outbreaks of sickness, AI can help determine whether or not it is indeed there. 

Pneumonia, severe acute respiratory syndrome, and renal failure are all possible outcomes of 

coronary virus infections. For example, a genome-based neural network that has already been 

developed for personalized care can be very useful in managing these adverse events or 

symptoms caused by a coronavirus, particularly when virus impact is dependent on individual 

immunity and genome structure and no single treatment can effectively treat all symptoms at 

this time. AI may also be useful in speeding up the development of a new vaccination for 

novel coronaviruses (Tagde P et al. 2021). As a final application of AI, it may be possible to 

develop an automated model or correlation between medical records and results. Clinical 

protocols for coronavirus-like outbreaks could benefit from these models' quick identification 

of diagnostic and therapeutic options. A recent White House request to deploy AI to assist 

the US government in responding to the coronavirus pandemic (Vora J et al. 2018) is based 

on these prospective advantages.  

Disintermediation is defined as the absence of a centralized authority that collects, 

processes, and validates data & models designed and shared. It enables a reduction in the 

time, error, and cost of process performance aimed at building and updating a predictive 

model that supports clinical practice and risk management. Transactions certified by the 

blockchain, and the data included within them are irreversible, in the sense that they cannot 

be changed or erased, ensuring their legitimacy while also strengthening the security of the 

system in which the activities take place (Kubo et al. 2019). Furthermore, the cryptographic 

system, the immutability of the data communicated across the network, and the lack of a 

centralized authority foster greater trust in the system, as the need to maintain this confidence 

among the parties involved in the process fades (Davenport et al. 2019). 

 

B. THE HEALTHCARE SYSTEMS’ SHORTCOMINGS 

In the wake of the COVID-19 pandemic, current healthcare systems have come under 

scrutiny. Currently some existing healthcare systems may be overburdened by the COVID-

19 outbreak. As of right now, there is no trustworthy data monitoring system in place 
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(Nguyen DC et al. 2021) to give key healthcare organizations the information they require 

about potential epidemics in real-time. In fact, most of the current coronavirus information 

comes from separate sources such as the public, hospitals, clinical labs with a large amount 

of inaccurate data without being monitored thoroughly. The use of unreliable information 

makes it challenging for potential outbreak identification and quarantine. Another limitation 

is the current time-consuming and in-accuracy coronavirus detection procedure that often 

takes several hours to complete the virus tests. This is unacceptable in light of the rapid spread 

of the coronavirus. It is critical to learn how to swiftly and accurately identify coronaviruses. 

Coronavirus data processing utilizing human-dependent medicinal software is exceedingly 

tough, especially when dealing with complex patterns and enormous volumes. Blockchain 

technology offers promising security solutions to aid in the fight against pandemics. Indeed, 

the blockchain creates immutable transaction ledgers for medical data sharing systems. More 

importantly, the combination of blockchain and smart contract technology eliminates the 

need for central servers to ensure fairness among transaction parties. Traceability and 

decentralization are two key characteristics of blockchain that are not found in other 

traditional security techniques. Furthermore, blockchain can provide reliable data analytics. 

Data collection is an important step in disease analytics. How to ensure the reliability of 

collected data during data collection is important for ensuring the high quality of disease data 

analytics (Pham QV et al. 2020). The use of incorrect data or untrustworthy database sources 

can lead to biased analytical results, which can have fatal consequences, such as incorrect 

diagnosis. Furthermore, in an emergency epidemic situation, many sources of contagious 

disease data are collected without protection from hospitals, the public, or the media, which 

can result in data modifications. These issues would undoubtedly affect the accuracy of the 

collected data, reducing the reliability of the analysis process. Because of its security, 

blockchain is in high demand in such contexts to ensure the reliability of collected data. Due 

to consensus mechanisms, blockchain also ensures the correct ordering of data records from 

data sources to destinations (e.g., hospitals or clinical labs), ensuring the high quality of data 

collection. These blockchain features would ensure accurate data collection and thus reliable 

disease analysis. 
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As the last point, there are privacy issues over the mass monitoring of the population to 

monitor the coronavirus. Healthcare organizations can monitor individuals' cell phones 

without a court order to prevent the spread of the COVID-19 coronavirus, for example 

(Mistry et al. 2020). However, human rights and privacy advocates have objected to the plan 

since it might potentially disclose citizens' private information, which could lead to major 

civil liberties abuses. To combat the spread of the coronavirus, real-time monitoring systems 

that protect user privacy are needed. As privacy become more of a concern, secret blockchain 

networks, that uses Privacy by Blockchain Design (PbBD) technologies to customize the 

level of privacy, are now gaining attention. 

 

2.2 BACKGROUND OF BLOCKCHAIN 

We briefly outline blockchain technology to assist readers in comprehending the remainder 

of the article. In the following subsections, we will cover the fundamental structure of 

blockchain technology to facilitate better grasping of the survey and the notion of blockchain. 

 

2.2.1 Blockchain 

A blockchain may be thought of as a decentralized public ledger that is accessible to all 

peers in a network where all committed, valid, and completed transactions are stored in a list 

or chain of blocks. The chain grows as new blocks are appended to it continuously. 

Blockchain technology employs a combination of two technologies: asymmetric 

cryptography and P2P distributed consensus to guarantee ledger consistency and user 

security. Hence, these time stamped blocks are linked together by a cryptographic hash (Feng 

Q et al. 2019). Typically, each block contains transaction records that have been verified by 

peers, often known as miners. The chain is continually lengthened, with each new block being 

added to the end. Each new block, on the other hand, contains a reference to the preceding 

block's header, which is essentially a cryptographic hash (e.g., SHA-256). the creation of 

each block has been with pseudonymity, transparency, and immutability (Lin C et al. 2020, 

Ma S et al. 2021)  

A block is made up of the block header and the block body, defined below, as seen in 

Figure 1. 



15 
 

 

• Version: the cryptocurrency version number that indicates which set of block 

validation rules should be followed. 

• Previous block hash: the hash value of the block before it. 

• Time stamp: the current block's creation time is the timestamp.  

• Nonce: to solve a PoW problem, miners alter a four-byte random field each time they 

hash the code. 

• Hash target: new block's hash value must fall within a certain range before it is 

considered valid.  Target hash is used in determining the difficulty of the input and 

can be adjusted in order to ensure that blocks are processed efficiently. 

• Merkel Root: transactions in the block's body generate the Merkle tree root's hash 

value.  

Transactions regularly are included in the block's body. Each leaf node of the Merkle tree 

represents a transaction, and every nonleafy node represents the hash value of the two 

concatenated child nodes that make up the leaf node. To validate the presence and integrity 

of a transaction, every node only needs to check the hash value of the two concatenated child 

nodes that make up the leaf node rather than the entire Merkle tree. There will be a new hash 

value generated in the top layer for any changes made to a transaction, which will result in 

one root hash. In addition to the block size, the maximum number of transactions per block 

is determined by the size of each transaction. Once the hash function is used, all blocks will 

be linked. Because data that has been validated cannot be modified or deleted in the 

blockchain, as new data comes in, it will be added to the linked blocks. Every change to the 

block will result in a new hash value (a new block) and a new link relationship based on this 

state. Immutability and security are fundamental features of blockchain technology. 
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Figure 2.1 Standard Block Structure. 

 

 

2.2.2  Digital Signature 

For transaction authentication in an untrustworthy environment, asymmetric cryptography is 

often utilized (Feng Q et al. 2019). To send and verify the legitimacy of transactions, 

asymmetric cryptography is a key component of the Blockchain. In a P2P network, 

transactions are signed with the transaction initiator's private key before they are received. 

Most current blockchains use the elliptic curve digital signature technique (ECDSA) (Wang 

W et al. 2019). 

When a transaction is requested or initiated, a block representing that transaction is 

generated and broadcasted to all adjacent nodes via the peer-to-peer (P2P) network, in which 

peers have equal Privileges. This block will be received by other nodes. The sender's public 

key is used to validate the legitimacy of the received block using specified block validation 

rules. If the block is genuine, it will be transmitted to other nodes until they have all verified 

it. If not, it will be discarded during the procedure. Only valid blocks can be added and stored 

in the blockchain network. 

Figure 2.2 illustrates the process using coins, where Bob receives from Alice a specific 

number of coins. She initiates a transaction using her private key, which is then confirmed 

by the network. Anyone with access to Alice's public key can easily verify the transaction. In 

the second step, the P2P network disseminates the transaction to other nodes. In the third 

step, the transaction is verified by each node according to predetermined rules. Each validated 
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transaction will be grouped chronologically and added to a new block in step 4 after the miner 

solves the problem. Then, each node will update and back up the new block. 

 

 
Figure 2.2 Diagram of the transaction flow in the blockchain. 

 

 

2.2.3 Algorithms for Building Consensus 

There is no one point of authority in the blockchain network. As a result, a fundamental issue 

is the Byzantine Generals Problem (Shostak R et al. 1982), a variant of which was created in 

the context of distributed networks in 1982.  A gang of Byzantine generals is surrounding the 

city, and they have little chance to win the fight unless they all attack at the same time, the 

Byzantine Generals claims. There is a question as to whether or not there will be any traitors 

in a dispersed context. So they must make a choice: attack or retreat. It is the same challenge 

for the blockchain network. 

To obtain a consensus protocol among all the distributed nodes before a new block can be 

attached to the blockchain, different protocols have been developed (Wang W et al 2019). 

 

• PoW (Proof of Work): PoW is the name of Bitcoin's consensus algorithm (Proof of 

Work). Before receiving any rewards, a miner node with a certain level of computing 

(hashing) power must perform laborious task of mining to prove that he is not malicious (NN-

A at S et al. 2017, GW-E project 2014).  To find an eligible nonce value that is smaller than 

(or equal to) the target hash value, the node must continually perform hash calculations. It is 

difficult to generate a nonce, yet it is trivial for other nodes to check its validity. The task is 
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costly as a result of the numerous computations required (computational resources). If the 

blockchain network were to be attacked by a 51 percent attack (Li X et al. 2020), this would 

be an extreme case. A miner or a group of miners having more than 51% of the processing 

power can delay the generation of new blocks and create fraudulent records of transactions 

that benefit the attackers. 

 

• Proof of Stake (PoS) Compared to PoW, PoS uses less power. It is widely believed that 

nodes with the highest stakes (such as cash) are less likely to attack the network (Bentov I et 

al. 2014). It's unfair to decide based on account balance because the wealthiest node is more 

likely to take over the network, making it a centralized one. 

 

• Delegated Proof of Stake (DPoS) Similar to PoS, DPoS can also be used. The key 

distinction between DPoS and PoS is that the DPoS is democratically representative (Li C et 

al. 2019), whereas the PoS selection is based on all nodes. Stakeholders can elect delegates 

to decide who generates and validates new blocks. The fewer nodes that validate a block, the 

faster the transactions are confirmed by other nodes. In addition, dishonest representatives 

could be easily removed from office, making network maintenance simpler. 

• Proof of Authority (PoA) is an efficient algorithm for achieving consensus network 

(Bentov I et al. 2014). Nodes with the ability to build new blocks are permitted. Each node 

must first undergo a pre-authentication process. On the other hand, this method produces a 

design that is centered by nature. 

 

• Proof of Capacity (PoC) is a consensus mechanism that achieves consensus by utilizing 

available hard disc space rather than computational resources (Tschorsch F et al. 2017). With 

additional storage capacity, you may store more solutions, increasing the likelihood that a 

new block will be generated. 

Rather than depending on a single consensus algorithm, an increasing trend is to combine 

many consensus algorithms to improve performance in a variety of applications. 
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2.2.4 Smart Contract 

Smart contracts are self-executing programs that are implemented on the blockchain. They 

have been employed in a variety of areas, including finance, healthcare, and government. 

Such a system can achieve complex programmable functionality by delivering a contract-

invoking transaction to the appropriate contract address. The smart contract will execute the 

secure container's predefined terms automatically. Ethereum is the first open-source 

blockchain platform that includes Turing-complete smart contract languages, enabling 

developers to create any decentralized application (Dapps) they desire. Dapps, or 

decentralized applications, refer to programs built on the blockchain technology that facilitate 

communication between patients and doctors without relying on third-party intermediaries, 

except for the Ethereum network. Through Dapps, patients can exercise greater control over 

their medical records, as stated by Houtan et al. (2020). 

 

2.3 BLOCKCHAIN APPLICATIONS IN HEALTH RECORDS SYSTEM 

 

2.3.1 Data Management in Electronic Medical Records 

Blockchain technology has gained interest in healthcare and pilot programs have been 

launched globally. Booz Allen Hamilton Consulting developed and launched a blockchain-

based pilot platform in the United States last year, which is now being implemented at four 

large hospitals. They have also been tasked with advising the Food and Drug Administration's 

Office of Translational Sciences on the application of blockchain in healthcare data 

management (Figure 2.3). The pilot project uses Ethereum to regulate data access via virtual 

private networks and employs IPFS to decrease data replication by utilizing off-chain cloud 

components and cryptographic techniques to facilitate user sharing. This ensures encryption 

and data privacy for users (Cyran MA et al. 2018). 

 

2.3.2 Blockchain and Data Protection In Healthcare 

A connection exists between blockchain technology, and the General Data Protection 

Regulation (GDPR) implemented in the European Union. GDPR, on the other hand, places 

a high value on the inclusion of blockchain technology (when the data can be portable, for 
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data traceability, legal access auditing). Based on the information previously provided, a 

variety of issues can be experienced (the actual control may be weakened when the technical 

implementation of the smart contract over data). Dynamic consent management is a solution 

that is fully compliant with GDPR consent requirements. Enterprise blockchains, also known 

as private blockchains, are also believed to be suitable for GDPR compliance because they 

allow transactions involving digital records to be modified and removed by network owners 

or authorities using a particular type of consensus algorithm. These private blockchains are 

typically controlled by a single entity or organization, and access is limited to individuals or 

companies who meet certain predetermined criteria or restrictions. (Cédric Villani et al. 2021, 

Cyran MA et al. 2015, Lima C, 2018). 

The way a firm handles its private web apps will be comparable to the way it handles its 

public web applications.  

Their technology can cater to various use cases such as government agencies, owners of 

public health data, and healthcare reimbursement companies. In particular, private 

blockchains are expected to have a significant impact on healthcare policy and management 

in the future. Moreover, Novartis is leading the IMI (Innovative Medicine Initiative) Pilot 

project "Blockchain-Enabled Healthcare" under the European Commission's Research & 

Innovation Program to explore blockchain possibilities in healthcare. It hopes to capitalize 

on established standards like Ethereum while simultaneously developing supplementary 

standards as needed. The emphasis is on those who can facilitate programs that would directly 

benefit patients (Dimitrov D V. 2019). 
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Figure 2.3 Structure of blockchain technology for hospitals. 

 

2.3.3 Personal Health Record (PHR) Data Management on The Blockchain 

Personal health records (PHR) have lately begun to be built utilizing data from sensors, which 

can be wearable or medical Internet of Things devices. A variety of stakeholders, including 

patients, doctors, pharmaceutical specialists, and payers will benefit from real-time AI-

powered healthcare analytics (P. Zhang et al. 2018, Salah K et al. 2019). A key data source 

for blockchain service providers is the complete PHR service trajectory, which is becoming 

increasingly important. (See Figure 2.4). 
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Figure 2.4 Blockchain service for PHR data. 

 

Blockchain technology is also a feasible solution for managing personal electronic health 

records. Patients may be reimbursed with tokens for providing health data with physicians 

and research collaborators through the use of so-called "smart contracts," which are electronic 

contracts that exchange data between parties. Using blockchains to tokenize data, Health 

Wizz, for example, is experimenting with a blockchain- and Fast Healthcare Interoperability 

Resources (FHIR)-enabled EHR aggregator mobile app that will allow patient groups to 

aggregate and organize their medical records in a safe manner, as well as exchange, donate 

and/or swap their medical records (P. Zhang et al. 2018). To facilitate improved coordination 

between healthcare institutions and caregivers for a higher level of care, the goal is to make 

it as simple as managing online bank accounts to manage one's health information. 

   In the context of an EHR blockchain business (P. Zhang et al. 2018), medical chain allows 

a variety of healthcare agents to apply for and obtain authorization to view and communicate 

with patients' medical records. These agents include physicians, hospitals, laboratories, 

pharmacies, and insurers. In the medical chain's distributed ledger, each interaction is 

recorded as a transaction, and the ledger is auditable, open, and stable at all times. 
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2.4 OVERVIEW OF ARTIFICIAL INTELLIGENCE IN HEALTH RECORDS 

MANAGEMENT SYSTEM  

AI systems in health care are often built upon supervised or unsupervised methods. In 

supervised learning, labeled data with regard to output or reaction of interest is used to train 

machines to predict these classifications using a set of predictors or inputs (Gareth J et al. 

2021). The unsupervised method, on the contrary, does not use labeled data nor does it 

anticipate a result or reaction. Instead, it finds patterns and correlations in the data to classify 

variables or observations into related categories (Gareth J et al. 2021). The majority of 

existing machine learning structures in the health care industry, some of which build 

electronic phenotyping algorithms, employ supervised learning methods (Jiang F et al. 2021). 

In this part, we provide a quick review of a few machine learning approaches widely utilized 

to categorize clinical results from electronic health records, including random forests and 

support vector machines, as well as supervised and unsupervised models for deep learning 

and neural networks (Jiang F et al. 2021, LeCun Y et al. 2015, Resta M et al. 2018).  

Support vector machines determine the optimum disconnected hyperplane in the covariate 

space between observations of different outcome groups for the identification of variables 

(Jiang F et al. 2021). The best hyperplane is defined as the one with the greatest margin or 

distance separation from the closest observation to either of its sides from distinct outcome 

groups, which essentially is referred to as ‘support vectors’ (Kaye J et al. 2015). On the other 

hand, random forests are regulation-based batch classifiers that identify inputs by averaging 

estimates through a group of decision trees models (Dimitrov D V, 2019).  

Every tree in the random forest classifier would be trained with a sample of bootstrap data 

points, with the sample split at each node on the most descriptive among a randomized subset 

of the potential predictors (Jiang F et al. 2021).  In recent years, deep learning models, as well 

as neural networks have grown in popularity, particularly for their application in diagnostic 

imaging and forecasting activities (Jiang F et al. 2021).  When they are used for the supervised 

learning approach, the models may be regarded as progressively complicated extensions of 

the classic regression paradigm (Jiang F et al. 2021).  A conventional logistic regression 

model consists of an output and input layer, with a node in the input layer for every parameter 
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and a collection of relation weights linking the input nodes to the coefficients or the output 

node. To generate the final output of the model, the output node undertakes the total from 

each parameter multiplied by the matching relation weight, which is known as input nodes' 

weighted sum, and runs it through the activation function, or the logistic function in this 

example. Neural networks extend this structure by including a concealed layer between the 

output and input layers, in which the nodes would allow the neural network to simulate more 

complicated and non-linear relationships between the response and predictor factors (Gareth 

J et al. 2021).   

Following that, deep learning models improve this approach by incorporating several 

hidden layers between the output and input layers to detect even more subtleties in the data 

(Resta M et al. 2018). 

All of these algorithms are designed in such a way that they can autonomously simulate 

sophisticated interactions and relationships in datapoints with priori constraints from the 

investigator and with little assumptions. These algorithms, however, can be harder to 

decipher, are prone to overfitting, and frequently need a large quantity of training data to 

provide appropriate results (Beam AL et al. 2018). To both justify and optimize the 

application of machine learning for the categorization of health responses from EHR data, 

researchers ought to consider when these techniques are most appropriate and for which 

tasks, they should be employed (Raghupathi W et al. 2021). 

 

2.4.1 The Challenges of Using AI in Health Records System 

 

In this section, we discuss the issues surrounding the use of AI for health record systems such 

as the portability and transparency of these algorithms, as well as the requirement of the 

training sizes necessary for satisfactory productivity. 

 

2.4.1.1 Transparency  

The issue of inadequate transparency related to elaborate algorithms of machine learning 

such as deep learning creates hurdles to their application in phenotyping tasks, especially 

when the stakes are significant and end-user confidence is essential. Clinicians, for example, 
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would prefer the algorithms to supplement or enhance their expertise as opposed to merely 

dictating their decision-making process (Rundo et al. 2020). Regulatory authorities, on the 

other hand, require algorithms to be decipherable for transparency reasons because their 

classification system may have substantial legal or financial ramifications (Gehrmann S et al. 

2018). As a result, improving the interpretability of such "black box" models is crucial. 

The results from previous research that employed a recently established approach in 

interpreting deep learning model predictions were outstanding (Gehrmann S et al. 2018, 33]. 

Researchers in (Gehrmann S et al. 2018) applied a modified variant of saliency, which is 

dubbed ‘saliency’ (Omar IA et al. 2021), to classify the most appropriate terms from clinical 

material and were subsequently utilized for prediction purposes by convolutional neural 

networks. Based on the authors, clinicians would assess these terminologies as more 

descriptive and applicable to the desired trait than the most crucial characteristics determined 

using a more standard definition of extraction-based NLP method. (Rajpurkar P et al. 2017) 

created heatmaps by using mappings of class activation in agreement with radiologists' 

assessments, representing the most significant portions of chest X-ray images applied by their 

deep neural network for the prediction of chest diseases (Zhou B et al. 2021). Such initiatives 

to improve the transparency and interpretability of complicated machine learning models 

strengthen the trust and confidence of physicians and other end users in these technologies, 

hence encouraging the number of uses. 

 

2.4.1.2 Transportability 

Due to privacy concerns and administrative constraints, a lot of electronic phenotyping 

research was conducted in a single-site environment (Ford E et al. 2021, Shivade C et al. 

2021, Carrell DS et al. 2017, Kirby JC, et al. 2017). It was worth noting that there is a rising 

interest in exchanging the algorithms among researchers and healthcare bodies to improve 

their versatility, provided ample time and resources for the development of phenotyping 

algorithms were given (Kirby JC et al. 2016).Initiatives such as the Phenotype 

Knowledgebase (PheKB), an online platform meant to help researchers build, share, and 

validate electronic phenotyping algorithms, demonstrate that progress is being made in this 

area (Kirby JC et al. 2016). However, few phenotyping algorithms also have been customized 
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for applications in various settings, especially those involving machine learning (Wang W et 

al. 2019). To build scalable phenotyping algorithms, they should be externally verified to 

determine their portability, and then modified, if needed, to account for idiosyncrasies of site-

specific. This "validation-adaptation" strategy is especially useful for phenotyping algorithms 

that use NLP systems even though it could be extremely laborious and work-intensive 

(Carrell DS et al. 2017). Since these versatile methods are vulnerable to overfitting, it is 

especially essential to validate phenotyping algorithms that implement machine learning 

externally before implementing them in different settings (Foster KR et al. 2014). If 

additional fine-tuning is required, for example, to model relationships differently or to detect 

new acronyms in clinical documentation, machine learning algorithms may take up less 

human work to be retrained than manual-engineered algorithms. In another instance, deep 

learning NLP systems would seldomly utilize manually supplied feedback and maybe 

quickly retrained to new datasets (Gehrmann S et al. 2018). Deep learning models that are 

usually employed to classify health responses from imaging procedures might theoretically 

be considerably more portable than those utilized for NLP tasks because of the smaller degree 

of between-site heterogeneity in medical images compared to clinical narratives. 

 

2.4.1.3 Training Size 

To achieve optimal efficiency, machine learning algorithms, particularly deep learning 

frameworks, would necessitate a significant quantity of labeled training data (Asperti A et al. 

2018). In this regard, (Rajpurkar P et al. 2017) used the CheXNet algorithm and was trained 

on over 100,000 labeled images, which subsequently produced expert-level results. Many 

researchers, on the other hand, do not have such privilege given due to the limitation in time 

or resources for data annotation (Asperti A et al. 2018), or probably due to the constraint in 

the number of cases or rare health ramifications in the EHR system. In addition, as previously 

mentioned, pooling labeled data across different locations may not be a viable option owing 

to privacy concerns and administrative hurdles (Shivade C et al. 2021). However, innovative 

solutions such as image data enhancement and active learning by successively picking the 

most insightful instances for training can assist in minimizing the portion of training data 

required to obtain satisfactory performance (Wong SC et al. 2016, Kemp R et al. 2017). In 
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(Asperti A et al. 2018), for example, the annotated samples required to obtain an AUC of 

0.95 was lowered by 68% when active learning was paired with support vector machines to 

create an electronic phenotyping approach for rheumatoid arthritis. 

 

2.4.2 AI Algorithm in Healthcare Systems 

This article brings machine learning and data mining together for a joint discussion because 

both disciplines are based on data science and frequently cross (Lorbieski R et al. 2018). 

However, there are a few fundamental differences between data mining and machine 

learning. The study of methods that can extract information automatically is known as 

machine learning (Lorbieski R et al. 2018). Forecasting future events requires two sets of 

data (training data and test data). On the other hand, data mining is an iterative process of 

uncovering various types of novel and useful patterns in data.  

Data mining can employ machine learning, but it can also use other techniques besides or 

in addition to machine learning to identify new patterns. Machine learning and data mining 

technologies are employed mainly in the healthcare industry to extract knowledge from vast 

amounts of electronic health data. Machine learning and data mining approaches were 

included in the analysis in (Kavakiotis I et al. 2017) because they use similar mechanisms for 

disease prediction and are frequently discussed together in the literature. 

 

2.4.2.1 Supervised Algorithm 

 

2.4.2.1.1 Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) were first proposed by McCulloch and Pitts (McCulloch 

WS et al. 1943) and popularized in the 1980s by (Rumelhart DE et al. 1986). They can handle 

a range of categorization issues. The word "neutral" in their name implies brain-inspired 

systems designed to mimic how human brains learn categories. ANNs were created to mimic 

the way the human brain works, in which a vast number of neurons are coupled to one another 

via many axon junctions. Neuron connections can be strengthened or decreased by 

reinforcing labeled training data, just as they can be in biological learning. A weighted matrix 

can be used to represent these neuronal connections. This matrix is referred to as a layer, 



28 
 

 

similar to the cortical layers in the brain. The training data used in ANNs serves as a form of 

‘biological learning' for people. In an ANN framework, there can be one or more hidden 

layers in addition to the input and output layers. ANNs are taught to generate an output from 

a set of input variables.  

  Several ANN research focused on the survival prediction problem were found in the 

literature. However, a few research relying on electronic health data were found. 

Deep learning is a subfield of machine learning that deals with ANN-inspired algorithms 

(Schmidhuber J. et al. 2015). These algorithms have been utilized to model illness symptoms 

and hazards in recent years. Liu et al. (2014) created a deep learning-based technique for 

early identification of Alzheimer's disease and mild cognitive impairment in 2014. 

Neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative database was 

used.  

To get around the bottleneck, they used stacked auto-encoders. Cheng et al. (2016) 

suggested a method for phenotyping patient electronic health records (EHRs) using deep 

learning. Each patient's EHR was initially represented as a temporal matrix, with time on one 

axis and events on the other. The researchers built a four-layer convolution neural network 

(CNN) to extract phenotypes and forecast risk. (Zhang J et al. 2017) recently presented 

Heterogeneous Convolution Neural Network (HCNN), a new predictive learning model 

representing EHRs as graphs with heterogeneous properties such as diagnosis, procedures, 

and medicines. They used this information to create a new risk prediction model for 

numerous comorbid conditions. 

 

2.4.2.1.2 Support Vector Machine (SVM) 

SVM is a popular supervised learning approach for classifying linear and non-linear data. 

SVMs transform the input vector into a higher-dimensional feature space and find the 

hyperplane that divides the data points into two groups. An SVM may perform classification 

tasks by increasing the marginal distance between two classes while reducing classification 

errors. To determine the marginal distance for a given class, we must find the distance 

between the decision hyperplane and the closest instance of that class (Hossain ME et al. 

2021). In order to accomplish this, each data point is initially represented as a coordinate in 
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an n-dimensional space, where n is the number of features. The hyperplane that maximizes 

the distance between the two classes is then located to complete the classification process. 

This technique, which has been applied in bioinformatics and healthcare, involves identifying 

the optimal decision boundary for separating two classes of data points (Hossain ME et al. 

2021). 

 

2.4.2.1.3 Decision Tree Random Forest 

A decision tree (DT) is a sophisticated and deterministic data structure that looks like a 

tree, with internal nodes representing input variables or attributes and leaves representing 

decision outcomes. All nodes and their accompanying leaves are used to create a plan to 

attain a categorization goal. The leaves of a DT tree are on the last level of the relevant branch, 

and the nodes can be organized in more than one level. The root node is the tree's first node. 

It's similar to a flowchart in which each non-leaf symbolizes a test on a single property, each 

branch denotes the test's outcome, and each leaf indicates the class label. Many academics in 

the healthcare sector use decision trees extensively. For example, a decision tree-based 

prognostic approach was suggested to quantify disease recurrence and predict survival in 

breast cancer patients (Hossain ME et al. 2021). The model was developed for predicting 

breast cancer survival using two machine learning techniques (ANN and decision tree) and 

one statistical approach (logistic regression). They used the SEER breast cancer database, 

regarded as one of the few population-based data repositories for evaluating cancer care 

quality.  

Random forest (Hossain ME et al. 2021) is an ensemble classifier made up of many decision 

trees. Individual trees represent the output of the classes. Among the machine learning-based 

algorithms, it is one of the most accurate. The method in (Hossain ME et al. 2021) combines 

Breiman's "Bagging" idea and the random selection of features to create a collection of 

decision trees with a controlled variation. In (Kavakiotis I et al. 2017), researchers suggested 

a classifier based on the random forest algorithm to estimate illness risk among individuals. 

The Healthcare Cost and Utilization Project (HCUP) dataset was used in their research. The 

work in (Rallapalli S et al. 2017) have developed a diabetes risk prediction model using a 

scalable random forest classification algorithm based on administrative data. 
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2.4.2.2 Unsupervised Algorithm 

 

2.4.2.2.1 Association Analysis 

Association analysis has been frequently utilized in data mining and machine learning 

literature for prediction because it can extract hidden and relevant information from huge 

datasets (Hossain ME et al. 2021). This function generates a collection of dataset item 

association rules (Rallapalli S et al. 2017). Power of association is an implication statement 

with X → Y, where X and Y are disjoint item sets (i.e., X ∩ Y = Ø). It means that the 

existence of X things in current transactions may result in one or more Y items appearing in 

future transactions. As a result, association analysis has been widely utilized with market 

basket data to forecast retail sales behavior, where each object reflects a customer's purchase 

(Hossain ME et al. 2021).  

If an item is related to disease and the item set is specified as the patient's set of conditions 

until now, this method can be applied to the medical context to predict future disease risk.  

The Hierarchical Association Rule Model (HARM) was introduced in (McCormick T et 

al. 2011) to predict illness risk from medical data using association analysis and a Bayesian 

estimate. First, a set of association rules is developed utilizing association analysis methods 

in this modeling technique. Then, using Bayesian estimation, these association rules are 

ranked. HARM can anticipate a patient's likely future medical issues based on her previous 

and present history of reported ailments, assuming that each patient regularly consults 

healthcare professional. 

 

2.4.2.3 Network Approach 

A network can be represented as a graph, which is made up of nodes (also known as vertices 

or actors) and edges (also known as ties or links). Edges represent the relationships between 

things, while nodes represent the entities themselves. Many scientific problems can be 

represented as graphs and modeled as networks. Many graphs theory approaches and 

algorithms for analyzing various problems, including disease prediction in the healthcare 

area, can be found in the literature.  



31 
 

 

Many statistical and data mining methods for predicting disease risk from healthcare data 

do not explicitly take into account the link between diseases and symptoms. Chronic and non-

communicable diseases, on the other hand, do not arise in isolation (Hossain ME et al. 2021).  

They frequently share a risk factor, which might be genetic, environmental, or behavioral in 

nature.  

These risk factors have a synergistic influence on health outcomes, which makes it difficult 

to forecast if they are studied separately. A network method may be more applicable in this 

scenario. Statistical methods are also used in a network-based approach. Another comparable 

approach is Social Network Analysis (SNA), which is built on a solid theoretical foundation 

drawn from network and graph theories. SNA is the study of the pattern of relationships 

among network entities, such as a group of people, departments, or organizations, as the name 

suggests. If the elements in the dataset have a lot of relationships between them, SNA can be 

especially useful. In a healthcare setting, for example, clinicians frequently need to confer 

among themselves about a patient's illness diagnosis. Patients are additionally cared for by 

pharmacists, nurses, and medical technicians. As a result, the recordings of these dialogues 

are bound by a network structure. 

Each sort of entity participating in the healthcare data is represented as a node to describe 

the health care infrastructure as a social network. Edges linking the corresponding node pairs 

represent relationships between entities. SNA has been utilized to better analyze physician-

patient partnerships as well as collaborations throughout a hospital network. Uddin et al. 

(2015) suggested an SNA framework to analyze the process of collaboration (amongst 

physicians) and coordination (between hospitals).  

SNA was created with the intent of being utilized in the social sciences, but it is now 

frequently employed in medicine and public health. Each sort of entity participating in the 

healthcare data is represented as a node in the health care infrastructure's social network 

representation. Edges linking the corresponding node pairs are used to represent relationships 

between entities. SNA has been used to better understand physician-patient partnerships as 

well as hospital-to-hospital collaborations. Uddin et al. (2015) presented an SNA framework 

to describe the process of physician collaboration and coordination, for example (between 

hospitals). Their suggested framework looked at a patient-centric care coordination network, 
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a hospital-rehab coordination network, and a physician collaboration network, all using 

centrality theories. In the healthcare domain, for example, in obesity research, SNA is utilized 

to understand research trends and map knowledge structures (Uddin S et al. 2015, Khan A et 

al. 2016).  

Large population-level studies aimed at understanding the nature of comorbidities (Khan 

A et al. 2018) and forecasting the likelihood of comorbid chronic diseases have a lot of 

potential with electronic health data. (Khan A et al. 2016) established a novel strategy in 

which they used graph theory and social network analysis methodologies to analyze and 

comprehend chronic disease progression using electronic health data. Their main goal was to 

forecast the likelihood of developing a chronic disease in new patients by modeling the health 

trajectory of chronic disease patients. The data was gathered from hospital admission and 

discharge records. The diagnoses of the patients (in ICD-10 Australian Modification format), 

as well as several socio-demographic characteristics, were taken into account. They created 

a baseline network based on the diagnosis data to better comprehend and reflect the health 

trajectory of chronic disease patients. Later, to better understand the comorbidities associated 

with type 2 diabetes, this approach was expanded and used. They proposed the concept of a 

'comorbidity network,' which may be utilized to construct a model for predicting chronic 

illness risk (Khan A et al. 2019, Kang E et al. 2020). 

 

Table 2.1 Comparison of Different Types of Risk Prediction Models with Study Goals For 

Various Diseases. 

Risk 

iprediction 

imodel 

Diseases iName Goals Reference 

Artificial 

ineural 

inetwork i 
(Supervise

d) 

Multiple icancer 

idiseases 
Using iadministrative iand 

iregistry idata, ipropose ia 

imachine ilearning imodel 

ifor icancer isurvival 

iprediction. 

(Gupta iS iet ial. i2014) 

Pancreatic icancer Using ia iboosting imethod 

iand ihealthcare 

iadministrative idata, 

ipropose ia imodel ifor 

(Velez-Serrano iJF, i2017) 
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ipredicting iin-hospital 

imortality iafter ipancreatic 

iresection iin ipancreatic 

icancer ipatients. 
Acute icoronary 

isyndrome 
A isignificant ivolume iof 

iEHR idata iwas iused ito 

istratify iclinical irisk iand 

ideath ifor iindividuals iwith 

iacute icoronary isyndrome. 

(Huang iZ iae ial. i2018) 

Heart ifailure To ioffer ian iEHR-based 

iarchitecture ifor iheart 

ifailure iprediction ithat iis 

iboth ieffective iand 

ireliable. 

( iJin iB iet ial. i2018) 

Alzheimer’s 

idisease 
Develop ia ideep ilearning-
based iapproach ifor iearly 

idetection iof iAlzheimer's 

idisease iand iMild 

iCognitive iImpairment. 

(Liu iS iet ial. i2014) 

Generic Propose ia ideep ilearning 

imethod ifor iphenotyping 

ipatients' ielectronic ihealth 

irecords i(EHR) 

(Cheng iY iet ial. i2016) 

Multiple ichronic 

idiseases 
The igoal iis ito icreate ia inew 

irisk iprediction imodel ifor 

icomorbid idisorders. 

(Zhang iJ iet ial. i2017) 

 
 
 
 
 
 

Support 

ivector 

imachine 

i(Supervise
d) 

Breast icancer Using ia ihybrid iSVM 

imethod, ipropose ia 

ipredictive imodel ifor 

ibreast icancer idiagnosis. 

(Hossain iME iet ial. i2021) 

Cardiova
scular 

To icreate ia isystem ithat 

ianalyses iheart ivalve 

idisease iusing ia igenetic 

iSVM iclassifier. 

(Rallapalli iS iet ial. i2017) 

Cardiova
scular 

To icreate ia imodel ifor 

ipredicting iheart ifailure 

ipatients' i30-day 

ireadmission. 

(Uddin iS iet ial. i2015) 

Diabetes Using ia iscalable irandom 

iforest iclassification 

itechnique, icreate ia imodel 

ifor ipredicting idiabetes 

irisk. 

(Xu iW iet ial. i2017) 

Coronary 

iartery idisease 
Implement iand ianalyze ia 

iset iof isupervised ilearning 

(Forssen iH iet ial. i2017) 
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iapproaches ifor icoronary 

iartery idisease iprediction 

iin ia isystematic iway. 
Associatio
n ianalysis 

i(Unsuperv
ised) 

Multiple idiseases Using ielectronic 

ihealthcare idata, ioffer ia 

imethod ifor iforecasting 

idisease irisk iin ihealthcare 

iresearch. 

( iUddin iS iet ial. i2021) 

 
 
 
 
 

Network 

iApproach 

Generic To ioffer ia iSNA 

iframework ifor ianalyzing 

ithe iperformance iof 

iphysician icollaboration 

iand icoordination 

i(between ihospitals). 

(Uddin iS iet ial. i2015) 

Generic To idetermine ithe ihealth 

itrajectory iof ichronic 

idisease ipatients iand 

iestimate ithe iprobability iof 

inew idisease idevelopment. 

(Khan iA iet ial. i2016) 

Diabetes Using igraph itheory iand 

isocial inetwork ianalysis 

imethodologies iprovides ia 

iresearch iframework ifor 

iunderstanding iand 

ivisualizing ithe ievolution 

iof itype i2 idiabetes. 

(Wong iSC iet ial. i2016, iXu 

iW iet ial. i2017) 

 

Table 2.2 The Advantage and Disadvantages of Different Types of AI Algorithms in The 

Risk Prediction Model. 

Risk iPrediction iModel Advantage Disadvantage 

Artificial iNeural iNetwork 

i(ANN) 
- iWhen ithe irelationships 

ibetween ivariables iare 

inonlinear iand icomplicated, 

iit iis iappropriate ifor 

ipredicting ioutcomes. 
- iRequires iless iformal 

istatistical itraining, iand 

imany itraining itechniques 

ifor ithis imethodology iare 

iavailable iin ithe iliterature. 
- iCan ibe iused ito isolve iboth 

iclassification iand iregression 

iissues. 

- iIt iis ireferred iregarded ias ia 

i"black ibox" itechnology 

ibecause ithe iuser iis iunable ito 

isee ithe iexact idecision-making 

iprocess. 
- iTraining ithe inetwork ifor ia 

idifficult iclassification itask 

itakes ia ilong itime iwith ithis 

itechnique. 
- iPre-processing iof ipredictor 

ivariables iis irequired. 
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Support iVector iMachine 

i(SVM) 
- iIt iintroduces ithe ikernel, 

iwhich iallows ifor inon-linear 

itransformation. 
- iThe iability ito imanage ia 

ilarge inumber iof ifeature 

ispaces. 
- iIn iSVM, ithe irisk iof 

ioverfitting iis ilower. 
- iEven iunstructured iand 

isemi-structured idata, isuch 

ias iwords iand iphotos, iworks 

iwell. 

- iSVMs iwill inot iwork ias ia 

iclassifier iif ithe ipoints ion ithe 

iboundaries iare inot iinformative 

iowing ito inoise. 
- iLarger, imore icomplicated 

idatasets iwill itake ilonger ito 

itrain. 
- iThe ifinal imodel, ivariable 

iweights, iand iindividual iimpact 

iare idifficult ito iunderstand iand 

iinterpret. 

Decision iTree i(DT) - iEasy ito icomprehend iand 

iinterpret. 
- iRequires iminimal idata 

ipreparation iand ican ihandle ia 

ivariety iof idata iformats, 

iincluding inumeric, inominal, 

iand icategorical iinformation. 
- iIt iis icapable iof iproducing 

irobust iclassifiers ithat ican ibe 

ivalidated iusing istatistical 

itests. 

-Classes imust imutually iexclude 

ione ianother. 
- iThe ifinal idecision itree iis 

idetermined iby ithe iorder iin 

iwhich ivariables ior iattributes 

iare ichosen. 
- iThey idon't iperform ias iwell ias 

iother iclassifiers i(e.g., iArtificial 

iNeural iNetworks) i(Gupta iS iet 

ial. i2014) 
- iWhen ithe ineeded ivalue ifor ithe 

iancestor ivariable ior iattribute iis 

iabsent, iit iis iimpossible ito iselect 

iwhich ibranch ito ichoose. 
Random iForest - iWhen icompared ito 

idecision itrees, irandom 

iforest ihas ia ilesser ilikelihood 

iof ioverfitting itraining idata. 
- iProduce iless ivariance ithan 

idecision itrees isince ia 

irandom iforest itakes ithe 

iaverage ivalue iof iits 

iconstituent idecision itrees' 
iresults. 

- iRandom iforests iare ialmost 

ialways imore iaccurate ithan 

idecision itrees. 
- iIt iworks iwell iwith ihuge 

idatasets. 
- iIt ican iestimate iwhich 

ifactors ior iattributes iare imost 

iessential iin iclassification. 

- iThe inumber iof idecision itrees 

iin ithe irandom iforest imust ibe 

idefined. 
- iWhen iestimating ivariable 

iimportance, iit ifavors ivariables 

ior iqualities ithat ican itake ia ilarge 

inumber iof ialternative ivalues. 
- iOverfitting iis ia icommon 

ioccurrence. 
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Association iAnalysis - iWhen idiseases ihave ia ilot 

iof icomorbidities, iit ican 

iforecast irisk. 
- iIt ican imine imassive 

idatabases ifor iinteresting 

ihidden irelationships. 

- iThe imethods iutilized icontain 

ian iexcessive inumber iof 

iparameters. 
- iThe iderived irules imay ibe 

iexcessively icomplex iand 

idifficult ito icomprehend. 
Network iApproach - iIt ican imake iclinical 

idecision-making imore 

iefficient iand ieffective. 
- iIt ican idisclose ithe iintricate 

irelationships ithat iexist 

ibetween idiseases, ipatients, 

iand iclinicians. 

- iTraditional inetwork imodels 

ilack ithe ilongitudinal iand 

ispatial idimensions inecessary ito 

ipredict iillness irisks. 
- iWhen icompared ito isingle-

attribute inetworks, ihealthcare 

inetworks iare ifar imore icomplex.  
 

2.5 MANAGING EHR USING AI AND BLOCKCHAIN 

Machine learning can aid in the optimization of healthcare systems and the provision of 

intelligent services. How to safely store, exchange, and train sensitive datasets is a major 

difficulty for practical machine learning systems. Machine learning and blockchain are 

increasingly being combined to improve the security and privacy of datasets (Zheng X et al. 

2018 , Lee SH et al. 2018). 

Federated learning is a machine learning technique that is carried out over numerous 

computing nodes with the confidentiality and privacy of sensitive data protected throughout 

data sharing as a precondition. By exchanging encrypted datasets, different medical 

organizations can collaborate to create high-accuracy prediction models. To establish 

accountability and reliable cooperation, blockchain as a regulator can record associated 

training transactions in an immutable and transparent manner. Medical organizations and 

researchers will be more ready to share encrypted datasets to advance medical treatment and 

public health in this circumstance.  

The security of data input is ensured by blockchain as a dependable backbone for machine 

learning algorithms. The first challenge raised by (Yaji S et al. 2018) is the sharing of huge 

datasets across different applications and domains. In reality, however, homo-morphic 

encryption has a substantial computational expense. Perhaps sensitive data can be encrypted 

in the future without affecting machine learning for intelligent services.  

If the rate of erroneous predictions is high, blockchain can also be used to store rollback 

models. The pointers to essential data of retrained models are stored in a safe and immutable 
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manner on the blockchain. In the context of erratic arrhythmia alarm rate, (Juneja A and 

Marefat M, 1018) argued that retraining models indexed by pointers in the blockchain can 

improve accuracies for continuous remote systems.  

The application of AI in automating the creation of secure and adaptable smart contracts is 

another potential use case. The healthcare sector has seen a growing interest in blockchain 

technology in both academic research and industry, including startups (Ekblaw A et al. 2016, 

Yue X et al. 2016, Gem 2021, Beninger P and Ibara MA, 2016, Dubovitskaya A et al. 2017, 

Randall D 2017). In their paper, Wang Z and O'Boyle M claim the originality of using 

blockchain technology for managing electronic health records (EHRs), while presenting a 

proposal for securely exchanging EHRs with a user-friendly approach. However, the 

proposed system is still in its conceptual phase and has not been implemented or evaluated 

for its anticipated advancements. Ekblaw et al. (2016) developed a decentralized EHR 

management framework called MedRec using blockchain technology. The framework used 

a modular architecture and an existing data storage system for ease of use and flexibility. 

They enticed the medical community and EHR stakeholders to participate as miners in the 

network's Proof of Work (Kaye J et al. 2015) verification. Permission to view aggregated and 

anonymized data will be granted in exchange. In collaboration with the Harvard Medical 

School Teaching Hospital, they developed and tested the first working prototype. They 

suggested that future research focus on areas where miners can rank their preferences for data 

attributes (demographic, gender, age group, and so on) to allow precision medicine and 

targeted research.  

In (Dubovitskaya A et al. 2017), researchers built a prototype that differed greatly from the 

MedRec framework's permissionless mining. From a medical standpoint, they decided to 

create a closed, access-controlled blockchain EHR system.  

To store patient data, MedRec utilized local node storage, while cloud storage and access 

key transfers for encryption were implemented. The latest research has not fully explored the 

benefits of incorporating AI into blockchain-based EHR management systems in both 

permissionless and permissioned prototypes, as indicated by Randall D. (2017) and Rifi et 

al. (2017). 
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(Wang Z and O’Boyle M. 2018) provides an overview of how blockchain technology can 

be used to monitor health records and obtain meaningful results in drug tracking and 

development, treatment effectiveness, safe patient management, and enhanced clinical results 

when combined with healthcare and big data. On the other hand, (LeCun Y et al. 2015) 

discusses other critical aspects of an EHR such as complete reporting, quality assurance, 

monitoring of patient health-related expenses and billing details, and confidentiality. It 

highlights the current systems as slow, inflexible, and insecure. 

 The work in (Khan A et al. 2018) highlights the importance of patient records availability. 

Due to a lack of time and patience, important aspects of a patient's medical history are often 

overlooked. A patient's medical history can be extremely useful during care. Doctors, on the 

other hand, are largely unable to access this information because they lack the expertise, time, 

or desire to retrieve what they need from a patient's medical data repository. 

 

2.5.1 Methodology of the Literature Review 

In conducting this review, we follow SLR guidelines in (S. Keele et al.,2007) as well as the 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in (S. 

Keele et al. 2007). An SLR is a methodology for discovering, analyzing, and evaluating all 

recent literature on a research topic or subject field. 

In December 2021, all review papers were chosen by searching for relevant and reliable 

academic repositories such as Google Scholar, IEEE, ACM, Science Open, Science Direct, 

Springer, Hindawi, Wiley Online Library, and MDPI. 
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Figure 2.5 Number of articles according to publishers. 

 

2.5.2 Research Questions 

The goal of this systematic review paper was to provide answers to the following research 

questions: 

1) To what extent has the blockchain been developed for the management of EHRs, and 

how has it evolved over time? 

2) What standards are used to store EHRs in the blockchain? 

3)  How large amounts of EHR data are handled? 

4) What blockchain platforms/mechanisms are used to manage EHRs? 

 

2.5.3 Filtering the literature of the study 

After reviewing papers from various categories, selected papers are presented in this portion. 

As indicated in Section 2.5.2, the article selection query was intentionally extensive to 

evaluate as many research issues as feasible. 
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Figure 2.6 PRISMA Chart. 

 

Selected papers are presented in this segment after screening from various categories. The 

selection query for the articles was purposely long enough to consider as many research 

questions as possible, as described in 2.5.2. Using the searching mechanism, we were able to 

retrieve 1280 research articles from the scientific repositories, as shown in Figure. 6. After 

the first screening step, we removed duplicates and retrieved 159 papers. Using the second 

and third screening methods (here, exclusion was based on title and abstract), a total of 32 

articles were deleted accordingly, leaving 127 papers for further processing. We uploaded 

the remaining papers to the Mendeley software for thorough reading. Finally, all articles that 

did not serve the purpose of the SLR were deducted, and a total of 113 articles were there. 

The second analysis we ran, as part of our systematic investigation, was to determine the 

purpose or field of blockchain application in the healthcare industry. As indicated in Table 

III, the majority of publications in the field of healthcare use blockchain for data interchange, 

health data records, and access control. A large number of applications of blockchain 
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technology in healthcare (for example, data sharing and access control) are frequently 

mentioned by authors, which is understandable given that the blockchain technology itself 

implies specific applications—for example. Essentially, distributed technologies such as 

blockchain technology are to be used for data sharing, so, understandably, this field of 

research would be frequently mentioned.  

 
Table 2.3  Contributions in the publications  

Contributions  Number of Publication  
distributive mechanism  22  

Access control  5  
decision-making process  3  
Increase interoperability 2 

 
 
  
Table 2.4 Contributions in the publications  

 iField i Number iof iPublications i 
Data isharing i 20 i 
Health irecord i 18 i 
AI imethods i 3 i 

Data iSecurity 4 
Data iAnalytics 3 

Other i 10 i 
 

Table 2.4 shows the additional analysis for the selected papers. The table compares papers 

based on five key characteristics. 

These characteristics are critical for EHRs. The following properties are discussed further 

below: 

 

1) Privacy 

The concept of privacy refers to a person's right to select when, how, and to what extent they 

can access, change, and share their own EHRs. (I. Keshta and A. Odeh, 2021). A healthcare 

provider may purposefully or unintentionally misuse electronic health records (EHRs) to 

violate patients' privacy, for example (M. Cifuentes et al. 2015). Many patients are concerned 

about their electronic health records (EHRs), according to the study article (K. T. Win, 2005). 
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About half of those polled (J. S. Ancker et al. 2013) thought that sharing health data would 

make it more difficult to protect their personal information. As a result, when comparing 

blockchain-based solutions that claim to protect EHRs' privacy, privacy is an important 

consideration. 

 

2) Security 

EHR security, on the other hand, refers to the extent to which an individual's electronic health 

records (EHRs) are confined to authorized individuals. According to (G. Perera et al. 2011), 

about half of patients are concerned about the security of their EHRs because they must travel 

via the Internet. 

EHR security is more important to a doctor than to patients, according to (S. B. Wikina , 

2014), and the majority of doctors prefer paper records over EHRs because they believe the 

former are safer. Because doctors use digital health records, they are more vulnerable to 

security breaches than paper-based records (C. S. Kruse et al. 2017). Liu et al. in (V. Liu et 

al. 2015) advised that ways of securing EHRs should be thoroughly studied first. These 

aspects indicate that the security of EHRs should be seriously considered. 

 

3) Accessibility 

Controlling and managing access to crucial or sensitive data is an essential part of 

accessibility. Access to data can be restricted using this method. (B. Yüksel et al. 2017) Role-

based, attribute-based and identity-based access control are some of the most common 

strategies for healthcare systems. Because EHRs deal with sensitive patient health data, 

access management is a critical consideration. 

 

4) Storability 

In recent years, the scalability of blockchain technology has become a challenge. Bitcoin's 

first block had a storage limit of just 1MB when (S. Nakamoto, 2008) first began mining the 

cryptocurrency's network. But since then, the popularity of the blockchain has increased, as 

well as the number of participants and blocks. To understand and validate a transaction, a 

participant must download all of the chains, which consumes a significant amount of memory 
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and time. On the other hand, conventional blockchain applications have two ways to deal 

with scalability issues: on-chain and off-chain. Every piece of data that a user uploads will 

be stored directly on the blockchain. However, off-chain storage means that the true data is 

held someplace else, but is still linked to the main chain. Off-chain storage, on the other hand, 

provides less robust security. To store EHRs on-chain, a substantial amount of storage 

capacity is needed. To keep data safe and secure, it is important to consider storing 

information outside of the blockchain. 

 

Table 2.5 Research Comparison Used Blockchain and Ai Based Approaches To Secure EHR 

Systems. 

Ref Objective Pros Cons 

(Yue iX iet 

ial. i2016) 

Discovering ihealthcare 

iintelligence ifocused ion 

ithe iblockchain iwith 

iprivacy 

Patient-controlled 

idocuments. 

Illustration ifor 

iconcept ionly. 

(Zhang iJ 

iet ial. 

i2016) 

For ian iextensive inetwork 

ito iestablish ia isafe ihealth 

isystem. 

Sharing ithe inetwork iload. No ischemes imature 

(Xia iQ iet 

ial. i2017) 

To idesign ihealth isharing 

ibased ion iblockchain iwith 

icloud-based iservices 

Mechanism ifor iAccess 

imanagement 

Scalability, icore 

ileadership 

(Liang iX 

iet ial. 

i2018) 

Usage iof iblockchain ito 

iexchange ihealth 

iinformation iand 

icommunicate iwith 

imobile ihealth iusers 

Secure iMerkle iroot itree 

ifor icollaboration ion 

itransactions, idata isharing, 

iand ihealthcare. 

The iinteroperability 

(Jiang iS iet 

ial. i2018) 

To ibuild ia imedical idata 

iexchange iblockchain-

based iframework. 

Joins ithe iapproach ito 

isafety iand iauthenticity iof 

ioff-chain istorage iand ion-

chain iverification. 

Performance iand 

ifairness iof ithe 

isystem, iand 
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idynamic iregulation 

iof iaccess. 
 

(Li iH iet ial. 

i2018) 

Examination iof idata 

isecurity isystems iin 

irelation ito ihealth idata 

Immutable, imemory 

imanagement iand 

icryptographic ialgorithms 

ihelp ito ihandle ileaked 

iinformation 

Easily ilose ipaper-

based irecords, islow 

ipace, ilow imemory. 

(Fan iK iet 

ial. i2018) 

To istrengthen ithe 

iexchange iof ieffective iand 

isafe ihealth iinformation 

iwith ia iblockchain 

inetwork. 

Management iand 

iexchanging irecords ifrom 

iEMR isystems, iand 

imethod iof iaccess. 

The igreater 

icomputing icapacity 

iof iminers 

icontributes ito ithe 

idownstream 

imethod. 

(Wang iH 

iet ial. 

i2018) 

To iprovide ithe icloud-

based isupport iof 

iattribute-based 

icryptosystem iand 

iblockchain ito ia iprotected 

iEHR isystem. 

Identity-based iencryption 

iguarantees iconfidentiality 

iand itraceability ito iencrypt 

idatabases. 

Deployment iis inot 

icomplete iyet. 

(Guo iR iet 

ial. i2018) 

To ipropose ia istable iABE 

ischeme iwith imultiple 

iblockchain iauthorities iin 

iEHRs 

Immutability iof ithe iledger 

iof iinformation 

Interoperability, 

iconfidentiality 

(Uddin 

iMA iet ial. 

i2018) 

To idiscuss icontinuous 

imonitoring iof ipatients 

iwith ia ipatient-centered 

iagent. 

Lightweight iencryption 

iand iauthentication, 

itamper-proof, iand isingle 

ipoint iof ifailure idefense. 

Delay iEnd-to-End. 

(Sun iY iet 

ial. i2018) 

To isuggest ia iblockchain-

based idecentralized 

Large-scale iand 

idistributed iEHR, 

Certificates 

iattribute, istorage 

ispace 
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iattribute-based isignature 

ifor ihealthcare. 

ianonymity, iand istable 

iverifiable isharing 

Non-rebatement. 

(Zhang iX 

iand 

iPoslad iS., 

i2018) 

To ipropose iaccess 

ipolicies ifor iblockchain-

based iEMR-based 

isystems. 

Finer iregulation iof 

igranular 

Proven itheoretically. 

(Yang iG 

iand iLi iC, 

i2018) 

To ibuild ia iblockchain-

based isecure iEHR 

iarchitecture. 

Model ifor iSafe irecords. Implementation. 

(Thakkar 

iP iet ial. 

i2018) 

To iassess ithe iefficiency 

iand ioptimization iof 

iblockchain iplatforms 

Ability ito isimulate 

inetwork iefficiency 

Scalability 

(Sukhwani 

iH iet ial. 

i2017) 

For ithe icreation iof ia 

iblockchain inetwork 

idependent ion ipermission. 

Defined iblockchain 

iintegrity ipermission. 

Scalability 

(Thakkar 

iP iand 

iNatarajan 

iS., i2020) 

Using ifabric ito iscale ia 

iblockchain inetwork 

Demonstrable inetwork 

iblockchain ifunctionality. 

It ineeds iincreased 

icomputing ipower. 

(Chen iL iet 

ial. i2019) 

Using iblockchain ito 

idesign isearchable 

iencryption ifor iEHR. 

Analysis iof iprotection 

iwith ia isearchable 

ialgorithm ifor iencryption 

Scalability 

(Nguyen 

iDC iet ial. 

i2021) 

using iFederated iLearning 

i(FL) ifor ismart ihealthcare 

coordinating ivarious 

icustomers, isuch ias 

ihospitals,.. ietc, 

iemploying ia idistributed 

icollaborative iAI 

iparadigm iis ivery 

Implementation 
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iappealing ifor ismart 

ihealthcare. 

 

2.5.4 Inclusion and Exclusion Criterion 

The authors selected a clear finding centered on the new technological implications of 

technology and applications for the development by incorporating AI and blockchain into 

existing health data management systems. Only those studies meeting the first requirements, 

which must be updated and published in English, should be selected. The findings received 

from all electronic databases are evaluated based on the developed parameters, and the papers 

for this systematic literature review are selected from the aforementioned databases. 

The criteria of inclusion and exclusion studies have been defined in the following: 

 

Table 2.6 Inclusion And Exclusion Criterion. 

Exclusion Inclusion 

 

EC 1: Review papers that are based 

on secondary data or are irrelevant to 

the targeted domain. 

EC 2: Studies published in the 

magazine, discussion, and interviews. 

EC 3: Studies not published in 

English 

 

IC 1: Original research study. 

IC 2: Publication related to the topics of AI-

blockchain in healthcare data management 

system. 

IC3: The study provides ample and strongly 

correlating research findings in the domain of 

healthcare data management. 

IC4: The publication year for the study should 

be between 2016 and 2021. 

 

2.5.5 Privacy and Security Issues 

After reviewing the literature for information extraction, we should answer the following 

pressing questions. 

Q1: How does blockchain ensure privacy by utilizing anonymity? 
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We see varying degrees of privacy and anonymity (Tzanou, M., 2017) depending on the 

implementation type of the blockchain: public, private, or licensed. According to (Ahmed 

and A., 2019), CORDA (Hoepman and J.H., 2014) protects the transaction's privacy by 

requiring validation to be performed only by the persons participating in the transaction. In 

the field of Industry 4.0, we discover the blockchain-based Secure Mutual Authentication 

System (BSeIn) (Lieshout et al. 2011), which aims to provide privacy and security assurances 

such as anonymous authentication, audit capabilities, and secrecy. It demonstrates the 

scalability enabled by Smart Contracts. They enable privacy via the various consensus 

methods employed in blockchain (Appari et al. 2010). In other instances, anonymity is used 

in (O’Keefe et al. 2010). While the work in (Cavoukian and A., 2020) emphasizes conditional 

privacy, it considers traceability of operations important in the event of a public audit by all 

entities participating in the blockchain. 

The first references we found to anonymization were through pseudonymization (Tzanou 

and M., 2017), which is the process of obliterating some of the information required to 

identify an entity. Although they assert in (Sweeney and L., 2005, Vicotia 2018, Skinneret 

al. 2004) that blockchain does not guarantee completely anonymous transactions and that 

transactions can be traced using a pseudonym. In The studies of (2019) state that distributed 

consensus and anonymity are two critical characteristics of blockchain. Cryptography is 

critical for ensuring the anonymity of participants on the blockchain, with various levels of 

anonymity achievable depending on the cryptographic methods utilized. Pseudonymization 

is one method of implementing blockchain technology (Tzanou and M. 2017, Skinner. 2004, 

Victoria. 2018, Spiekermann et al. 2009). A mechanism in which the identity of the sender is 

frequently concealed behind a public key, but other transaction characteristics are made 

public. This presents a difficulty for health data. One option to limit public exposure is to 

utilize approved blockchain technology. One way to safeguard sensitive data is to implement 

an out-of-chain solution (Tzanou and M. 2017, Gkoulalas-Divanis et al. 2015). The approach 

entails locating sensitive data in a system other than the blockchain and anchoring it to the 

blockchain's link. This technique is advantageous for systems that manage enormous 

amounts of data, and it would be impractical to incorporate these data into the blockchain 
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structure. Additionally, it is recommended for systems that handle highly sensitive data and 

require greater access control, such as health data. 

In order to ensure trust and privacy in vehicular communication networks, there is a need 

for a mechanism that can protect cars from forgeries while also ensuring privacy from 

surveillance threats. To address this issue, (Dang et al. 2019) proposes a Blockchain-Based 

Anonymous Reputation System (BARS) that establishes a trust model while preserving the 

privacy of Vehicular Ad Hoc Networks (VANETs) by using a public key as a pseudonym 

for anonymous communication. The system aims to prevent the propagation of false 

messages by using a reputation evaluation algorithm to assess the quality of messages. On 

the other hand, it exploits the properties of a lexicographical Merkle and eliminates the 

chance of the public key being linked to the real identity. Such system can be replicated for 

EHR privacy handling too by taking advantage of the features used. 

To accomplish anonymization, the approach presented in (Lieshout et al. 2011) (BSeIn) uses 

broadcast encryption and multi-receiver encryption to ensure safe communication between 

an entity and a collection of previously designated receivers. Additionally, it ensures the 

confidentiality and anonymity of messages between recipients. It produces one public/private 

key pair at a time for each transaction, allowing it to withstand replay assaults efficiently. 

Thus, the system can also be replicated for HER to guarantee the user's privacy without 

jeopardizing it. 

Privacy by design (PbD) Privacy by design (PbD) refers to a set of procedures designed 

to ensure the highest level of privacy and data protection throughout the development of 

various products, services, and processes. PbD integrates privacy and data security 

considerations into the development process, from start to finish, for sensitive information 

like healthcare data. The concept of PbD was introduced by Ann Cavoukian in the mid-

1990s, and since then, it has been accredited by data protection specialists and regulatory 

authorities (Dang et al. 2019, Iachello et al. 2007, Victorian Information3 2019, Cavoukian 

et al. 2012, Cavoukian et al. 1996).  

In 2010, at the International Conference of Data Protection and Privacy Commissioners 

held in Jerusalem, Privacy by Design (PbD) was adopted as an international standard for 

privacy (Spitzer et al. 2019). PbD has also been recognized by the Commercial Privacy Bill 
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of Rights Act in the United States and included in the General Data Protection Regulation 

(GDPR) in the European Union. Furthermore, PbD has been acknowledged by data 

protection commissioners globally as a crucial concept to ensure sufficient privacy protection 

in a world where information technology systems can gather and process vast amounts of 

data (Donnelly and C., 2019). EHR can definitely benefit from PbD implementation in order 

to ensure inherent data protection and privacy features throughout the designed system levels. 

The strategies for privacy by design are classified into two categories: 

 

A. Data-Driven Approaches 

1- Keep it simple: Minimize is the simplest privacy design technique, suggesting that just 

the barest minimum of personal data should be processed. In (Gürses et al. 2011) describe 

this method in detail. As a result, it is critical to avoid collecting unneeded data; hence, the 

probable influence on a system's privacy is minimal. 

-Design patterns: "choose before you collect" (Jacobs and B. 2005) and the usage of 

pseudonyms and anonymization (Pfitzmann et al. 2010) are examples of design patterns that 

put this technique into effect. 

2. Hide: This method emphasizes the need of keeping personal information and its 

interrelationships hidden from plain view. The idea for this method is based on the fact that 

hiding personal data prevents a variety of abuses (ISO/IEC 29100, 2011). 

-Design patterns: Within the confines of the "hide strategy", design patterns take on a 

variety of forms. One such pattern is data encryption (in transit or at rest, anonymization or 

pseudonymization), which refers to strategies that disentangle certain related events. Data 

encryption is a type of security that encrypts data so that it may be accessed only with the 

correct encryption key. It converts data to another format and hence requires a decryption 

key to retrieve the data (Pfitzmann et al. 2010). 

3. Separate: This technique stipulates that personal data should be stored in distinct 

partitions and, if possible, spread out. By segregating the storage and processing of personal 

information from a variety of sources associated with the same person, an individual's 

complete profile cannot be derived (Warren et al. 1990). This technique necessitates a 
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distributed processing solution rather than a centralized one. Data from multiple sources 

should be stored independently and separately. 

- Design patterns: No specific design pattern for this strategy has been identified to date 

(Hoepman et al. 2014). 

4. Aggregate: According to this technique, personal data should be managed with the 

fewest feasible details and at the highest level of aggregate possible. As a result, this data 

becomes less sensitive. When the data is sufficiently uneven, the group over which it is 

aggregated is large, and only a small quantity of data can be ascribed to a single individual, 

resulting in privacy protection (Hoepman et al. 2014). 

- Design patterns: There are two common strategies used. “Granularity of location” design 

pattern that changes dynamically enables the collection and delivery of data to be as efficient 

as possible (J.H ,2014). “K-anonymity” design pattern, on the other hand, is a critical model 

for privacy protection since it protects against joint attacks. It is a dataset characteristic that 

is used to describe the dataset's degree of anonymity (Sweeney and L., 2002). 

 

 

B. Process-Oriented Approaches 

1. inform: This technique embodies the critical concept of transparency. If personal data is 

processed, data subjects' information should be kept current. When a user interacts with a 

system, they should be appropriately informed about the data that is processed and why it is 

processed. This includes information on the mechanism used to protect the data in question 

and transparency regarding the system's security (Hoepman et al. 2014). 

-Design patterns: Both platforms for privacy preferences and notifications of data violation 

are examples of this type of design pattern. The work in (Graf et al. 2010) presented an 

unusual array of privacy design patterns intended to educate the user from the perspective of 

human-computer interaction. 

2. Control: This technique is a necessary complement to the “inform strategy”. It serves 

little purpose to tell the user that personal data is being gathered unless the user has a realistic 

means of limiting the use of his data (Deng et al. 2010). Users frequently have the right to 

access, amend, and request deletion of personal data gathered under data protection 
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regulations. This technique accentuates this point and enables users to exercise their data 

protection rights (Hoepman et al. 2014). 

-Design patterns: There are no specific design patterns that fit the strategy (Hoepman et al. 

2014). 

3. Implement: This technique ensures that the system operates in a manner that respects 

user privacy. More significantly, the policy must be implemented. To ensure that the privacy 

policy is not violated, adequate technical protection measures are developed. Additionally, 

the policy must be formed through an effective governance system (J.H ,2014). 

-Design patterns: This method is carried out using design patterns such as access control 

and privacy rights management, and license to personal data, which includes the form for 

managing digital rights (Hoepman et al. 2014). 

4. Exhibit: This approach establishes the relationship between a data controller and the 

monitoring of compliance with privacy policies and applicable regulations.  In the event of 

issues, the user should promptly be able to determine the amount of any potential privacy 

infringement. 

-Design patterns: Examples of design patterns that support this strategy include the usage 

of logging and auditing, as well as a privacy management system (Graf et al. 2010). 

Q2: What are the drawbacks of using blockchain to comply with the GDPR? 

There are several practical challenges and obstacles associated with the implementation of 

blockchain technology in the healthcare industry, which include ensuring compliance with 

GDPR regulations. Compliance with an individual's right to be forgotten is one such 

challenge. When a transaction is authenticated on the blockchain, it becomes permanent, and 

information about a patient cannot be deleted if the patient exercises his right to be forgotten. 

This limitation may compromise the patient's privacy and right to control their data (Tzanou 

and M., 2017, OECD. 2019). 

Although the identity associated with the transaction introduced into the blockchain is 

anonymized, the remainder of the transaction's information is accessible. This feature enables 

auditing of the entire blockchain when necessary, which may result in the exposure of 

sensitive information such as EHR, and ultimately the determination of the transaction's 
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identity (Gkoulalas-Divanis et al. 2015, Fernández-Alemán et al. 2013, Cavoukian et al. 

2020). 

Q3. How were the arisen issues resolved? 

Depending on how blockchain is implemented, various privacy concerns may occur, making 

it easy to track an entity's transactions. A notable example is given in (Tzanou and M. 2017), 

where an entity's public key corresponds to its identity in the blockchain system, allowing for 

the discovery of all transactions linked with that public key. This scenario would be 

catastrophic in a public blockchain and might also present an issue in a private blockchain, 

as not all members may require access to transaction data. The case in (Tzanou and M. 2017) 

refers to specific blockchain implementations that enable selective publication of private 

information and rely on zero-knowledge cryptography for verification. How to apply the 

GDPR-mandated right to be forgotten for a patient's data is one of the disadvantages 

demonstrated when implementing blockchain in the health area. Among the downsides of 

blockchain technology are the costs involved with authenticating connected data, auditing 

different entities and transactions, and the cost of interoperability provided to the network of 

participants. The pseudonym does not ensure transaction privacy, and it is even feasible to 

de-anonymize a user's identity through analysis of incoming and outgoing transactions. 

 

Privacy by Blockchain Design (PbBD): Privacy by Blockchain Design develops on data 

privacy solutions for the disruptive and rapidly growing new tech ecosystem. Blockchains 

can not only be GDPR-compliant, but they can also help raise data protection levels and truly 

give back data ownership to individual patients or their legal guardians (e.g., family members 

or the state), by establishing general principles and methods for handling personal data in 

blockchain ecosystems. PbBD specifies technical and organizational measures for data 

protection while taking into account the principle of "privacy by design" as well as 

specifications that are inspired by legal frameworks, such as GDPR. As such, the Blockchain 

as a great tool for privacy and want to encourage the industry to take the lead in this area. 

2.6 TAXONOMY OF AI-BLOCKCHAIN 

2.6.1 Decentralized Applications 
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AI applications are self-contained and execute intelligent decisions by making use of a range 

of strategizing, discovery, improvement, training, pattern recognition, and information 

management methodologies. Decentralizing AI activities, on the other hand, is a tough and 

time-consuming task. 

 

2.6.1.1 AUTONOMOUS COMPUTING 

One of the primaries aims of AI applications is to facilitate the complete or partial 

autonomous process. This is achieved when a large number of intelligent agents in the form 

of small size computer programs identify their component ecosystems, sustain their internal 

environments, and conduct set actions to produce a response (Ye D and Zhang M, 2016). 

Modern computer systems must be able to handle tremendous heterogeneity across all 

verticals to operate autonomously, which often includes datasets, instruments, data 

processing, storage services, and application linkages, to name a few. Not only the usage 

of a multiagent approach across all layers makes it more convenient to deal with 

heterogeneity, but it also enables the easier establishment of the inter-and intra-layer 

functionality across the whole systems (Rizk Y et al. 2018). By ensuring operational 

decentralization and retaining perpetual records of interactions between the data, users, 

devices, apps, and systems, the blockchain architecture is significant in developing wholly 

decentralized autonomous systems. 
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Figure 2.7 Taxonomy AI- Blockchain 
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2.6.1.2 Optimization 

Among the primary characteristics of AI-enabled apps and schemes is the discovery of a 

collection of optimum solutions from all available alternatives (Fioretto F and Pontelli E, 

2018). Mod-ern AI applications and systems can be found in ubiquitous computing such as 

edge computing systems, infrastructure-restrained environments in mobile devices, 

spatially confined ecosystems such as wireless local area networks and personal area 

networks, and centralized enormous parallel computing systems distribution as applied in 

cloud computing (Rehman M ur and Liew C et al. 2017, Rehman M ur and Batool A et al. 

2017). The optimization algorithms operate in confined or unconstrained environments 

based on application- and system-level objectives (Rehman M ur and Batool A et al. 2017). 

These strategies facilitate the discovery of the most suitable solutions in identifying the 

pertinent data sources in pervasive environments, the best cloud or edge servers for 

processing the data and application, as well as in allowing resource-efficient information 

management in extensive distribution of computing settings. 

The optimization process at present is implemented by centralizing control and taking into 

account system-wide and application-wide enhancement objectives, causing unnecessary 

and irrelevant management of data and poor performance of the system or the application 

itself (Bottou L et al. 2018). The application of blockchain enables decentralized 

optimization methodologies to bring up new research and development possibilities. By 

analyzing highly applicable data, the decentralized optimization techniques are 

advantageous in terms of improving system performance, particularly when numerous 

techniques are executed concurrently across the systems and applications. 

 

2.6.1.3  Planning 

AI apps and systems use planning approaches to collaborate with other systems and 

applications, as well as to solve complex problems in new situations. Planning strategies 

improve the operational efficiency and resilience of AI systems by gathering current input 

conditions and performing different logic and rule-based algorithms to achieve preset goals 

(Contreras-Cruz M et al. 2017). Currently, centralized planning is a laborious and time-
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consuming activity. Consequently, decentralized AI planning techniques based on 

blockchain are required to provide a higher degree of robustness with provenance history 

and continuous monitoring. It is worth noting that the blockchain ecosystem can also be 

used to create immutable and critical blueprints for task-essential systems and relevant 

applications. 

2.6.1.4 Learning 

Learning algorithms, with models such as unsupervised, semi-supervised, supervised, 

reinforcement, transfer, ensemble, and deep learning, remain to be the heart of AI systems 

in facilitating knowledge discovery and autonomous processes. These learning models 

tackle a wide range of machine learning issues, from classification to clustering, besides 

regression analysis to frequent pattern mining. Traditional learning models are taught and 

released by utilizing centralized infrastructure to achieve global intelligence. 

Dispersed learning models can help in the construction of highly propagated and automated 

learning systems in contemporary AI systems, allowing for the complete co-ordination of 

local intelligence across all verticals (Kurtulmus AB et al. 2018, Kim H et al. 2019). 

Furthermore, by maintaining data provenance and history, the blockchain enables 

irreversible and highly secure configuration of learning models. Because smart contracts 

are irrevocable, learning models must be extensively trained and evaluated before they can 

be implemented on the blockchain. 

 

2.6.2 Decentralized Operation 

Large volumes of data are typically handled by AI applications to make superior and more 

versatile decisions. However, when it comes to designing highly secure and privacy-

preserving AI systems, centralized data retention via clouds, data centers and clusters 

presents a significant challenge. In other cases, learning model development and deployment 

might also be arduous. 
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2.6.2.1 Storage 

A centralized data server raises the issue of vulnerability in terms of privacy and security 

concerning the users’ personal and sensitive data, such as financial information, health 

records, whereabouts, and activities. Furthermore, as AI applications attempt to analyze, 

transform, and store massive information, wide-scale data collection would reveal the 

centralized infrastructure's scalability and capacity constraints. Blockchain-based 

decentralized storage architecture enables reliable cryptographic data storage across 

collaborating networks (Mcconaghy T et al. 2016, Shafagh H et al. 2017, Cui S et al. 2018). 

To maintain data availability for desired clients consisting of an application, user, or a node 

on the blockchain, every node in the system maintains a client-centric openly secured 

version of the whole library, which the clients can harvest and utilize their data as needed. 

The key technologies for decentralized storage are sharding and swarming (Cui S et al. 

2021, Zamani M and Movahedi M. 2018, Rıfat¨ozyılmaz K et al. 2018). Sharding is a 

technique of dividing a database into logical parts and assigning each one a unique key to 

be accessed. The shards are then grouped, with the accumulated storage is supported by a 

swarm of network nodes. In AI applications, the swarms reduce latency by allowing 

numerous nodes in the network to access data simultaneously. In addition, geographically 

dispersed multiparty decentralized storage systems would improve storage scalability and 

dependability. 

 

2.6.2.2  Data Management 

AI applications must manage data in such a way that is highly applicable and precise, with 

full datasets obtained from credible data sources, along with effective decentralized storage. 

In the underlying network, AI applications traditionally have used centralized data 

management techniques operated across all nodes (Vo H et al. 2018). These strategies 

include but are not limited to, data segmentation, filtration, context-aware storage systems 

and transmission in underlying architecture, as well as temporal and intelligent 

management of data systems. When considering decentralized storage networks and 

blockchain immutability requirements, inefficient centralized data management may arise, 
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resulting not only in data redundancy in terms of small modifications but also in the transfer 

of comparable information several times. In the event of large datasets is being utilized, the 

massive size of data transfer would cause bandwidth to overload quickly and raise the issue 

of backhaul network traffic, thus, necessitating decentralized data processing for AI 

systems based on blockchain structure. By taking into account the data's temporal and 

spatial features, decentralized data infra-structure strategies are intended for application at 

the network node level. Furthermore, decentralized data management systems may place 

metadata on the blockchain network to assure data security and provenance while the 

conventional large-capacity storage solutions, including cloud clusters and data centers, 

might be utilized to store actual data. For client-centric small datasets, the metadata and 

real data are maintained on the blockchain, with the management of data being done 

through the network via token-based incentives for nodes carrying various shards or 

participants in swarms. 

 

2.6.2.3 Deployment 

A trained model's true performance is evaluated after the distribution in production settings. 

Model deployment, on the other hand, is a regular and repetitive process as the developers 

must constantly improve the models and rectify bias by generating a certain set of findings 

while disregarding the rest of the options to provide particularly useful and educated 

judgments. Model deployment is considered a simple iterative process in centralized 

systems. In decentralized systems, however, poses quite a challenge (Lai L and Suda N. 

2018). Intelligent contract-based model deployment overcomes these difficulties by 

constantly logging changes and preserving unchangeable model versioning. Furthermore, 

a model collaboration between various AI applications would be safer and more reliable 

since developers can monitor the origin and traces of a specific model version. 

2.6.3 Blockchain Types for AI Application 

The two types of blockchain technologies consist of Permission and Permissionless 

structures. For the Permission type, only authorized users would be able to handle the 

blockchain applications in a consortium, cloud-based, or private environment, while it is 

openly usable for all users over the Internet for the Permissionless type. 
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2.6.3.1 Public 

Users may retrieve the blockchain codes and save them to their terminal for editing and 

utilizing based on their needs using the public blockchains (NN-A at S. 2017, GW-E. 2014). 

To add to this effect, public blockchains can be easily accessed and available to all network 

participants, particularly for read and write operations. Because of this feature, blockchains 

employ complicated security and consensus methods, as well as anonymity and bogus data 

on the network to handle user credentials and private transactions. For any public 

blockchain, innate tokens such as valuable pointers and cryptocurrencies are used to move 

assets and data. Due to its huge decentralization and transparency, public blockchains are 

extensively used, even though the users and validators are constantly being anonymous. It 

was worth noting that due to the obscurity, hostile security assaults such as significant data 

and value theft on these blockchains are always a possibility. 

To reach a consensus, public blockchains would require 51 percent validators at the very 

least and would perform complicated mathematic works in the background to attempt 

cracking the security codes, which often results in high energy expenditure and the issue of 

vulnerability if the attackers obtain control on the 51 percent shares on the network. This 

might also be the reason for the higher transaction approval times on public blockchains as 

compared to the consortium and private blockchains. 

On a public blockchain, a transaction is often approved in 10 minutes or above, depending 

on the number of network users and the mathematical complexity of the consensus 

algorithms used. 

 

2.6.3.2 Private 

A single organization manages a private blockchain, which is structured as a Permission 

system so that the acknowledged users and participants would be pre-authorized for read 

and write activities within the network (Dinh TTA et al. 2017). Since the credentials of pre-

approved network participants and validators are known, private blockchains are 

comparably faster than public blockchain as it requires fewer mathematical operations for 

transaction validation purposes on the network. In addition, within the network, private 
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blockchains can broadcast any type of indigenous assets, data, and values. Voting or 

multiparty consensus algorithms are used to approve transactions and asset transfers, which 

require minuscule energy consumption, allowing for a quick transaction process. For 

example, on private blockchains, transaction approval times typically take less than one 

second. 

 

2.6.3.3 Blockchain-As-A-Service 

Due to widespread usage and approval by governments and large corporations, blockchain 

technologies are drawing the attention of cloud service vendors. Customers of major cloud 

suppliers such as Microsoft, Amazon, and IBM can now create and experiment with 

blockchain services in their environments (Lai L and Suda N. 2018). 

The emergence of BaaS is projected to benefit both consortium and private blockchain 

firms by allowing them to concentrate on creating value through apps development, 

validation, and implementation rather than worrying about the infrastructures associated 

with the storage, underlying network, and computation. Besides the fact that the installation 

of BaaS facilitates the formation of new cross-industry private-public partnerships, it also 

helps in the development of new opportunities and company-customer interaction models. 

To construct smart contracts, developers have access to a single-click setup of BaaS 

services. On that note, the incorporation of BaaS with AI services opens up a new world of 

possibilities for apps developers, considering that the main cloud providers currently are 

offering a plethora of cloud services for AI applications. 

 

2.6.4 Decentralized Infrastructure 

Traditional blockchain systems built a linear infrastructure using a mixture of a connected 

list of data frameworks and hashing algorithms. Nonlinear infrastructure, built upon graph 

theory and buffering data modeling, on the other hand, is growing to meet the needs of 

instantaneous applications and to manage massive volumes of data. 

• Linear:  Blockchain system based on a single chain that expands linearly, with new 

blocks inserted at the chain’s end. The early adoption phase of a decentralized system usually 

uses single chains despite several flaws associated with it. For example, single chains would 
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scale sluggishly, affecting the real-time performance of decentralized applications (NN-A at 

S, 2017, GW-E. 2014). Furthermore, because each business situation has its single chain, 

information, asset, and value exchange in different chains would be a challenging task. 

Single-chain blockchains instead, may be used for single-task AI systems that conduct search, 

refinement, and training, as well as autonomous AI applications that function in homogenous 

environments. Rather than the AI programs themselves being executed via smart contracts, 

single-chain blockchains may be more advantageous when just the performance records of 

AI apps need to be preserved in perpetuity. For instance, in radiology applications, a model 

for deep learning can be used to deliver accurate results for diagnosing liver cancer. The 

successful search footprints of distant industrial robots could be another example of its use. 

Since AI applications typically function in unrestrained contexts, placing the entire 

components on blockchain structure is not a viable option. 

• Non-Linear: Multichain architectures are utilized to construct nonlinear blockchain 

architectures, using topologies and different types of chains such as parallel, parent-child, 

and main-side (King S, 2012). Multi-chain architectures not only offer a broad range of 

business cases and inter-chain value transfer, but they are also scalable for live performance. 

One or more chains would serve as the primary chain in a multi-chain structure, holding the 

data concerning other chains while the remaining ones would be employed as the parallel, 

side, or child chains. Side and child chains are typically similar in operation, with the 

principal difference being that the business scenarios in child chains are firmly related to 

parent chains while the side chains can operate completely independent from the main chains. 

As for the parallel chains, they could function separately from one another. To transfer the 

value between several chains, the "pegging" approach is implemented by integrating a two-

way peg procedure that allows bidirectional value transfer at a fixed exchange rate. It should 

also be noted that in the blockchain, native currencies or tokens would represent the exchange 

value. For interested readers, the following studies provide a full discussion of nonlinear 

blockchains. 

In decentralized apps, nonlinear blockchains for the AI apps domain grant the operation of 

several related and independent AI tasks. 
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Furthermore, the scalability property allows AI applications to be developed and deployed 

in parallel such that AI parts are installed on the main or parent chain in a production context, 

while the testing and training apps are loaded on the test nets or side chains. Emerging apps, 

such as those in adapting and reinforcing learning algorithms, benefit from nonlinear 

architectures since the principal applications must continually improve their productivity by 

reconfiguring the learning models. In this case, learning models are built on the side chains 

and subsequently deployed on the main chains. 

 

2.6.5 The Role of Consensus Protocol 

2.6.5.1 Proof-of-Work (Pow)  

The PoW consensus mechanism is used by popular public blockchain systems, namely 

Ethereum and Bitcoin to verify transactions after the participation of at least 51 percent of 

nodes on the underlying network (NN-A at S, 2017, GW-E. 2014). 

Because the validating nodes run anonymously and in vast numbers, they must produce the 

blocks by deciphering complicated and arbitrary mathematical problems, as well as cracking 

the hash code to access the transactions on the blockchain network. To receive the prizes, the 

successful nodes send the answer through a peer-to-peer network. Additional transactions 

and data are irrevocably joined to the blockchain when 51 percent of the nodes successfully 

solve the mathematical problem. Although PoW has shown to be a standard consensus 

protocol, it consumes a lot of energy in large networks and causes delays in transaction 

approvals time. As astute algorithms regularly streamline decision structures to make an 

educated judgment, AI applications would have a higher prevalence of write operations. As 

a result, in real-time AI applications, PoW protocols would become a performance barrier, 

besides the fact that an attack on 51% of the nodes in the underlying network could jeopardize 

the reliability of AI applications. 

 

2.6.5.2 Proof-of-Stake (Pos) 

Consensus PoS-based techniques attempt to address the problem of PoW's excessive energy 

consumption (King S, 2012). The PoS protocols function by identifying key players on the 
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blockchain network to allow them to generate new blocks. These methods select validators 

based on a variety of factors, such as delegated, high frequency transacting, random, or those 

that maintain coins for a longer period. 

PoS has shown to be more energy-efficient than PoW, and it also solves the vulnerability 

issue by eliminating pseudonymous validators and allowing only those who possess the 

blockchain's native currency to participate. Validators, on the other hand, have little to risk if 

they do not authenticate the transactions on the blockchain, which may delay the development 

of new blocks. Although PoS is useful for the lag-tolerant AI apps, it is not ideal for AI 

systems, especially in the management of flowing data, changing the identification, and 

making intelligent decisions on a real-time basis. 

 

2.6.5.3 Proof-of-Activity (Poa)  

PoAc is a mixture of PoW and PoS protocols. Such protocol aims to address the 51 percent 

attack problem by implementing the PoW algorithm on blank blockchains (Bentov I, 2014). 

This is done by PoAc protocol solves complicated mathematical problems first and validators 

begin to receive incentives, increasing their holding on the ledger. This allows for the 

validators with a sufficient stake in the blockchain to use the PoS algorithm. Additionally, 

PoAc is effective in terms of security, memory, and network connectivity. 

As a result, it may be advantageous for AI programs that require less data accessibility and 

higher security. 

 

2.6.5.4 Proof-of-Burn 

According to the PoB protocol, validators can only spend their coins if they send them to a 

public, valid, unusable, and faulty address. After burning their money, users are instantly 

authorized to develop new blocks and collect incentives (NN-A at S, 2017). Users could 

benefit from PoB since it allows them to contribute in advance and earn interest on the chain 

while also becoming approved validators. The protocol also gives an advantage by fixing the 

PoW's energy use problem. Furthermore, coin burning lowers the number of coins on the 

ledger, resulting in a gradual increase in coin value, amount balancing of currencies on the 

blockchain, the spending of unsold coins, and payment of the transaction cost. PoB protocols 
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can be used by AI systems to urge participants to keep the value of the underlying judgments. 

Applications needing a specific degree of precision, a set amount of clusters or items 

recognized, for example, can consume learning models and search trees to keep value over 

the ledger. 

 

2.6.5.5 Proof-of-Capacity (Poc) 

Traditional PoW algorithms become computationally expensive since they must obtain 

randomized nonce values to decrypt the blocks. The Proof-of-Concept protocol, commonly 

called proof of space, is a substitute mechanism for determining the space amount of hard 

drive on the blockchain network's nodes (Tschorsch F, 2022). 

Rather than utilizing random numbers, it stores the potential nonce values on the hard drive 

and looks for matching nonce-hash combinations to decrypt the blocks. Nodes that are 

having a large amount of disc space would obtain a lot more stake and a high chance of 

winning with PoC. 

2.6.5.6 Proof-of-Authority (Poa) 

PoA could be used to address the problem of PoW's high energy usage, as well as the issue 

of the validators should possess a portion of capital invested in the blockchain network. A 

PoA protocol delegates authoritative power to specified nodes, forming a consensus based 

on the absolute majority to create additional blocks on the ledger (Angelis S De, 2018). 

PoA has been shown as being a resource-effective and low-latency consensus system, albeit 

it is better suited for networks in private since it allows authorized stakeholders to delegate 

validation authority. Consequently, blockchain implementers must consider the validators' 

legal identities, well-defined eligibility requirements, and a common qualification condition 

for each shareholder to operate as validators. PoA security risks are always present, owing to 

security attacks on validators, which could be a source of assault on the network, 

notwithstanding their energy economy and fiscal efficacy. Alternatively, PoA might be used 

as a substitute consensus approach for AI systems that run on private or consortium networks 

because all validators are recognized over the system. 
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2.7 E2E ENCRYPTION 

End-to-end encryption (E2EE) is a secure communication method that ensures data is 

inaccessible to third parties during transfer between two devices or systems. E2EE involves 

encrypting data on the sender's device, which can only be decrypted by the intended 

recipient. This ensures that messages are protected from hackers, ISPs, application service 

providers and other entities.  

Many messaging service providers such as Facebook, WhatsApp and Zoom employ E2EE, 

but its adoption has been controversial as it makes it difficult for providers to share user 

information with authorities and could facilitate private messaging among individuals 

involved in illegal activities. 

To encrypt and decrypt messages in end-to-end encryption, the cryptographic keys are stored 

on the endpoints and public key encryption is used. This encryption method utilizes a public 

key and a private key.  

The public key can be shared with others, who can use it to encrypt a message and send it to 

the owner of the public key. The message can only be decrypted by the corresponding private 

key, which is also known as the decryption key. 

When exchanging messages online, there is typically an intermediary server that facilitates 

communication between the parties. These servers are usually operated by internet service 

providers, telecommunications companies or other organizations. However, with end-to-end 

encryption that uses public key infrastructure, these intermediaries are prevented from 

intercepting the messages being exchanged. 

To ensure that the public key belongs to the intended recipient, it is embedded in a certificate 

that is digitally signed by a trusted certificate authority (CA). The CA's public key is widely 

known and its authenticity can be trusted.  

Therefore, a certificate signed by that public key can be considered valid. The certificate links 

the recipient's name and public key, so the CA would not sign a certificate that associates a 

different public key with the same name. 

2.7.1 How Does E2EE Differ From Other Types Of Encryption? 

What makes end-to-end encryption unique compared to other encryption systems is that only 

the endpoints -- the sender and the receiver -- are capable of decrypting and reading the 
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message. Symmetric key encryption, which is also known as single-key or secret key 

encryption, also provides an unbroken layer of encryption from sender to recipient, but it uses 

only one key to encrypt messages. 

 

The key used in single-key encryption can be a password, code or string of randomly 

generated numbers and is sent to the message recipient, enabling them to unencrypt the 

message. It may be complex and make the message look like gibberish to intermediaries 

passing it from sender to receiver. However, the message can be intercepted, decrypted and 

read, no matter how drastically the one key changes it if an intermediary gets ahold of the 

key. E2EE, with its two keys, keeps intermediaries from accessing the key and decrypting 

the message. 

Another standard encryption strategy is encryption in transit. In this strategy, messages are 

encrypted by the sender, decrypted intentionally at an intermediary point -- a third-party 

server owned by the messaging service provider -- and then re-encrypted and sent to the 

recipient. The message is unreadable in transit and may use two-key encryption, but it is not 

using end-to-end encryption because the message has been decrypted before reaching its final 

recipient. 

Encryption in transit, like E2EE, keeps messages from being intercepted on their journey, but 

it does create potential vulnerabilities at that midpoint where they are decrypted. The 

Transport Layer Security encryption protocol is an example of encryption in transit. 

 

2.7.2 Benefits Of Using E2EE  

The main advantage of end-to-end encryption is a high level of data privacy, provided by the 

following features: 

 

- Security in transit. End-to-end encryption uses public key cryptography, which stores 

private keys on the endpoint devices. Messages can only be decrypted using these 

keys, so only people with access to the endpoint devices are able to read the message. 

- Tamper-proof. With E2EE, the decryption key does not have to be transmitted; the 

recipient will already have it. If a message encrypted with a public key gets altered or 
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tampered with in transit, the recipient will not be able to decrypt it, so the tampered 

contents will not be viewable. 

- Compliance. Many industries are bound by regulatory compliance laws that require 

encryption-level data security. End-to-end encryption can help organizations protect 

that data by making it unreadable. 

2.8  DISCUSSION 

 

1) To what extent has the blockchain been developed for the management of EHRs, and 

how has it evolved over time? 

Authors in the literature attempted to propose solutions for managing EHRs from various 

perspectives. For data encryption, many people used symmetric encryption schemes, while 

others used asymmetric encryption schemes. A few authors provided solutions for the 

blockchain's scalability when managing EHRs. Some people brought smart contracts, while 

others used chain-code for EHR preservation mechanisms. When it comes to EHR storage, 

there are two options: on-chain storage and off-chain storage. An on-chain storage scheme 

is focused on storing data on the blockchain, whereas an off-chain storage scheme stores 

data in the cloud or a local database and links the data's address to the blockchain. 

From 2016, when blockchain-based solutions for managing EHRs first became available, 

to 2021, there has been tremendous progress. The idea of using blockchain as a platform to 

manage health data was first mentioned in the article (Ekblaw A, 2016). Later that year, an 

article (Xia Q, 2017) discussed the use of private blockchain for EHRs. Following that, 

researchers attempted to demonstrate the utility of AI-blockchain for handling EHRs. 

 

2) What standards are used to store EHRs in the blockchain? 

The issue of data format and interoperability standards continues to be a challenge for 

sharing and storing EHRs. While most authors have considered FHIR and HL7 as 

potential standards for EHRs data format, only a few have followed the HL7 standard, 

and a small number have considered FHIR. The use of a standardized EHR data model 

can help support interfacing with clinical decision support systems. Some authors have 
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described the standard of ISO 27789, HL7, and HIPAA, but have not implemented those 

principles. 

Despite these efforts, achieving a standard for EHRs exchanging, uploading, storing, 

authenticity checking, and formatting remains a critical challenge for blockchain-enabled 

EHRs solutions. This could be due to the evolving nature of blockchain technology and the 

lack of standardized development platforms. While blockchain shows promise for EHR 

management, it still has a long way to go before it can be considered stable enough to 

support a standardized framework. 

 

3) How large amounts of EHR data are handled? 

Dealing with massive amounts of data is a significant challenge, and it becomes more 

difficult when it comes to handling data via blockchain due to its high storage costs. While 

blockchain was initially designed for small-sized financial transactions, researchers have 

devised solutions to overcome the limitations of data storage capacity. However, slightly 

less than half of the papers reviewed for this topic did not address the major data storage 

issue. Some authors have addressed the issue but did not discuss data storage services. 

Others have chosen the Interplanetary File System (IPFS) as a medium of data storage and 

then linked the address with the blockchain, while others have proposed using private 

blockchain or off-chain storage to handle scalability issues. 

 

Overall, while solutions have been proposed to address the challenge of data storage on the 

blockchain, it remains a significant issue that needs to be addressed to fully realize the 

potential of blockchain in managing large amounts of data. 

 

4) What blockchain platforms/mechanisms are used to manage EHRs? 

Because EHRs include sensitive personal information, a private blockchain is at the top of 

the popularity ranking. Furthermore, a private blockchain can enable access control rules, 

allowing only particular persons to join the network while adhering to good security 

policies. A public blockchain, on the other hand, does not have strong access control rules, 
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so anyone can join the web and read the data. A consortium blockchain also provides a 

private network and restricts access to network data. 

The literature review included several potential models or architectures. The majority of 

the authors concentrated on EHR integrity, availability, transparency, privacy, and security. 

Almost all of the models offered to support for the storage of EHRs from medical 

institutions as well as wearable devices.  A significant number of papers used the Ethereum 

platform for the proposed solutions. The number for Hyperledger Fabric was only one 

paper (Sukhwani H, 2017). The rest of the offered solutions include Bitcoin (NN-A at S, 

2017), (GW-E project, 2014), (Bentov I, 2014) ,( Tschorsch F, 2016) ,( S. Nakamoto, 2008) 

consortium blockchain (Lai L, 2018), (Li Z, 2017), private & consortium blockchain (Lai 

L and Suda N, 2018), (GW-E, 2014), Multichain (King S, 2012), private blockchain (Cyran 

MA, 2019), (Lima C. 2018), (Dinh TTA, 2017), (Tzanou, M. 2017), and Permissioned 

Blockchain (K. Gai, 2019). 

 

2.9 OPEN CHALLENGES AND FUTURE RESEARCH OPPORTUNITIES 

One may define numerous issues of healthcare Blockchain-based applications based on the 

proposed prototypes and developed applications discussed above.  

With the introduction of wearables and a slew of new IoT devices with data flows harnessed, 

improved security is required to be readily available to healthcare providers (Ferrag, 2018). 

These issues might be addressed with blockchain technology, which offers interoperability, 

integrity, and security, as well as portable user-owned data. 

    Interoperability refers to a system's capacity to seamlessly integrate with another system 

to share critical data. The ease of transformation of the medical records and the healthcare 

data information from one provider to another is referred to the interoperability in the EHR 

system. While health care organizations can connect in a variety of ways, the EHR is 

generally regarded as one of the simplest and most secure methods that do not result in 

information blocking (Shafagh H. 2017, Cui S, Asghar M. 2018]. To begin with, the EHR 

must have core interoperability. This enables the entire system to send data to another system 

while also receiving data. While the data received will not need to be analyzed as part of this 
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level of interoperability, it will be available within the system immediately. This is the lowest 

degree of functional interoperability, allowing only the most basic data exchange.  

    Second, the EHR must have structural interoperability, which means that data must flow 

appropriately through the system so that providers may see unmodified patient data. To 

establish a new EHR database utilizing structured messages, this intermediate region of 

health care data exchange ensures that patient information is provided and received in a 

relevant and shareable fashion. Furthermore, even if the data changes hands, the facts, and 

meanings will not be altered.  

    Third, the EHR must have semantic interoperability, which allows data to be accurately 

reorganized and codified so that any system can receive and interpret the new information. 

This means that the language used by one EHR system must be readable by the next system. 

This is the highest level of interoperability possible with significant implications for patients, 

clinicians in a health system, and scientists and researchers who collect data to study patient 

populations. Due to the adoption of standardized coding, information is transferrable and 

usable at this level. In contrast to studies (Liang X. 2018, Guo R. 2018), which lacked the 

possibility of interoperability and is not discussed in EMR systems as a result, medical and 

health data experts must perform manual inspection and mapping of predefined ontologies. 

At the same time, clinical malpractice is uncontrollable. Furthermore, scalability and 

interoperability concerns are at the forefront of current and future research in this area. The 

lack of standards for designing healthcare applications based on blockchain technology is 

revealed by the interoperability challenge. 

    Guo R. (2018) has pointed out that privacy and security pose a significant challenge for 

blockchain technology. The decentralized nature of the blockchain, where data is distributed 

to all nodes, can lead to non-compliance with privacy regulations and create security 

vulnerabilities. As a result, to protect data privacy and security, data must be stored off-chain. 

New privacy technologies, such as homomorphic and attribute-based encryption, secure 

multiparty computation, zero-knowledge proof, obfuscation, and format-preserving 

encryption, and may be able to accomplish data privacy (Jiang S. 2018). 

    Designing using hybrid privacy approaches and leveraging security-enhancing 

technology, such as a homomorphic signature, which works better than public-key 
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certificates, could speed up the different security levels in a system. More significantly, any 

malicious attacker can manipulate health data acquired from hospitals, clinical labs, and 

patients, rendering AI learning useless. As a result, utilizing federated learning mixed with 

blockchain technology, it is necessary to collect health data from many sources without any 

privacy leaks. Each healthcare organization's central entity is responsible for any legal 

difficulties as well as the overall seamless operation of the centralized healthcare systems. A 

decentralized, patient-centric system, on the other hand, makes it difficult to resolve any legal 

disputes or inconsistencies in the public blockchain architecture. When personal data is run 

on converging AI and blockchain platforms, for example, copyright infringement and 

defamation issues occur.  On the other hand, scalability is the main issue in blockchain-based 

healthcare systems (Kim H. 2019, GW-E. 2014, Dinh TTA et al. 2017, Li Z et al. 2017, 

Hwang GH et al. 2018), especially when dealing with large amounts of medical data. Due to 

the high volume of healthcare data, it is not feasible to store it on-chain, as this would result 

in significant performance degradation. To achieve consensus and ensure ledger replication 

across all network participants, blockchain networks have always faced limitations in terms 

of scalability, as stated by Houtan et al. (2020). These limitations have been particularly 

challenging for blockchain-based networks in the healthcare sector, which require fast 

adoption of new technologies. Besides the performance bottleneck, the capacity issue with 

blockchain should be seriously considered. As the size of a blockchain expands, the amount 

of storage required by all blocks expands as well. As a result, complete nodes, which keep 

all the network's block data, demand a lot of storage space (Sun Y et al., 2017). Similarly, as 

the blockchain history grows, the Bootstrap time will climb linearly, slowing the process of 

new nodes joining the system. All these constraints reduce a blockchain's availability and 

decentralization and should be carefully considered when creating a large-scale blockchain. 

Not every entity in such a network needs a comprehensive blockchain ledger. As a result, the 

strategies should concentrate on interactions between just those in the network who need to 

know, i.e. on a need-to-know basis. Innovative technologies typically face the challenge of 

scalability, and blockchain networks are no exception. Scalability is typically measured by 

factors like throughput, latency, storage, and block size. In order to address this challenge in 

blockchain networks, various performance metrics such as throughput, consensus latency, 
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and the number of transactions per unit time should be analyzed. A higher number of verifiers 

during the block verification phase ensures greater security, but it also results in increased 

latency. Healthcare demands a high level of security with minimal verification time. 
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CHAPTER THREE  

RESEARCH METHODOLGY 

3.1 INTRODUCTION 

in this chapter will explain the general approach of the proposed system. Which combines 

x-ray image analysis using Artificial Intelligence methods for prediction of group of 

common diseases together with the E2E Encryption of data exchange throughout 

blockchain which based on patient-centric control. The following sections will explain the 

proposed system in detail. 

3.2 OVERVIEW OF THE PROPOSED SYSTEM  

The proposed system has multiple stockholders that can request access to EHR. Patient 

who owns his records only can determine who will grant or revoke permission access in 

own medical records. This is patient centric control which who have full control on his 

own records. 

In addition, for enhanced security and a decentralized approach, medical data will be 

stored on the Interplanetary File System (IPFS), which is a protocol for distributing files. 

This protocol enables all computers worldwide to store and share files as part of a vast 

peer-to-peer network. Any computer, anywhere in the world, can install the IPFS program 

and begin hosting and sharing files. 

If anyone runs IPFS program on computer and downloaded the file to the IPFS network, 

then can anyone in the world view or download the file who also running IPFSFor that, 

to keep EHR in more secure and to provide high degree of confidentiality, The medical 

data exchange will made by hyper encryption End-two-End methods using AES-ECC. 

The following sections will explain the proposed system steps in detail. 

 

3.2.1 Overview Blockchain and EHR management based on patient centered 
control. 

The proposed system is designed to provide patients with full control over their records, 

while ensuring confidentiality, robustness, and security through a permissioned 
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infrastructure within the Ethereum Blockchain framework. Health information is stored 

mainly as hashes on the blockchain, while the original data is kept off-chain in IPFS to 

ensure efficiency and scalability. 

 

To ensure authorized access, will create a smart contract protocol called the Patient-Centric 

Healthcare Data Management Access Control-Smart Contract, which uses role-based 

access control chain code for authorized stakeholders.  

The protocol does not involve any incentive mining, and it ensures equal access for all 

parties. During registration, unique role-based IDs are generated for stakeholders, and each 

is provided with a public and private key pair for secure health information storage and 

transfer. 

 In the proposed healthcare data management system, doctors are responsible for creating 

a patient's health record, which is then securely stored off-chain in IPFS and its hash value 

is stored on the Ethereum blockchain for permanent record keeping.  

If doctors need to make changes to a patient's record, they can be granted or revoked access 

to do so. The patient-centric view of the health record is created from IPFS, allowing 

doctors to update the documentation before the patient commits to the update using their 

key pairs to store the updated files in IPFS. 

 Patients can selectively grant access to relevant stakeholders to view the records in a 

patient-centric view from the IPFS system.  

To ensure data privacy, a doctor's session would expire before the hash value is committed 

to the ledger, preventing unauthorized access by uninvolved personnel. Smart contracts are 

also created for various healthcare procedures in the system's backend.  

 

The use of role-based access control ensures the protection of patient privacy, while the 

system's scalability and interoperability features make it superior to existing systems. 

3.2.2 A Background of the Proposed System 
 

The proposed system in Figure 3.1 illustrates the general architecture and access control 

for sharing EHRs using blockchain technology. To ensure privacy, the EHR data is 
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encrypted with the EHR owner's secret key and stored in IPFS. The secret key is encrypted 

using a public key and stored on the blockchain for authentication purposes. The EHR 

owner and healthcare professionals can access the essential data. This blockchain-based 

security framework satisfies the requirements for shared EHR systems by protecting patient 

privacy and ensuring data integrity.  

 

Figure 3.1 compares the proposed system with the conventional EHR system.  

In the conventional EHR system: 

 

(1) The patient sees the physician (Doctor).   

(2) The patient is then given medical attention by the doctor.  

(3) The doctor uploads the EHR to the server following treatment.  

(4) The doctor can download the EHR for later use. 

 

 

Figure 3.1 Overview of the traditional and the proposed solution 
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Our strategy might be described as revolutionary secure electronic health records for 

patients that they can privately share. where the patient can independently manage, 

download, and trade his or her EHRs.  

In our proposed study: 
(1) To produce and save keys, all users must be registered with the system.  

(2) The patient seeks medical attention from a doctor at a hospital or other healthcare 

facility.  

(3) He or she acquires their electronic health records, which will contain their private 

health information and be created following the assessment.  

(4) The patient submits the healthcare data to the blockchain and uploads the 

encrypted files straight to IPFS.  

(5) The user asks access to the file (which might be a researcher, pharmacist, or 

doctor).  

(6) The user obtains the original file from the IPFS after receiving the encrypted 

data. 

As a result, only the patient and others involved in the access control procedure can view 

the patient's EHR documents. Moreover, a doctor is only permitted to look through the 

EHR of patients that they have already seen. Last but not least, a doctor or other users can 

only access an EHR if the owner has given them permission to do so.  

The encrypted text in the electronic health record is being attempted to be decoded. Health 

records may be taken, changed, or falsified by a malevolent enemy. IPFS and the data 

requestors will agree to derive the EHR's plain text. The security targets are as follows 

according to the threat model:  

• Data privacy: The original EHR of the owner cannot be revealed to unauthorised 

people.  

• Data authenticity: The patient's EHR can be verified by those who have access to the 

data.  

• Integrity: Patient electronic health records (EHRs) can be stored securely to prevent 

tampering.  

• Data confidentiality: Patient electronic health records are kept secret from outsiders 

and stored securely.  
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• Customizable access control: Patients can choose how to access their EHRs, and only 

individuals with permission can do so.  

• Authentication: Users must first authenticate themselves in order to access EHR. 

 

Algorithm 1 is used to enable patients to grant access to their health record to doctors 

through the use of PCEHRM-SC. This algorithm ensures that only specific fields of the 

health record are viewed and updated, rather than granting unrestricted access to the entire 

record. The patient-centric view is generated, and a session key (Sk) is created for use by 

both the patient and the doctor during the session. The session key is encrypted using the 

public keys of the patient and the doctor. Algorithm (1) calls the create_Update_HR() 

function from Algorithm (2) to initiate the update of the health record. The doctor's and 

patient's session keys are decrypted, and the modifications are uploaded into the updated 

patient-centric view (UP_Pacenvn). Once the update is completed, the health record HRn 

is saved in IPFS after the patient approves the changes. The Sk and Pacvn are then 

terminated, and the IPFS generates the health record hash value HRn_hash, which is saved 

in blocks within the Ethereum blockchain. 
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3.2.2.1 Actors 

Our architecture contains the following components: stakeholders which they are (patient, 

doctor, pharmacist, analyst, physician, or researcher) as shown in Figure 3.2, IPFS, 

blockchain, an encryption mechanism, smart contract, electronic health record, and a web 

portal. 

Actors. In the proposed system, the actors concerned are:  

- Patient: a person seeking medical attention from a doctor in a hospital or other healthcare 

facility. He or she has access to their electronic health records, which will contain their 

private health information generated following consultation and treatment. Therefore, the 

patient's profile, address, and location, diagnoses, physician recommendations, notes for 

the next review, names of the doctors, medicine, scan, and test results are all contained in 

the medical records. 

Table 3.1 Patient roles. 

 
- A doctor can add an observation, if necessary, issue prescriptions with the patient's 

permission, and examine the patient's medical record via a web application.  

 

- Other users who wish to examine the information in the medical record have gained 

permission from the relevant data owner, such as pharmacies, labs, insurance, or 

researchers. For instance, the pharmacist gets patient prescriptions to provide patients their 

medications. 
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Figure 3.2  Actors and rule-based access in the proposed system. 

 

3.2.2.2 Electronic Health Record (EHR).  

Sharing EHRs across different healthcare organizations is crucial for effective healthcare 

coordination and management. EHRs serve as a comprehensive data source containing 

information from multiple clinicians, making them transportable and accessible to patients. 

Protecting the privacy and security of EHRs is paramount, and distributed EHR sharing can 

empower patients to take control of their healthcare by giving them easy online access to 

their medical information. By sharing their EHRs with other clinicians, patients can 

participate actively in the coordination of their treatment and management of their health 

information. 
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Algorithm 2: create_Update_HR () 

    Input: Dn, Dpubkn, Dprkn, Sk 
  Output: Storage of HR 

1. Function Doctor Dpubkn 
2. For Doctor with Dpubkn, Sk 
3. Dn→ Decrypt(Dpubkn(Sk)) 
4. Dn→ Decrypt(Pacenvn(Sk)) 
5. Pacenvn→ UP_Pacenvn 
6. IPFS Encrypt(UP_Pacenvn(Sk)) 
7. End For 
8. End Function 

 

3.2.2.3 Blockchain 

The healthcare industry can benefit from blockchain technology in various ways. Our 

approach to using blockchain technology ensured that patient data was kept transparent, 

decentralized, and immutable. Nevertheless, blockchain also provides privacy and 

confidentiality by concealing individuals' identities through complex and secure 

mechanisms to protect the confidentiality of medical data. The decentralized nature of 

blockchain allows patients, doctors, and other healthcare professionals to share information 

efficiently and securely. The Ethereum blockchain was chosen because it supports smart 

contracts and may be used as a foundation for decentralised apps. The idea of smart 

contracts was originally introduced on the Ethereum blockchain platform, which explains 

why decentralised healthcare applications based on smart contracts are so popular. 

 

3.2.2.4 Website Portal 

This portal serves as the first level of security. By linking a username and password, it 

provides access to specific features and EHR data. Patients will have access to some of the 

information that healthcare practitioners send them as well as information about their own 

health data. Depending on their position within the EHR process, other actors have access 

to the applications created just for them. In our proposed system the meaning of web portal 
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is using truffle and ganache and metamask and web3 applications, these applications I will 

explain them it in the following section. 

 

3.2.2.5 Smart Contract 

A smart contract is a self-executing code that is installed into the blockchain to execute a 

specific task when certain conditions are met. It allows for transactions and agreements to 

be made without the need for a central authority or external enforcement, providing a 

decentralized system. The Smart Contract has been selected to link with the blockchain and 

healthcare providers for managing the patient's healthcare information as per their 

requirements. It also verifies the user's access rights and authentication. The Smart Contract 

plays a crucial role in executing the agreement between different parties in the system, 

making it essential for implementation. A smart contract may be created by creating the 

codes, and these codes describe the contract that the patient has signed. Once it has been 

approved, the contract transmits a transaction to be added to the blockchain. With our 

system, smart contracts are created using the Solidity programming language, and then they 

are deployed on the Ethereum test network. At the conclusion of the section, the code smart 

contract will display. 

3.2.2.6 Access control  

guarantees the privacy and accuracy of EHR. Only authorised healthcare professionals and 

patients should be able to access medical information on our suggested system. Patients 

should control how their data is collected and who has access to it. These access decisions 

are made by the patient listed in the smart contract. The smart contract will deny any access 

requests from unauthorised parties, and the system will be shut down as a result. 

The patient's consent and approval access is required before the user can retrieve health 

data. The only individual who can add another person to view the patient's record is the 

patient. To ensure that the doctor has access to the patient's data, the smart contract checks 

the access only before receiving the health data. If the doctor doesn't have access control, 

the system delivers a bogus message and ends the session.  
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Scenario  

To communicate with the system, all actors use the web portal. To produce and store keys, 

each user needs to be registered with the system. In Figure 3.3, several interactions are 

shown:

 

Figure 3.3 Interactions in the system 

1) Patients see doctors in hospitals or other healthcare facilities.  

2) The patient receives access to his or her electronic health records, which include any 

private health information created following encounters with the doctor.  

3) The patient enters his user ID and password to access the portal.  

4) The patient adds the system with his EHR.  

5) The patient adds a user's access rights in accordance with the user's role to his or her 

EHR.  

6) The EHR will be encrypted and posted to the IPFS in encrypted form.  

7) The patient uploads the key that has been encrypted along with other data to the 

blockchain.  
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8) All requests for transactions are logged to the blockchain.  

9) In order to retrieve EHR, users submit an access request to the system with necessary 

data. 

10) The smart contract authenticates the user with access and decrypts the encrypted key.  

11) Pulls encrypted EHR from IPFS and decrypts it.  

12) The user, a doctor, downloads and consults the EHR.  

13) Depending on his or her access privileges, the user can modify the patient's electronic 

health record. 

3.2.2.7 Hybrid Encryption.  

Data is encrypted and decrypted using the same key in symmetric encryption. Although 

very quick, algorithms using this method are not as secure as those using asymmetric 

encryption. Asymmetric encryption is thought to be more safe because it does not require 

key sharing, but it is slower and takes longer to complete. We decided to combine 

symmetric and asymmetric encryption as a result. Because symmetric encryption is needed 

to convert plaintext to ciphertext, hybrid encryption is necessary. This utilises the speed of 

symmetric encryption. The symmetric key is encrypted using the asymmetric key to take 

advantage of the security of asymmetric encryption, making sure that only the intended 

recipient can decrypt the symmetric key. 

3.2.2.7.1 Definition of ECC and AES 

- ECC (Elliptic Curve Cryptography)  

The use of elliptic curve cryptography (ECC) is a well-known method of encrypting data 

to prevent unauthorized access. ECC employs pairs of public and private keys to ensure 

data security. This technique uses two-dimensional fields such as binary and prime fields 

to provide security, and its enhanced operations and relation between binary and primary 

fields make it difficult to hack. ECC is characterized by its small key size, and the 

appropriate field for cryptographic implementation is determined by the maximum number 

of points. ECC reduces the complexity of operations and is mainly used for key generation. 

Compared to other cryptographic techniques, ECC has a higher level of enhancement due 

to its small key size.  
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- AES  

The symmetric key cryptography was developed by Joan Daemen and Vincent Rijmen, two 

Belgian cryptographers (S. N. Mendonca, 2018). usually used to encrypt or decrypt large 

amounts of data more quickly. This is due to the fact that it uses the same key for both 

encrypting and decrypting operations rather than generating a new one. 

The AES encrypts 128-bit blocks of data using 128-bit keys with 10 encryption rounds, 

192-bit keys with 12 encryption rounds, or 256-bit keys with 14 encryption rounds (E. 

Conrad et al. 2017). It has been demonstrated to have a higher level of security than DES 

or 3-DES, come with a larger key size, and encrypt communications more quickly (T. B. 

Azad, 2008). The following methodical processes are used in the encryption and decryption 

operations: To decode it, perform byte substitution, shift rows, mix columns, add a round 

key, and finally the opposite of these operations. 

1) Encryption Method  

Each round of the encryption process is composed of the 4 sub-processes as the following: 

- Byte Substitution  

Data substitution using a substitution table is the first adjustment made to the AES 

encryption algorithm. The fixed table, called the Substitution Box (S-box), which 

contains every likely combination of eight-bit order, replaces the 16 input bytes. The 

new 16 bytes that result are set up in a matrix with four columns and rows (S. N. 

Mendonca, 2018). 

- Shift Rows  

The second transformation involves shifting data rows. In a matrix created from the 

byte, each row is shifted or altered to the left. Any entries that go off to the right are 

reinserted  there. The first row is left in tact, and the second row is moved to the left by 

a byte. The third row then moves leftward by 2 locations, while the fourth row moves 

leftward by 3 (byte) positions. The same 16 bytes are then used in the resulting matrix, 

although in different locations (S. N. Mendonca, 2018). 

- Mix Column 
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The third transformation now combines the columns. Then, using a special Galois field 

mathematical function, each of the four-byte columns is altered (GF). The function 

inputs 4 bytes to represent one column and outputs 4 new bytes to represent the new 

column. The action is not carried out in the last round (S. N. Mendonca, 2018). 

- Insert Round Key  

The last, most straightforward modification involves using a separate portion of the 

encryption key to perform an exclusive OR operation on each column. Following the 

mix column stage, the resulting matrix's 16 bytes are regarded as 128 bits. At this point, 

a 128-bit round key is bitwise EX-ORed with the 128-bit state. If it's the last line, the 

output is the encryption text. If not, the resulting 128 bits will be read as 16 bytes and 

a new process of substitution would likely begin. It is a column-wise action between 

the state column's four bytes and the round key's one word (S. N. Mendonca, 2018). 

2) Decryption Method  

Until plaintext or the original data is obtained, this includes performing the opposite of the 

encryption procedure.  

- Insert a round key  

The round keys are chosen in reverse order for this function's own inverse. – 

- Inverse Shift Row (b)  

In reverse order, the inverse shift row functions in the same manner. The first row is 

left in place, and the second, third, and fourth rows are then moved to the right by one 

byte, two bytes, and three bytes, respectively.  

- Inverse byte replacement  

Utilizing the inverse s-box substitution table, this is accomplished. 

- The Inverse Mix Column  
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Utilizing polynomials of less than 4 degrees over the Galois field (GF) 28, whose 

coefficients are the components of the state column, the reverse mix column transition 

is accomplished. 

3.2.2.7.2 A Proposed Hybrid Encryption Approach ECC-AES 

The two separate algorithms are combined to increase security and reduce the possibility 

of data loss due to hackers. The ECC method replaces the AES encryption by encrypting 

the AES key in the cloud, as indicated in the block diagram in Figure 3.4, Figures 3.5. The 

AES algorithm will first be implemented. 

 

Figure 3.4. Hybrid Encryption steps 
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Figure 3.5 Hybrid Decryption steps 

 

ECC and AES are used in combination to create an efficient cryptographic technique for 

secure cloud storage (IPFS). The hybrid (ECC-AES) method is faster and has a smaller 

key size than using a single AES due to ECC's small key size feature. ECC employs 

encryption and decryption key standards to establish a secure key system and reduce key 

size, making it ideal for use with AES in protecting data from unauthorized access 

(Mendonca & S.N., 2018). Once the key size is determined, ciphertext is generated using 

AES for data encryption and decryption with the key generated by ECC. 

The proposed technique utilizes the combined effect of ECC and AES to create a secure 

system for cloud storage, which helps in reducing the size of secure data storage. Figure 

3.6 shows the block diagram of the proposed algorithm. 
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Figure 3.6 ECC and AES algorithm. 

The above diagram clearly shows how AES, in conjunction with ECC, effectively secures 

data stored in the cloud. 

The proposed method is a novel approach for secure data transmission and storage. The 

system diagram provides an innovative solution for protecting user data during 

transmission to the server and secure storage of the encrypted data. 

The novelty of the method can also be evaluated based on its computational cost and time. 

To prevent attacks, the user's personal information is first encrypted using AES encryption 

when they upload the input file, making the text fully encrypted.  

This ensures that the information is protected in case an attacker tries to access it. 

Additionally, even if an attacker does manage to obtain the encrypted file, they can’t 

decrypt it, thereby safeguarding the data from attacks. 

 

3.2.2.7.3 Implement the Hybrid encryption algorithm. 

Firstly to implement the hybrid encryption mechanism in our proposed system, users should 

register unique accounts and create their keys. First, a symmetric key (SK) 128 bits in 
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length is generated for each patient’ EHR (EHR_P). The pseudo-random number 

generation (PRNG) algorithm known as SHA1PRNG used by the SUN provider produces 

the SK as its result. To create a continuous stream of random numbers, the hash function is 

utilised. The EHR is encrypted using the SK of the AES advanced encryption standard. To 

complete data sharing transactions, each user on the blockchain obtains key pairs Public 

key (PuK), Private key (PrK), by hashing a random number (RN) using the 256-bit SHA-1 

hash method. SK was encrypted and the original EHR was signed using the key pair of 

elliptic curve cryptography (ECC), an asymmetric key authentication method. 

As demonstrated in Equations (1) - (2), the EHR P generates all the keys, encrypts the EHR 
using the SK to produce the ciphertext CEHR, and then encrypts his or her symmetric 
encryption key using the public key PuK to produce the ciphertext key CK. 

 

The encrypted EHR is then hashed using Equation (3), where MD stands for message 

digest, and then signed. The MD is then signed using the private key, and the digital 

signature is the encrypted hash (SIG). Equation describes how the patient EHR sends the 

encrypted EHR (CEHR) to the IPFS once the signature method is finished (4). 

 

Afterwards, he or she transmits to the blockchain both SIG and encrypted keys (CK). Also, 

as mentioned in 3.2.2.5 above, he or she transmits the smart contract the access permissions. 

For instance, the system database contains the public keys for each user. The SK will be 

re-encrypted using the public key of C if B (the owner) wishes to share data with C (add C 

to the list of authorised users). C can use its private key to decrypt the data when it needs 

to access it. No one else is able to decrypt the data since only C has access to C's private 

key. In Algorithm 1, the storage procedure is displayed. 
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To enable the safe sharing of EHR, the EHR owner predefines access rights in smart 

contracts, including access privileges, access actions, and access rights (like read and 

write).  

The smart contract is activated as soon as the access need is satisfied, ensuring the accuracy 

and justice of the data sharing to carry out the associated procedure. The following two 

steps make up the EHR sharing process: 

A. Blockchain access:  

•  EHR access request: The process of requesting access to EHR involves 

initiating a blockchain network transaction called EHR exchange request 

(Req) by the user (U), as per the equation. This request must contain access 

target (ID), access EHRi, and PrK (5). The blockchain network will then 

receive and authenticate the transaction request to verify the identity of the 

EHR user (U). The transaction data will be recorded on the blockchain, 

ensuring transparency and accountability, and only the authorized user (U) 

will have access to it.  
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• Smart contract execution: Equation describes how the SK will be given 

to the user after being encrypted using the U's private key if the Req is 

valid (6). 

SK= DecCK (CK, PrK)      (6) 

B. IPFS storage EHR sharing:  

The U will recover the EHRi from the IPFS, as shown in Algorithm 2. The U then 

generates an MD2 hash of the encrypted EHR to ensure its validity and integrity, as 

illustrated in Equation (7). The SIG is then decrypted using the EHR P's public key, 

and the outcome is displayed in Equation (8).  

 

The EU will decrypt the EHR and carry out its access action, as specified in 

Equation, if this decrypted MD matches MD2, indicating that the signature is valid 

(9). If not, the user can alert the system to the possibility that the data has been 

altered.  

EHRi= DecCEHR (CEHR, SK)     (9) 

Algorithm 2. Data sharing (Decryption).  

1. Input SK, PrK.  

2. If Req is not valid then  

3.    ‘return failure’.  

4. Else  

5.    Decrypt EncKey, SK= DecCK (Ck, PrK).  
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3.2.2.8 IPFS for storing the health data 

The Interplanetary File System (IPFS) is a distributed file storage protocol that allows 

computers all over the globe to store and serve files as part of a giant peer-to-peer network. 

In our proposed system IPFS used to store encrypted EHRs uploaded by the owner.  

The code in implement Hybrid AES-ECC to secure EHR and achieve the goal of the 

proposed system: 

Key iGenerators i 

1. iSymmetric iKey i 

// igenerate iSymmetric iKey 

public iString igenerateSK() ithrows iException i{ 
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iKeyGenerator ikeygen i= iKeyGenerator.getInstance("AES"); 
SecureRandom isecureRandom i= iSecureRandom.getInstance("SHA1PRNG", 

i"SUN"); 
secureRandom.setSeed("EHR i3.0".getBytes()); 
 
//generate i128bit irandom ikey 

 i i i i i i ikeygen.init(128, isecureRandom); 

 i i i i i i iSecretKey isk i= ikeygen.generateKey(); 

 i i i i i i ireturn iBase64.getEncoder().encodeToString(sk.getEncoded()); 

} 

2. iASymmetric iKey i 

function igetKeys() i{ 

 i i i i i i// iA inew irandom i32-byte i(256 ibits) iprivate ikey 
 i i i i i i i i iconst ipr i= ieccrypto.generatePrivate(); 

 i i i i i i// iCorresponding iuncompressed i65-byte i(520 ibits) ipublic ikey 
 i i i i i i i i iconst ipb i= ieccrypto.getPublic(pr); 

 i i i i i i i i ireturn i{ ipr: ipr.toString("hex"), ipk: ipb.toString("hex") i}; 

 i i i i i i i} 

 

Encryption 

1. iCreate iCipher iCEHR i(AES) i 

CEHR i= iEncEHR i(IPFS,SK) i 
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public iString iencryptEHR(String i_SK, iString iEHR) ithrows iException i{ 

 i i i i i i ibyte[] idecodedKey i= iBase64.getDecoder().decode(_SK); 

 i i i i i i iSecretKey iSK i= inew iSecretKeySpec(decodedKey, i0, idecodedKey.length, i"AES"); 

 i i i i i i iCipher icipher i= iCipher.getInstance("AES"); 

// iEncrypt iSK i 

 i i i i i i icipher.init(Cipher.ENCRYPT_MODE, iSK); 

 i i i i i i ibyte[] icipherEHR i= icipher.doFinal(EHR.getBytes()); 

//return iCipher iSK 

 i i i i i i ireturn iBase64.getEncoder().encodeToString(cipherEHR); 

 i i i} 

2. iEncrypt iSymmetric iKey iCK i(ECC) i 

ECIES i 

// iEncypry iSK iusing iPublic iKey iof iDoctor i 

 i i i i i i ifunction iencryptSK(_sk, i_pb) i{ 

 i i i i i i i i ilet ipub i= iBuffer.from(_pb, i"hex"); 

 i i i i i i i i ilet istr i= ieccrypto.encrypt(pub, iBuffer.from(_sk)).then((e) i=> i{ 

 i i i i i i i i i i ilet ienc i= i{ 

 i i i i i i i i i i i i iiv: ie.iv.toString("hex"), 

 i i i i i i i i i i i i iephemPublicKey: ie.ephemPublicKey.toString("hex"), 

 i i i i i i i i i i i i iciphertext: ie.ciphertext.toString("hex"), 

 i i i i i i i i i i i i imac: ie.mac.toString("hex"), 

}; i 

 i i i i i i i i i i ireturn iJSON.stringify(enc).toString("hex"); 

 i i i i i i i i i}); 

 i i i i i i i// ireturn ick iin istring iformat 
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return istr; i 

} i 

3. iMessage iDigest iof iCEHR i 

ECDSA i 

 

 i i i i i i i i// iReturns iMessage iDigest 

 i i i i i i icrypto.createHash("sha256").update(_CEHR).digest(); 

4. iSign iMessage iDigest i(MD) iusing iPrivate iKey iof iPatient i/ 

// iSign iMessage idigest iusing iECDSA i 

 i i i i i i ieccrypto.sign(Buffer.from(_PRK, i"hex"), iH).then((sign) i=> i{ 

 i i i i_sign i= iBuffer.from(sign).toString("hex"); 

 i i i ireturn i_sign; 

}); i 

 

Decrypting i 

1. iDecrypt iCk i 

ECIES i 

function idecryptSK(_ck, i_prk) i{ 

 i ilet iencJ i= i_ck; 

 i ilet iencB i= i{ 

 i i i iiv: iBuffer.from(encJ.iv, i"hex"), 



97 
 

 

 i i i iephemPublicKey: iBuffer.from(encJ.ephemPublicKey, i"hex"), 

 i i i iciphertext: iBuffer.from(encJ.ciphertext, i"hex"), 

 i i i imac: iBuffer.from(encJ.mac, i"hex"), 

 i i}; 

 i i// iB idecrypting ithe imessage. 

 i ilet isk i= ieccrypto.decrypt(Buffer.from(_prk, i"hex"), iencB).then((s) i=> i{ 

 i i i ireturn is.toString(); 

 i i}); 

return isk; i} i 

2. iVerify isignature i 

ECDSA i 

function iverifySign(_sign, i_cehr, i_pub) i{ ivar ipb i= iBuffer.from(_pub, i"hex"); i 

var imsg i= icrypto.createHash("sha256").update(_cehr).digest(); ivar isig i= 

iBuffer.from(_sign, i"hex"); 

let iv i= ieccrypto i 

.verify(pb, imsg, isig) i.then(function i() i{ i 

console.log("Verified"); i 

return itrue; i}) i 

.catch(function i() i{ iconsole.log("invalid"); ireturn ifalse; i 

}); ireturn iv; i 

} i 
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3. iDecrypt iCEHR i 

public iString idecryptEHR(String i_SK,String i_CEHR) ithrows iException{ 

// idecode ithe ibase64 iencoded istring// 

byte[] idecodedKey i= iBase64.getDecoder().decode(_SK); 

// i irebuild ikey iusing iSecretKeySpec// 

 

SecretKey iSK i= inew iSecretKeySpec(decodedKey, i0, idecodedKey.length, i"AES"); 

Cipher icipher i= iCipher.getInstance("AES"); 

cipher.init(Cipher.DECRYPT_MODE,SK); 

byte[] icipherEHR i= icipher.doFinal(Base64.getDecoder().decode(_CEHR)); 

 

 i i i i i i i i// ireturn idecrypted icipher iEHR 

 i i i i i i i i i i i i i i i ireturn inew iString(cipherEHR); 

 i i i i i i i i i i i i} 

Implement smart contract code: 

contract iContract i{ 
 i i i i i i// iuses iRoles ilibrary iform iopenzeppelin ifor irole ibased iaccess icontrol 
 i i i i i i i i iusing iRoles ifor iRoles.Role; 
 i i i i i i// imainly ithree iroles iadmin,doctor iand ipatient 
 i i i i i i i i i iRoles.Role iprivate iadmin; 
 i i i i i i i i i iRoles.Role iprivate idoctor; 
 i i i i i i i i i iRoles.Role iprivate ipatient; 
 
struct iDoctor i{ 
// idoctor idetails 
 
address iid; i 
string iprk; i 
string isk; i 
} i 
 i i i 
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 istruct iPatient i{ 
address iid; i 
string ipatHash; 
string iprk; i 
string isk; i 
} i 
// iStruct ito istore iMEdical idoctors 
 i i i istruct iMedRec i{ 
// iowner i:patient 
 i i i i i i i iaddress iowner; 
 i i i i i i i istring idocID; 
 

string icEHR; i 

 i i i i i i i iaddress[] idoctors; 
 i i i i} 
// istruct ifor isharing iEHR 
 i i i istruct iShareDoc i{ 
 i i i i i i i iaddress iowner; 
 i i i i i i i iaddress idocID; 
 i i i i i i i istring isign; 
 i i i i i i i istring ick; 
 i i i i i i i iuint8 iaccess; 

} i 

// imappings i 

 i i i imapping(address i=> iDoctor) iDoctors; 
 i i i imapping(address i=> iPatient) iPatients; 
 i i i imapping(address i=> iMedRec) iRecords; 
 i i i imapping(address i=> imapping(address i=> iShareDoc)) iShares; 
 i i i iaddress[] ipublic iDr_ids; 
 i i i iaddress[] ipublic iPatient_ids; 
 i i i istring[] ipublic iRecordHashes; 
 i i i iaddress iaccountId; 
 i i i iaddress iadmin_id; 
 i i i iaddress iget_patient_id; 
 i i i iaddress iget_dr_id; 
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 i i i iconstructor() i{ 
// iset ithe iaccount iwhich ideploy ithe icontract ias iadmin 
// iIn ithis icase ifirst iaccount ion iganache 
 i i i i i i i iadmin_id i= imsg.sender; 
 i i i i i i i iadmin.add(admin_id); 
 i i i i} 

//get iAdmin i 

 i i i ifunction igetAdmin() ipublic iview ireturns i(address) i{ 
 i i i i i i i ireturn iadmin_id; 

} i 

//Add iDoctor i 

 i i i ifunction iaddDoctor( 
 i i i i i i i iaddress i_newdr, 
 i i i i i i i istring imemory i_prK, 
 i i i i i i i istring imemory i_sk 
 i i i i) ipublic i{ 
 i i i i i i i irequire(admin.has(msg.sender), i"Only iFor iAdmin"); 
 i i i i i i i idoctor.add(_newdr); 
 i i i i i i i iDoctor istorage idoc i= iDoctors[_newdr]; 
 i i i i i i i idoc.id i= i_newdr; 
 i i i i i i i idoc.prk i= i_prK; 

doc.sk i= i_sk; i 

 i i i i i i i iDr_ids.push(_newdr); 
 i i i i} 

// iget iDoctor i 

 i i i ifunction igetDoctor(address i_docID) ipublic iview ireturns i(Doctor 
memory) i{ 
 i i i i i i i ireturn iDoctors[_docID]; 
 i i i i} 
 i i i ifunction idelDoctor(address idocID) ipublic i{ 
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 i i i i i i i irequire(admin.has(msg.sender), i"Only iFor iAdmin"); 
 i i i i i i i idoctor.remove(docID); 

} i 

 i i i i// icheck iis iDoctor 
 i i i ifunction iisDr(address iid) ipublic iview ireturns i(string imemory) i{ 
 i i i i i i i irequire(doctor.has(id), i"Only ifor iDoctors"); 
 i i i i i i i ireturn i"1"; 

} i 

 i i i i// iCheck iis iPatient 
 i i i ifunction iisPat(address iid) ipublic iview ireturns i(string imemory) i{ 
 i i i i i i i irequire(patient.has(id), i"Only ifor iDoctors"); 

return i"1"; i} i 

 i i i i// i iAdd ipatient 
 i i i ifunction iaddPatient(address i_newpatient) iexternal ionlyAdmin i{ 
 i i i i i i i ipatient.add(_newpatient); 

} i 

 i i i i// iGet iPatient iInformation i=> ireturn iIPFS ihash iof ipatient idetails 
 i i i ifunction igetPatInfo(address iiD) ipublic iview ireturns i(Patient imemory) 
{ 
 i i i i i i i ireturn i(Patients[iD]); 
 i i i i} 
 i i i i// iAdd ipatient iInformation ito iBlockChain 
 i i i ifunction iaddPatInfo( 
 i i i i i i i iaddress ipat_id, 
 i i i i i i i istring imemory i_patInfoHash, 
 i i i i i i i istring imemory i_prK, 
 i i i i i i i istring imemory i_sK 
 i i i i) ipublic i{ 
 i i i i i i i iPatient istorage ipatInfo i= iPatients[pat_id]; 
 i i i i i i i ipatInfo.id i= ipat_id; 
 i i i i i i i ipatInfo.patHash i= i_patInfoHash; 
 i i i i i i i ipatInfo.sk i= i_sK; 
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 i i i i i i i ipatInfo.prk i= i_prK; 
 i i i i i i i iPatient_ids.push(pat_id); 
 i i i i i i i ipatient.add(pat_id); 

} i 

 i i i i// iAdd iMedical irecord ito iblock ichain 
 i i i ifunction iaddMedRecord( 
 i i i i i i i iaddress i_pat_id, 
 i i i i i i i istring imemory i_doc_id, 
 i i i i i i i istring imemory i_cEhr 

) ipublic i{ i 

 i i i i i i i irequire(doctor.has(msg.sender) i== itrue, i"Only iDoctor iCan iDo 
That"); 
 i i i i i i i iMedRec istorage irecord i= iRecords[_pat_id]; 
 i i i i i i i irecord.owner i= i_pat_id; 
 i i i i i i i irecord.docID i= i_doc_id; 
 i i i i i i i irecord.cEHR i= i_cEhr; 

} i 

 i i i i// iView iMedical irecord ireturns iEHR ifor igiven ipatient iid 
 i i i ifunction iviewMedRec(address iid) ipublic iview ireturns i(MedRec imemory) 
{ 
return i(Records[id]); 

} i 

//Share iEHR iwith igiven idocID iwith iencrypted iSK iand isignature 
function ishareMedRec( 
 i i i iaddress i_owner, 
 i i i iaddress i_docID, 
 i i i istring imemory i_sign, 
 i i i istring imemory i_ck, 
 i i i iuint8 i_access 
) iexternal ionlyPatient i{ 
 i i i iShareDoc istorage ishare i= iShares[_owner][_docID]; 
 i i i ishare.owner i= i_owner; 
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 i i i ishare.docID i= i_docID; 
 i i i ishare.sign i= i_sign; 
 i i i ishare.ck i= i_ck; 
 i i i ishare.access i= i_access; 
 i i i iRecords[_owner].doctors.push(_docID); 
} 
// iget iShared iDocument ifor iDoctor 
function igetPatRecord(address i_owner, iaddress i_docID) 
 i i i ipublic 

view i 

 i i i ireturns i(ShareDoc imemory) 
{ 
 i i i i i i i ireturn iShares[_owner][_docID]; 
 i i i i} 
 i i i i// iget ishared iDoctors ifor igiven ipatient 
 i i i ifunction igetSharedDoctors(address i_id) 
 i i i i i i i ipublic 

view i 

 i i i i i i i ireturns i(ShareDoc[] imemory) 
 i i i i{ 
 i i i i i i i iMedRec istorage irec i= iRecords[_id]; 
 i i i i i i i iShareDoc[] imemory i_shareDocs i= inew 
ShareDoc[](rec.doctors.length); 
 i i i i i i i ifor i(uint256 ii i= i0; ii i< irec.doctors.length; ii++) i{ 
 i i i i i i i i i i i iif i(Shares[_id][rec.doctors[i]].owner i!= iaddress(0)) i{ 
 i i i i i i i i i i i i i i i i_shareDocs[i] i= iShares[_id][rec.doctors[i]]; 
 i i i i i i i i i i i i} 

} i 

 i i i i i i i ireturn i_shareDocs; 
 i i i i} 
 i i i i//update ishared iaccess ifor ishared iEHR 
 i i i ifunction iupdateAccess( 
 i i i i i i i iaddress i_owner, 
 i i i i i i i iaddress i_docID, 
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 i i i i i i i iuint8 i_access 
 i i i i) ipublic i{ 
 i i i i i i i iShares[_owner][_docID].access i= i_access; 
 i i i i} 
 i i i i//delete ishared idoctor iaccess 
 i i i ifunction ideleteAccess(address i_owner, iaddress i_docID) ipublic i{ 
 i i i i i i i idelete iShares[_owner][_docID]; 
 i i i i i i i iMedRec istorage irec i= iRecords[_owner]; 
 i i i i i i i ifor i(uint256 ii i= i0; ii i< irec.doctors.length; ii++) i{ 
 i i i i i i i i i i i iif i(rec.doctors[i] i== i_docID) i{ 
 i i i i i i i i i i i i i i i idelete irec.doctors[i]; 
 i i i i i i i i i i i i} 

} i} i 

//update iShared iSignature 
 i i i ifunction iupdateSharedSign(address i_owner, istring imemory i_sign) 
public i{ 
 i i i i i i i iMedRec istorage irec i= iRecords[_owner]; 
 i i i i i i i ifor i(uint256 ii i= i0; ii i< irec.doctors.length; ii++) i{ 
 i i i i i i i i i i i iif i(rec.doctors[i] i!= iaddress(0)) i{ 
 i i i i i i i i i i i i i i i i i i i i i iShares[_owner][rec.doctors[i]].sign i= i_sign; 
 i i i i i i i i i i i i i i i i i i} 

} 

 i} i 
 

3.2.2 AI Model 

The main goal of our proposed system based on Blockchain and AI and how can integrating 

these two techniques to build immutable and secure system of patient’s medical 

information. Furthermore, we improve the system with integrating both technologies for 

making a significant difference in healthcare. Deep learning (DL) and artificial intelligence 

(AI) give potential to develop solution that address highly particular business requirements. 

Deep learning in healthcare has significantly improved clinic support and changed patient 

care overall. Deep learning is being used more frequently to identify clinically significant 

elements in photos that go beyond what the human eye can see.   
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Chest X-ray images are commonly utilized in clinical practice to diagnose various illnesses, 

including pneumonia, lung cancer, and abnormalities such as lesions and fractures. The aim 

of our proposed system is to create a method to identify 14 various chest diseases from an 

X-ray image as indicated in the following Figure 3.7 Our classifier generates a label vector 

from an input X-ray image that indicates which of 14 illness groups the image belongs to. 

The stages that follow will describe how to analyse x-ray images and verify using CNN to 

predict the disease.  

 

Figure 3.7 Sample Images in NIH ChestX-Ray8 Dataset. 

 

3.2.2.1 Dataset 

One of the largest public chest x-ray databases for thorax disease detection research 

purposes to date is the NIH ChestX-Ray8 dataset (Wang et al. 2017). This dataset includes 

112,120 frontal view chest x-ray pictures of 30,805 unique people with 14 thoracic diseases 

that were taken from the clinical PACS database at the National Institutes of Health Clinical 

Center (atelectasis, consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, 
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effusion, pneumonia, pleural thickening, cardiomegaly, nodule, mass and hernia). For 

convenience, all of the photos in this collection have already been preprocessed to the same 

size of 1024 1024. This dataset, which contains both typical instances and those connected 

to TB, includes some sample raw photos in the previous Figure . 

Clinical readings sorted by image names and saved in a single Comma Separated Values 

(CSV) file called "Data Entry 2017" contain patient ID, follow-up number, age, gender, 

view position, and anomaly information.  

The NIH ChestX-Ray8 dataset, which has a big amount of data, extensive annotations, and 

a wide range of thorax disorders it covered, has been widely used by deep learning 

researchers for medical applications, although there are still some issues. 

The chest x-ray image quality variance is the first and biggest issue, and it significantly 

adds to the workload associated with data cleaning. The first step is to delete any side views, 

photographs with little meaningful information in the lung region, rotated images, and 

images with poor pixel quality. If not, these "poor data" will influence how the deep 

learning models train, which will affect how well they diagnose diseases in general. Figure 

3.8 contains examples of photographs that feature the aforementioned issues. 

 

Images with side view 

 

Images do not contain much lung part 
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 Rotated images 

 

Images with bad pixel quality 

Figure 3.8 sample of images with bad quality in NIH ChestX-Ray8 dataset. 

 

3.2.2.2 Pre-Processing  

In order to prepare the image for future processing, it must be resized and normalised at the 

image pre-processing stage. Based on the need for model creation, several image pre-

processing techniques may be discovered in earlier literature. Image scaling, image 

normalisation, and covert level to category algorithms are among those that are frequently 

utilised. Using the ImageDataGenerator() Python function, images were scaled in this study 

to ensure the same size and identical pixel. In this study, photographs with 320 by 320 pixel 

sizes are taken into account. Also, by adjusting the pixel intensity, we may make the image 

appear more realistic. To do this, we often use the image's average and standard deviation. 

This method lessens the computational complexity involved in modelling training. 

However, images were normalised using Eq. (10). 

     (10) 
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Where Xmin and Xmax refer to the minimum and maximum pixel values. 

After normalisation, we will set "batch_size" which divides the total number of images in 

train set in every epoch, then set the image size to be 320px by 320px.  

By using ImageDataGenerator() function, will build a separate generator  for validation and 

testing data. This is because we want to normalize one image at a time rather than in batches 

for test and validation data. In the interest of time, we'll take a sample of the dataset to 

calculate the mean and standard deviation rather than all of it.  

 

3.2.2.3 Classification  

Convolutional Neural Network (CNN) is a type of deep learning algorithm which can 

recognize patterns and features in an input image by assigning weights to different parts of 

the image. One of the main benefits of CNN is its ability to capture spatial and temporal 

dependencies in an image using filters that are applied to the image (Simonyan et al., 2014). 

The CNN architecture is composed of three layers: convolutional, pooling, and fully 
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connected. The convolutional layer is responsible for extracting features from the input 

image. It can contain multiple convolution kernels, and its calculations are carried out as 

follows: 

    (11) 

where is xjl-1  the characteristic map of the output of previous layer, xlj is the output of the 

ith channel of the jth convolutional layer and f(.) is called the activation function. M j is the 

subset of input feature maps, klij is a convolutional kernel and blj is its corresponding 

weight.  

 

3.2.2.3.1 DenseNet  

Convolutional networks can be significantly deeper, more precise, and easier to train if they 

have shorter connections between layers that are near to the input and those that are close 

to the output, according to recent research.  

The Dense Convolutional Network (DenseNet), which connects each layer to every other 

layer in a feed-forward manner, is a component of our system that takes advantage of this 

observation. 

 Our network features L(L+1)/2 direct connections as opposed to standard convolutional 

networks with L layers having L connections, one between each layer and its succeeding 

layer. The feature-maps of all layers before it are utilised as inputs for each layer, and its 

own feature-maps are used as inputs into all levels after it.  

DenseNets have several advantages, such as solving the vanishing-gradient problem, 

enhancing the propagation of features, promoting the reuse of features, and reducing the 

number of parameters. DenseNets have been shown to achieve significant improvements 

over state-of-the-art models with less memory and processing power required to achieve 

high performance. 

DenseNet is a modern CNN architecture that achieves state-of-the-art performance with 

fewer parameters for visual object recognition. It shares many similarities with ResNet, but 

the key difference lies in the way they merge the output of previous layers with subsequent 
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ones. While ResNet uses additive attribute (+), DenseNet employs concatenated (.) 

attributes to tightly link all layers, aiming to eliminate the problem of vanishing gradients. 

 

Among the different DenseNet (DenseNet-121, DenseNet-160, DenseNet-201), this study 

employed DenseNet-121 [5 + (6 + 12 + 24 + 16) × 2) = 121] architecture. Details of the 

DenseNet-121 is following: 5—convolution and pooling layers, 3—transition layers 

(6,12,24), 1—Classification layer (16) and 2—denseblock (1 × 1 and 3 × 3 conv).  

Generally, traditional CNNs calculate the output layers (lth) using a non-linear 

transformation Hl(.) to the output of the previous layer Xl−1  

     (13) 
  

DenseNets concatenate rather than sum up the layer output functionality maps with the 

inputs. An easy communication model for enhancing information flow across layers is 

provided by DenseNet: The features of all preceding layers provide input to the lth layer: 

The equation is then changed once more to:  

  (14) 

where [X0, X1, X2,…, Xl − 1,] is a single tensor formed by the concatenation of the output 

maps of previous layers. Out of the functions, Hl(.) represents a non-linear transformation 

function. This function consists of three major operations, batch normalization (BN), 

activation (ReLU) and pooling and convolution (CONV). DenseNet architecture is 

presented in Figure 3.9. However, the growth rate k helps to generalize the lth layer in 

following manner: k[l] = (k[0] + k(l − 1)). Where k[0] is known as the number of channels.  
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Figure 3.9 DenseNet architecture (Huang G, et al.2017) 

  

Our system will utilize a DenseNet121 model obtained from Keras, which we will enhance 

by adding two layers on top of it. The first layer, a GlobalAveragePooling2D layer, will 

enable us to compute the average of the last convolution layers. The second layer will be a 

Dense layer, with a sigmoid activation function, to make predictions for each of the classes 

in our dataset. 

The implementation code: 
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3.2.3 Tools Used to Implement The Proposed System 
 

In general, our proposed system will be based on Ethereum Platform, Then,  when the 

system is running, and after user login Authentication, the user can upload the medical file, 

then The uploaded file then will pass through AngularJS as front-end software that contains 

the user interfaces. After that, the back-end system will be with Python, IPFS will fetch the 

file from AngularJs. At the same time, AngularJS will connect to the blockchain through 

Web3 and Ganache blockchain will also integrate to the MetaMask through web3.  

Following that, both AngularJs and Ganache will receive the IPFS hash that was previously 

sent. The user will receive the transaction permission on the Ganache blockchain from 

Ganache via MetaMask. Ganache will then deploy the smart contract when the patient has 

given his or her consent. At this point, each transaction will result in the crediting of some 

gas. 

The Encryption process we can execute it by implement the library eccrypto from NodeJS. 

In addition, AI section we will use Libraries support CNN algorithm to predict and achieved 

the requirements.  

In the following section, we will describe the the tools in details: 

3.2.3.1 Blockchain Platform 

 

 

Figure 3.10 Ethereum Logo. 
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Ethereum is open source software platform based on blockchain, and it serves the most second 

largest cryptocurrency on he the world after Bitcoin (IHS S., 2015). Ethereum shard data and 

decentralised public ledger like Bitcoin, however it has expanded its functionality where the user 

can utilise the platform to build, publish, monetise, and use the applications. 

Furthermore, when we talk about the application, Ethereum is not cryptocurrency only, it is 

platform for developers to develop dequantized application (DApp) and publish the smart contract. 

DApp is like YouTube and Twitter but stored the data in decentralized methods and allows for the 

user to get access on his own data without any centralized entity. Each of DApp and smart contracts 

are free from downtime risks, fraud, and being tempered off. 

The user of DApps will be charged in terms of Ether while using DApps like file uploading because 

Ethereum also has its own coin, called Ether (ETH). There will be a fee for each transaction made 

on the blockchain, including those made on Ethereum. The cost varies according to the amount of 

data that is uploaded to the programme. The uploaded data will be secured with the gas fee. The 

term "gas" refers to this computation of execution. Additionally, the maximum amount of gases 

that can be utilised for each transaction can be specified by the user or account owner. 

However, if the gas is insufficient, the user will not be able to use the apps properly even 

though the gas will still be utilised. On the other hand, if the fee is less than the cost of the 

gas, the gas will be given back to the owner. 

There are five basic parts of Ethereum. The parts are as follows:  

- Programming Language: Solidity 

- Smart Contract (explained in Chapter 2): Since Ethereum uses the programming 

language Solidity, smart contracts are written in Solidity. Cryptocurrency includes 

smart contracts, and the system will operate in accordance with the contracts that 

the developer has programmed. Additionally, there shouldn't be any adjustments 

possible once this smart contract has been implemented on the blockchain. 

- Ethereum Virtual Machine (EVM): Typically, contracts are written in high-level 

languages like Solidity, then they are compiled into EVM bytecode. As an EVM 

instance is run by each node in the Ethereum blockchain, nodes can agree on the 



114 
 

 

same set of instructions to be executed. In other words, the smart contract will 

actually be carried out by EVM. 

- Ether: On the Ethereum platform, transactions and smart contract execution both 

require the Ethereum token. 

- Consensus Algorithm (explained in Chapter 2). 

3.2.3.2 AngulaJs 

 

Figure 3.11 Front-end software 

AngularJS is a discontinued free and open-source JavaScript-based web framework for 

developing single-page applications. It was maintained mainly by Google and a community 

of individuals and corporations. 

AngularJS is a toolset for building the framework most suited for our application 

development. It is fully extensible and works well with other libraries. Every feature can 

be modified or replaced to suit your unique development workflow and feature needs.  

3.2.3.3 Truffle 

The developer's ability to create the blockchain application was made easier using truffle. 

For the Ethereum blockchain using EVM, Truffle is utilised as a development environment, 

a framework for testing, and an asset pipeline. Additionally, Truffle has built-in smart 
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contract compilation, linking, deployment, and binary management features. Run the 

following command on the terminal to instal the Truffle on a global scale. 

 

Figure 3.12 Truffle Logo 

3.2.3.4 Ganache 

 

Figure 3.13 Ganache Logo 

To emulate the behaviour of a public blockchain, ganache is a private Ethereum blockchain. 

Decentralized apps (DApps), smart contracts, software testing, and state inspection are all 

possible with Ganache while retaining chain management. The user in Ganache is given 

ten accounts, each with 100 ETH. Each transaction on the blockchain requires the payment 

of gas. 
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3.2.3.5 MetaMask 

 

Figure 3.14 MetaMask Logo 

The MetaMask extension is obtained for this project by browser the Google Chrome 

webstore. The Ethereum wallet and blockchain application gateway MetaMask operates as 

a web browser add-on. With the help of this extension, the individual account might control 

the price of gas or ether by being linked to the blockchain. In fact, the web browser has 

evolved into a blockchain browser with the aid of MetaMask. 

 

3.2.3.6 IPFS 

What follows is a general explanation of how IPFS functions. First, the data will be broken 

up into smaller pieces after being uploaded to IPFS. In order to prevent network 

duplication, the system will encrypt (cryptographic hash) each and every data shard. The 

system will also keep track of each data shard's version history. Later, the network's nodes 

will individually store the encrypted shards. Additionally, the content IDs from which the 

Merkle Directed Acyclic Graph (Merkle DAG) will be created are included in the encrypted 

hash. As a result, this Merkle tree makes it simple to identify archived material using the 

root hash. Finally, file locations and node connection information are obtained using the 

distributed hash table (DHT). 

There are two types of IPFS data structures that are used for retrieving files: Data and Link. 

It will handle the massive amounts of unstructured binary data for the data and examine 
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each file to make sure it isn't more than 256kB. However, Link includes a Link structure 

array that consists of Name, Hash, and Size. The first data field is called Name and contains 

the name of the Link. The second data field is called Hash and contains the hash of the 

IPFS entity that is connected. The last data field is called Size and contains the total size of 

the IPFS object.  

The IPFS can be initialised using either the IPFS Daemon or the IPFS Infura methods. 

However, in this project, the latter approach was chosen for the system since it is much 

better in integrating process. 

 

Figure 3.15 IPFS Logo. 

3.2.3.7 Web3 

The decentralised application (DApp) that powers the blockchain is created using Web3. 

The non-blockchain website often used Web2, and this website uses an intermediary 

entity that may not have operated as intended. The following command is entered into the 

console to install the web3. 

> npm ls web3  
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CHAPTER FOUR  

RESULT AND ANALYSIS 

4.1 INTRODUCTION 

In order to properly conclude this study, the results are described in Chapter 3 must be 

analyzed to test the proposed hypothesis for answering the research questions defined in 

the problem statement and to determine the extent to which we are or are not compromising 

other performance metrics in achieving our research goals. 

4.2 RESULTS OF THE PROPOSED SYSTEM 

Firstly, the proposed system will be executed via the command line, both on the server side 

and the client side. Run truffle migrate because it provides the compiler for smart contracts. 

We need it to convert the Solidity code into machine-readable code that can be deployed 

on Ganache blockchain and connect the tools together for our proposed system.   

In order to engage with smart contracts on our own private blockchain, we can imitate the 

Ethereum blockchain using Ganache, a private Ethereum blockchain environment. The 

following are some characteristics offered by Ganache:  

• Shows output from the blockchain log.  

• Offers advanced mining control.  

• Environment for the Ethereum blockchain; built-in block explorer  

• There is a desktop application for Ganache. 

Each block in Ganache has public and private key used for connecting purpose with 

blockchain. 

 

4.2.1 Results of the proposed system  

When execute our proposed system. First step as we mentioned in the previous, the patient 

visits the doctor. The user interface for this step will be shown in the following Figure 4.1 
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patient ID from Ganache, which is the private key, then can choose the specialty doctor and 

add doctor’s public key, date of appointment and time.  

  

 Figure 4.1 . Book appointment interface.  

 

In turn, on the part of the doctor all patients' appointments will be displayed. Once the 

appointment is chosen, the system sends a request to the patient to grant access, as shown 

in the following figures.  

• If the doctor lacks the authorization to view or modify the EHR, they will not be able 

to carry out the consultation process. When attempting to conduct a consultation 

through the EHR, the doctor will receive a warning message indicating their lack of 

editing access, as shown in the figure 4.2. 
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Figure 4.2 Doctor didn’t have edit access. 

• When the patient manages their own medical records and grants the doctor viewing 

access, the doctor is only able to view the records for the purpose of reading them. 

As shown in the Figure 4.3. 

 

Figure 4.3 Sharing record with view access. 

• When the patient is in charge of managing their own medical records and gives the 

doctor permission to make edits, the doctor can only make changes to the records 

for the purpose of updating them. This is illustrated in Figure 4.4. 
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Figure 4.4 Sharing record with edit access. 

• Manage Shared EHR: Managing a shared EHR involves displaying a list of doctors 

(identified by their ID) along with their respective access permissions. The patient 

should be able to remove or modify these permissions as needed. As illustrated in 

Figure 4.5. 

 

Figure 4.5 Manage shared EHR. 

• Update Shared EHR: After granting the doctor permission to access the medical 

records, if the patient needs to update the doctor's details, they can do so using 

Figure 4.6. This allows the patient to modify not only the doctor's information but 

also their access permissions. 
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Figure 4.6 Update Shared record. 

Once doctor have permission to edit EHR, now to make our proposed system unique from 

other works in the open current literature, we added a new feature beside the use of 

Blockchain and the process to manage the EHR which help doctor in diagnosis and save 

time and cost for decision making process. We use an AI diagnostic tool that we have 

developed based on convolutions network algorithm DenseNet121 to predict any present 

disease in the patient’s x-ray image. More on this in subsection 4.3.3 below.  

The following figures, shows how decryption process is done once access control is 

granted, in addition to the user interface to edit EHR.  

• Doctor receives Signed EHR: Once the doctor has been granted permission to view or 

edit the encrypted EHR, they can request to obtain the signed version of the EHR and 

decrypt it. Figure X illustrates the process that the doctor can follow to view the signed 

EHR. 
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Figure 4.7 Access and received signed EHR. 

 

• In the following figure show how signed EHR From Blockchain: To decrypt the 

encrypted EHR, the doctor's ID must be used to initiate the request. The first step is to 

verify the validity of the request ID, followed by the decryption of the Symmetric key 

(CK) using the Doctor ID and the patient's private key with the Symmetric key. The 

next step is to verify the signature of the EHR, which involves generating the hash of 

the encrypted EHR. This is a critical step that ensures the validity and integrity of the 

EHR. The decrypted signature of the EHR is then performed using the patient's public 

key. The final step involves decrypting the decrypted signature of the EHR and 

Symmetric key. This is illustrated in figure 4.8. 
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Figure 4.8 illustrated signed EHR. 

 

• Uploaded Xray images and disease prediction, with accuracy of the result of 

prediction, shown in the following figures. 

 

Figure 4.9 uploaded x ray image and predict disease. 

 

Then once the disease prediction is carried out and the doctor updates the patient EHR, 

one should confirm the consumed estimated gas fees to save the changes on EHR, as 

shown in following figure from metamask. 



125 
 

 

 

Figure 4.10 Confirms estimated gas consumed to update EHR. 

• Stored EHR in IPFS: Figure 4.8 illustrates how storing the EHR in IPFS involves 

creating a list of doctors who have edited the EHR, including their Doctor ID, as well 

as a record of the consultation process. This includes a list of medications prescribed, 

medical reports added to the patient's EHR, and other relevant information. 
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Figure 4.11 EHR stored in IPFS. 

 

the detailed implementation of the proposed hybrid ECC_AES technique is discussed 

below, where we should first mention the Postman. Postman allows us to perform different 

tasks on API requests and test scripts where we might apply encryption and many other 

possibilities when encryption can be used. then Postman can be called as an API platform 

for building and using APIs.  

we used Crypto.js that is one of the most libraries in encryption and decryption and it 

supports our hybrid encryption for the proposed system. 

The following figures 4.12- 4.17 show how to execute API for the proposed hybrid 

encryption steps such as: encrypt EHR, Decrypt EHR, Sign EHR, …. 
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1- Encrypt SK: The symmetric key encryption process involves using the 

original symmetric key with the patient's public key to generate CK. 

 
Figure 4.12 Show how encrypt SK. 

2- Encrypt EHR: The encrypted EHR is generated by using the symmetric 

key to produce CEHR. 

 
Figure 4.13 show how encrypt EHR. 
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3- Sign HER : To sign the encrypted EHR, it is first hashed to generate the 

message digest (MD). Using this message digest and the private key, the 

EHR can then be signed. 

 
Figure 4.14 show how Sign EHR. 

4- Decrypt SK : To decrypt the encrypted EHR, the doctor's ID must be used to initiate the 

request. The first step is to verify the validity of the request ID, followed by the 

decryption of the Symmetric key (CK) using the Doctor ID and the patient's private key 

with the Symmetric key. 

 
Figure 4.15 show how decrypt SK. 
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5- Verify the sign: The next step is to verify the signature of the EHR, which involves 

generating the hash of the encrypted EHR. This is a critical step that ensures the validity 

and integrity of the EHR. The decrypted signature of the EHR is then performed using 

the patient's public key. 

 
Figure 4.16 show how verify sign. 

6- Decrypt HER : The final step involves decrypting the decrypted signature of the EHR 

and Symmetric key. 

 
Figure 4.17 show how decrypt EHR. 
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4.3 ANALYSIS 

Our results in table 4.1 show that processing time and cost after encryption and decryption 

process time and cost before applying the E2E hybrid encryption. Table 4.2, however, 

shows the same results after applying the E2E hybrid encryption. 

It is noticed that when we save the medical patient record using hybrid encryption, it's 

required execution time is more than when didn’t use hybrid encryption The saving cost, 

however, is approximately 73.4172% in execution time. As expected, a delay penalty is 

paid for enjoying a high level of E2E security, which is the one of the main contributions 

of our proposed system. 

 

Table 4.1 Execution time and cost without hybrid encryption ECC-AES. 
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Table 4.2. Execution time and cost with hybrid encryption ECC-AES. 

 

4.3.1 Encryption and decryption time  

For confirmation, we also compared the encryption and decryption times for our 

proposed hybrid method using various key sizes and with the already-in-use techniques 

(AES, DES). Several keys, including 64 bits, 128 bits, 192 bits, and 256 bits, were used 

for the tests. Using various keys, the proposed and current encryption techniques were 

tested for text data. Firstly, the following Table 4.3 show key generation time for 

asymmetric and symmetric types of different sizes: 

Table 4.3 shows key generation time for ECC-AES In different size. 

Key Size 

Time in nano seconds 

(Encryption) 

Time in nano seconds 

(Decryption) 

64 2178500 3876199 

128 2386100 4083799 
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192 2384900 4082599 

256 2301300 3998999 

 

The encryption and decryption times of all the values are displayed in nanosecond  in 

Tables 4.4 and Table 4.5 For a better understanding, we may also view the visual 

analysis of these values. 

Table 4.4. Compare encryption time with other methods  

 AES DES Proposed methods 

Hybrid ECC-AES 

64 3.52 3.67 0.654 

128 3.59 4.2 0.65 

192 3.45 4.25 0.93 

256 3.61 4.43 0.89 

 

Table 4.5 Compare the decryption time with other methods  

 AES DES Proposed methods 

Hybrid ECC-AES 

64 2.69 3.11 0.6 

128 2.82 3.30 0.844 

192 2.93 3.38 0.843 

256 3.08 3.58 0.835 

 

Figure 4.18 compares the times required for the encryption process of the identical 

text data by the AES, DES, and hybrid methods. The hybrid ECC-AES model was 
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found to take less time on key sizes in bits (64, 128, 192, and 256), but the other 

algorithms in use took more time on key sizes in bits (64, 128, 192, and 256). 

 

 

Figure 4.18 Compare time with different key size for encryption process with other 
methods. 

Figure 4.19 illustrates how long the decryption of the same text data using the AES, DES, 

and hybrid methods takes in comparison. The hybrid model was found to take less time 

on keys of 64, 128, 192, and 256 bits, but the two existing algorithms (AES, DES) spent 

more time on keys of those same sizes (64, 128, 192, and 256). 
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Figure 4.19 Compare time with different key size for decryption process with other 
methods. 

Figures 4.18 and 4.19 show how, in comparison to previous cryptographic algorithms, our 

scheme will aid in memory space optimization and minimise computational complexity. In 

comparison to other cryptographic methods, the hybrid algorithm requires a medium 

amount of memory and takes less time to encrypt and decrypt data. 

 

Figure 4.20 Encryption and decryption time consumption with different EHR size. 
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Record encryption time is the amount of time required to encrypt a health record based on 

the owner's request, whereas record decryption time is the amount of time required to 

decrypt a health record based on the user's request. In our proposed encryption and 

decryption methods save time around 74% in encryption and decryption process in 

execution time.  

Figure 4.20 depiction of encryption and decryption times shows a consistent rise in time 

consumption with record size. This indicates that a file's size affects how long it takes to 

encrypt and decode it. 

Table 4.6 benchmarks the length of time required for encryption and decryption of 

blockchain works of various EHR sizes utilizing with Thwin and Vasupongayya (2019) 

and Boumezbeur I,et al.  (2022). Figure 4.20 illustrates how our proposed hybrid encryption 

and decryption times relate to the size of the HER. The encryption and decryption times 

somewhat rise along with the EHR size. Moreover, the encryption and decryption processes 

take less than 1 second to complete when the EHR is around 100 MB in size. Even if the 

EHR is more than 100 MB, the extra time required is only around 1 second. 

We compared the test results in Figure 4.20 with the amount of time that Thwin and 

Vasupongayya (2019) Boumezbeur I,et al. (2022) spent encrypting and decrypting data. 

Figures 4.21, 4.22 present the findings of the comparison. The encryption and decryption 

procedures take less time than in the other tasks. 

Our encryption and decryption efficiency are much better than those of Thwin and 

Vasupongayya (2019) and Boumezbeur I,et al. (2022) when the EHR is large. X-rays 

images are just examples of the numerous huge image files included in EHRs. Based on 

these comparisons, our technique is superior to earlier work on health record encryption 

and decryption. 

Table 4.6 compare encryption and decryption time with different EHR size. 
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File Size Thwin and 

Vasupongayya (2019) 

Boumezbeur I, et al. 

(2022). 

Proposed system 

Encryption Decryption Encryption Decryption Encryption Decryption 

512 KB 0.094 0.0064 0.0158 0.0027 0.0053 0.0017 

1 MB 0.101 0.01662 0.0452 0.0157 0.0126 0.0089 

10 MB 0.152 0.069 0.075 0.058 0.0489 0.0227 

50 MB 0.503 0.438 0.406 0.401 0.261 0.165 

100 MB 1.428 1.414 1.149 1.228 0.957 0.898 

 

Figure 4.21. Compare encryption time with other works. 
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Figure 4.22. Compare decryption time with other works. 

4.3.2 IPFS uploading and downloading time. 

The length of time it takes to upload and download a health record to and from the IPFS is 

the basis for the system evaluation. The performance of uploading health records to the 

IPFS for various record sizes is shown in Figure 4.23. The graph below displays all of the 

constituent times. The size of a health record has a direct relationship with how long it takes 

to upload it to the IPFS. By stating that the key's calculation time is unaffected by the file's 

size, we can see that it has remained stable. However sometimes the record upload time 

only slightly increased, which can be related to the network's status at the time. 

In other hand, process of original health record that is downloaded from IPFS is the exact 

opposite of what is uploaded. Also, Figure 4.23 shows the outcomes of the IPFS download 

procedure and the decryption process. The download time continuously increases from 

512KB to 500 MB as the record size does. At the smallest record size of 512KB, it takes 

only 0.285 seconds, but the larger record computation of size 500 MB significantly 

lengthens the download time to 13.26 s. The outcomes trend is therefore the same as the 

uploading process. Moreover, both download and decryption times are evolving. 
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Figure 4.23 Time to upload and download different EHR size. 

Finally, To demonstrate the usefulness of our study, we compare the key generation time, 

record encryption time, record decryption time, record upload time, and record download 

time for different file sizes ranging from 512 KB to 500 MB. A comparison of our proposed 

system to other nearby works is also included, based on a set of security criteria such as 

integrity, privacy, access control, encryption, and key encryption. 

The suggested system is shown in Table 4.7 along with the upload and download process 

response times for various studies, where "UP" and "DN" stand for "upload" and 

"download," respectively. The proposed system performs better than the other current 

approaches as a result. It provides superior upload and download performance, albeit the 

numbers may differ significantly depending on the speed of internet connection and the 

size of records. Table 4.7's comparisons of response times for encryption and decryption 

show that the proposed system performs better than other approaches due to the lack of 

complex calculations. The suggested procedure is at least twice as quick as the others. 

Table 4.7 Comparison of uploading and downloading time for encrypt/decrypt files. 
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File size Hema and Kesavan 
(2019) 

Boumezbeur I,et al. 
(2022) 

Proposed system 

UP DN UP DN UP DN 
512 KB 0.80 0.82 0.32 0.35 0.26 0.285 
1 MB 1.20 1.24 0.35 0.39 0.287 0.30 
10 MB 5.60 5.68 1.82 1.89 1.35 1.45 
50 MB 8.25 8.78 3.2 3.25 2.7 2.95 
100 MB 16.35 18.98 7.69 8.01 5.70 6.1 
500 MB 32.10 38.22 14.36 18.03 11.47 13.26 

 

4.3.3 Classification Results of The Diseases Prediction 

The analysis result for DenseNet121 to predict disease from 14 different diseases using NIH 

ChestX-Ray8 dataset shown in ROC curve in the Figure 4.24. An ROC curve (receiver 

operating characteristic curve) is a graph showing the performance of our classification 

model at all classification thresholds. This curve plots two parameters: True Positive Rate. 

False Positive Rate. 
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Figure 4.24 ROC for the performance of classification with 14 diseases. 

 

4.4 DISCUSSION 

There are several authors who discussed blockchain based healthcare systems to secure 

healthcare data sharing. Unlike Zhao et al. (2019) model, which encrypt all files and stored 

it on blockchain, in our proposed methods used IPFS to reduce the pressure on blockchain 

storage and meet real-world deployment requirements.   

in another hand, there are developed systems that make the patient had a private key for 

doctor for access data in Chen et al. (2019). However, this transmission mechanism cannot 

guarantee the confidentiality of private key from hostile nodes which can access to key any 

time.  
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We employed a hybrid encryption strategy, as opposed to Qin et al. (2021) to assure better 

security and to benefit from each encryption. Our technology uses completely secure 

encryption keys. Before being transferred to IPFS, the original EHR is encrypted. As a result, 

the blockchain's storage capacity issue can be resolved, and there is a significantly lower 

chance that original electronic health data could leak sensitive information.  

Although many of the proposed systems can provide the necessary levels of privacy and 

integrity, not all of them can offer access control, which is a crucial security objective in an 

EHR sharing system. Furthermore, only a small number of planned solutions use smart 

contracts. Our solution uses the smart contract to securely store the encryption key, maintain 

the EHR signature, confirm authentication, and manage the user's access control, in contrast 

to Qin et al. (2021), Khalaf et al. (2020). 

The system we provide safeguards patient privacy by enabling them to establish precise 

smart contract-based access controls to their EHR data. It also has a single point of failure 

and a decentralised network topology. Our strategy, in contrast to Chen et al. (2019), relies 

on defined user responsibilities to guard against security risks such unauthorised access to 

EHR data. Malicious users won't be able to access EHR data as a result. In accordance with 

the patient's preferences, it also enables quick and secure access to EHR data. It guarantees 

that EHR data elements are accessible without the requirement for external validation.  

In comparison to these similar studies, our system performs better in terms of features like 

personal data protection, access control, and data integrity. It also offers a feasible alternative 

for upgrading current electronic healthcare systems, including smart contracts, hybrid 

encryption, and encryption keys.  

The following Table 4.8 demonstrates how the proposed system ensures security objectives 

compared to others.  

The protection of confidentiality ensures that information is kept private and secure. In our 

system, only those with permission can view a patient's electronic health records (EHRs). 

Details are in the EHR sharing paragraph, and only the entity that has authorisation is 

permitted to access data from the cloud IPFS.  

By taking advantage of the blockchain and smart contract encryption capabilities, the 

blockchain account is anonymous and cannot be linked to a real identity. Hence, blockchain 
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privacy can stop public information from disclosing a person's real identify. Our access 

control system protects people's personal information. Smart contracts' user authentication 

and permission features prevent malicious access, protecting our cloud servers from further 

attacks.  

The integrity ensures that patient data is transferred between authorised users without being 

altered. To avoid change, the electronic health records are still encrypted in our scheme.  

Users of EHRs cannot alter or modify the quality of transactions signed or registered in smart 

contracts for EHR sharing, and neither can anyone else. Moreover, each node keeps a copy 

of the blockchain data, making it simple to identify changes to a particular block if a node 

interacts with other nodes. Most crucially, in our situation, EHR users don't have the 

authority to alter or update the access policies and smart contract. As a result, if the EHR is 

altered, Merkle's root value would also change, causing the block content to change. As a 

result, EHRs can be maintained utilising the blockchain safely and accurately without being 

tampered with.  

The connected contracts must first be added to the blockchain when the patients authenticate 

their EHR with a signature. Based on the signatures and integrity offered by the blockchain, 

data authenticity can be provided.  

The user sends the request to what he or she is interested in in order to be granted access to 

a patient's EHRs. If the user is able to access the information, it will be returned together 

with the encrypted EHRs that were requested, ensuring access control.  

So, to ensure the best possible health care experience for the patient, the patient should be 

able to access or grant access to his or her medical information as needed. This is currently 

not possible when the data is stored in a hospital’s proprietary Electronic Health Record 

(EHR). As a result, there is a requirement for patient operated where the details of the 

patient’s treatment are with the patient. This paper proposes a secure, interoperable patient-

centric data access management system based on blockchain. In our proposed system, the 

patient has complete control over his or her health record-related data, which is stored 

securely using IPFS. In addition to, stored the EHR in IPFS with hight level of security which 

combining symmetric and asymmetric encryption techinque to create hybride ECC-AES 

encryption. Furthermore, we integrate the system  with AI techniques to to support doctor or 



143 
 

 

health providers in decision making process .The following Table 4.6 explains the summary 

of the comparison between the existing and suggested system focusing on privacy, security, 

and integrity. The authors in (Rajput,A. et al. 2021) reviewed current strategies for healthcare 

management using blockchain technology and its effects. The existing architectures in (Shen, 

B. et al. 2019, Dwivedi, A.D. 2019, Egala, B.S. 2021) were examined. Each block includes 

a health record hash value that would transform whenever the record is updated. This ensures 

the records are immutable as it is computationally expensive to manipulate the ledger. On 

top of that, stakeholder access to patients’ medical records is prohibited by access control 

rights and level. We have benchmarked our proposed system to them. The proposed system 

architecture, as can be seen, shares all features proposed in other systems. 
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Table 4.8 Compare our proposed system with the related literature. 

  

 

 

 

         

(Chen et al. 

2019) 

yes yes yes yes no no yes no no 

(Shen, B. et 

al. 2019) 

yes yes yes yes no no no no no 

(Dwivedi, 

A.D. 2019) 

yes no yes yes no no yes no no 

Khalaf et al. 

(2020) 

yes yes yes No Yes no no no no 

(Rajput,A. et 

al. 2021) 

yes yes yes No Yes no yes no no 

(Egala, B.S. 

2021) 

yes yes yes yes yes no yes no no 

(Mohsan SA, 

et al. 2022) 

yes no yes no yes no yes yes no 

(Mahajan 

HB, et al. 

2023) 

yes no yes no no no no no yes 

(Peng G, et 

al. 2023) 

yes yes yes yes yes no yes yes no 

(Khan AA, et 

al. 2023) 

yes yes yes no yes No yes yes no 

Proposed 
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yes yes yes yes yes yes yes yes yes 
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

Medical records are an important asset in the healthcare industry, but their dispersion across 

different platforms can make it difficult to share information and create a cohesive system. 

Decentralized designs and system interoperability are becoming more important as the 

dispersed nature of healthcare services is becoming more apparent. In this study, a patient-

centered EHR management system was developed, which uses a decentralized framework 

for sharing access and storing medical data. This system is built on the Ethereum blockchain 

and IPFS architecture, and includes an access control system to provide authorized parties 

access to the relevant blockchain data. First, a framework is proposed for sharing Electronic 

Health Records (EHR) among various entities, with a focus on utilizing blockchain and cloud 

storage via IPFS. In this study, cloud storage stores the encrypted EHR while EHR signatures 

are stored on the Ethereum EHR blockchain. The proposed system aims to enhance patients' 

rights by giving them complete control over their healthcare records through a smart contract 

protocol.  

This unique approach enables patients to manage their medical reports and authorize or deny 

access to them for clinical trials or research. To ensure data confidentiality and privacy 

preservation, the system uses symmetric and asymmetric encryption. 

Finally, the system is integrated with Artificial Intelligence (AI) to revolutionize the E-

Healthcare Records (EHR) system and offer a possible solution to various technical 

challenges the healthcare industry is currently addressing. Chest X-ray images are one of the 

most common clinical methods for diagnosing a number of diseases The goal of this 

integration is to develop a solution to detect 14 different chest conditions from an X ray im- 

age. Given an X-ray image as input, our classifier outputs a label vector indicating which of 

14 disease classes does the image fall into. Original study focuses on predicting 14 diseases, 

a type of deep learning technique, was employed for automated feature extraction and disease 
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identification to assist in the decision-making process based on the patient’s X ray image to 

potentially decipher the challenging nature of this task 

The proposed framework was also subjected to analysis and evaluation, and based on the 

results, it was found to be efficient and compliant with various security requirements. The 

use of E2EE hybrid encryption ECC-AES provides a high level of privacy, security, 

confidentiality, and scalability. Additionally, the framework offers improved productivity, 

data integrity, efficient audit, and shared access to medical data, making it easier for patients 

to access a secure and unalterable medical database. 

To establish a global patient-centric EHR management system and evaluate related 

regulations and standards for integrating blockchain technology into the healthcare system, 

our ultimate goal for this study is to implement the proposed system architecture using real-

world scenarios. Additionally, we believe that the inclusion of artificial intelligence will help 

clinicians analyze diagnostic medical data more effectively and improve communication 

with patients. 

5.2 NOVELTY OF THE WORK 

The proposal is to develop a Patient-Centered Blockchain-Based EHR Management 

(PCBEHRM) system that allows patients to manage their healthcare records across multiple 

stakeholders, without the need for a centralized infrastructure. We achieve this using an 

Ethereum smart contract called Patient-Centric Access Control (PCAC) protocol, which 

ensures patient privacy and control. The system also employs the Inter Planetary File System 

(IPFS) to store medical records, which is distributed, secure, and immutable. To further 

enhance security and reduce computational power, we use an End to End Encryption (E2EE) 

functionality that combines Elliptic Curve Cryptography (ECC) and Advanced Encryption 

Standard (AES) methods .The proposed system aims to provide a secure and optimized 

scheme for sharing medical data while maintaining data security and integrity. In the long-

term, we aim to implement this system architecture on a larger scale to establish a global 

patient-centered EHR management system, leveraging the benefits of artificial intelligence 

for diagnostic analysis and communication with patients. 
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Finally, our study enhances the proposed PCBEHRM system with deep learning artificial 

intelligence capabilities to revolutionize the management of the EHR and offer an add-on 

diagnostic tool based on the captured EHR metadata. The proposed enhancement integrated 

deep learning feature is a developed a solution that can detect 14 different chest conditions 

from classification of X-ray image. The results show that the proposed system achieves a 

reduced storage cost of 73.4172% and around 76% of time efficient in comparison to other 

proposed systems in the open literature. 

5.3 THESIS CONTRIBUTION 

1) a detailed literature review study that covered the benefits of applying Blockchain 

and benefits of applying AI to the problem of health record management ، each of 

them individually. Also provide an updated discussion on privacy and security issues 

related to EHR management. Finally, A taxonomy of proposed AI-Blockchain 

solutions to the problem of EHR. 

2) Design of a patient-centerd on EHR management (PCEHRM) system that comprises 

ensures that the patient has full control over his health record and who has access to 

their health record and make practical use of the data and adheres to new standards 

in data integrity and privacy. 

3) Enhancing the proposed system with E2E Encryption using hybrid ECC-AES. Uses 

symmetric and asymmetric algorithms to encrypt EHR and secret keys for ensuring 

confidentiality and privacy. 

4) integrate the proposed system and add AI model. By deep learning algorithm can 

help the doctor in diagnosis decision-making and predict the diseases from 14 lung 

different diseases by classification X ray images using DenseNet121.  

5) Performance analysis of the proposed system with time and cost consumed before 

and after encryption EHR. in addition, analysis the time need to upload or download 

from IPFS cloud storage with different size of EHR. 

6) Benchmarking of the proposed system against other recent proposals in the literature. 
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5.4 FUTURE WORK 

In general, there are few future directions that stand clear for the EHR management 

research efforts, namely, applications of Big Data, AI, Edge Computing and IoMT. Below is 

our take on these directions. 

 

5.4.1 Big Data  

A significant problem for healthcare data systems seeking to improve the quality of 

healthcare services is acquiring, processing, and analyzing huge volumes of personal 

healthcare data, particularly from commonly used mobile and wearable devices, while 

minimizing privacy violations. Blockchain technology has the potential to address the 

security concerns associated with big data techniques by providing immutability, security, 

and traceability. Big data can make the best use of all healthcare data assets to assist 

necessary improvements in areas of prediction in healthcare diagnosis, analysis in magnetic 

resonance imaging, and other applications (Otero P, et al. 2014).  

Two broad categories of big data analysis are data management and data analysis. For data 

management, blockchain technology can be utilized to securely maintain immutable 

healthcare records. For data analysis, the blockchain's transactions and records can be 

extracted and studied for potential trading behaviors. 

 

5.4.2 Artificial Intelligence  

When blockchain technology is combined with AI in a variety of real-world healthcare 

applications, the resulting systems become more efficient and stable (M. N. K. Boulos, 2018). 

Machine learning (ML) and deep learning (DL) are two major branches of AI that are 

assisting in the automation of real-world applications. In the near future, machine learning 

will be used in concert with blockchain to manage EHRs. Despite the difficulties associated 

with storing, distributing, and training vital EHR data to design practical applications, interest 

among researchers in developing machine learning and blockchain-based EHR applications 

has grown tremendously (X. Zheng, 2018), (S. H. Lee and C. S. Yang, 2018). IBM has 



149 
 

 

announced intentions to implement an intelligent blockchain, in which an AI agent performs 

various duties such as enforcing laws, improving records, detecting suspicious activity, and 

making recommendations for upgrading smart contracts over a broad network. In the 

MATRIX project (L. Tzu., 2017), AI is employed to construct a next generation blockchain 

that enables the automated development of intelligent contracts, enhances protection against 

malicious attacks, and enables highly scalable operations. Various machine learning 

techniques can be used to detect fake EHR data, ensuring that only authentic EHRs are 

maintained on the blockchain. Deep learning enables the recovery and storage of previously 

damaged scanned medical records in blockchain for the sake of knowledge enhancement 

(e.g., drug analysis and prediction) (D. E. O’Leary, 2013). Additionally, deep learning as-a-

service (DaaS) is employed on stored EHRs to accurately forecast future diseases based on 

current patient diagnosis reports (P. Bhattacharya, 2021). Machine learning techniques can 

also be employed to protect blockchain networks from large-scale attacks (S. Dey, 2018). 

There are some established projects that mix AI with blockchain. For example, 

SingularityNET (Singularitynet, 2018) focuses on developing AI and blockchain-based 

networking for the robot brain, while DeepBrainChain focuses on developing a platform for 

developing AI algorithms. Additionally, several machine learning and deep learning-based 

health-related projects are underway, including the Gamalon project, TraneAI (2017), and 

Neureal (2021). 

 

5.4.3 Edge Computing 

Due to network congestion and data size, sharing huge volumes of EHRs among diverse 

health care companies is problematic. Recent options for EHR management are limited in 

terms of scalability, computing cost, and reaction time. Edge computing may provide a 

solution to these difficulties. It can process a vast amount of data from multiple locations, as 

edge computing is comprised of a set of servers/computers (A. Awad Abdellatif, 2021). 

Researchers in (K. Gai, 2019) propose using edge computing to extend cloud services to the 

network's edge, thereby increasing processing capacity and device QoS. Edge Processing 

offers the advantages of large data storage, extensive networking, and high computing power, 

while also enabling secure and regulated scaling for distributed EHR applications. While 
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edge computing has several drawbacks, including security, vulnerability to various attacks 

during message transmission, and integrity, blockchain-based solutions face several 

challenges, including storage, scalability, block size constraints, and block creation time, all 

of which can be addressed using edge computing. Similar approaches for decentralized 

technology can improve privacy, security, and resource management on an automatic basis 

(R. Yang, 2019). Combining the two can provide several advantages. For example, 

blockchain can first be used to implement distributed controls across multiple edge nodes. 

The blockchain mining process verifies the accuracy, consistency, and dependability of data. 

Then, user privacy can be enhanced further by allowing people to control data using 

cryptographic keys. Finally, edge computing entails resource sharing across nodes, which 

can be accomplished securely via blockchain-based smart contracts (P. De Filippi, 2016). 

 

5.4.4 Internet of Medical Things (IOMT) 

The IoMT is a collection of medical devices and software that connect to various healthcare 

providers via online computer networks. The Internet of Medical Things is built on the 

concept of Machine-to-Machine (M2M) communication between wireless medical devices. 

Medical care providers and authorities can obtain real-time health updates on patients from 

remote places using wearable devices via the IoMT. Apart from the benefits of IoMT, there 

are some disadvantages, as IoMT devices are susceptible to security attacks. Not only has 

demand for novel medical devices surged dramatically during the Covid-19 outbreak, but so 

have cyber risks associated with them (P. Dialani, 2021). Blockchain technology might be 

viewed as a savior against the hazards posed by IoMT devices. Blockchain's decentralized 

key management, inseparability, and integrity qualities enable the secure communication of 

intelligent medical equipment. 
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